## 目 次

## **FMS**(Functional Microstructured Surfaces Research Center) 微細加工による新機能表面・構造の創成と応用・・・・・・・・センター長 鈴木健司1

| Ι. | 新        | 機能表面・構造創成のための基礎技術の体系化・・・・・・・・・・・・・・・・・・・・・3                 |
|----|----------|-------------------------------------------------------------|
| 1. | 1        | マイクロ・ナノ規則性構造材料の創成・・・・・・・・・・・・・・・・・小野幸子,阿相英孝 5               |
| 1. | <b>2</b> | 微細構造を有する高分子系複合材料を用いたトライボマテリアルの開発・・・・・西谷要介 7                 |
| 1. | 3        | MEMS 技術を利用した機能表面の創成と応用・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・  |
| 1. | .4       | パルスビーム加工による材料表面の機能創成と応用・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ |

| Ⅱ. 亲 | 機能表面・構造の生体医工学分野への応用・・・・・・・・・・・・・・・・・・・・・・・      | .3 |
|------|-------------------------------------------------|----|
| 2.1  | 表面技術の生体医工学応用・・・・・・・・・・・・・・・・・・・・・・・・ 橋本成広,安田利貴1 | 5  |
| 2.2  | ナノバイオメカニクスと組織修復への応用・・・・・・・・・・・・・・・・・・・・ 藤江裕道1   | 7  |
| 2.3  | バイオシステムに対するナノ・マイクロ規則構造表面の機能解明・・・・小野幸子,阿相英孝1     | .9 |

| Ⅲ. 親 | 「機能表面・構造の流体・エネルギー分野への応用・・・・・・・・・・・・・・・・・・21       |
|------|---------------------------------------------------|
| 3.1  | スポーツ用機能性生地の開発・・・・・・・・・・・・・・・・・・・・・・・・・・・・伊藤慎一郎 23 |
| 3.2  | 流体機能の創成とマイクロ推進体への応用・・・・・・・・・・・・・・・・・佐藤光太郎 25      |
| 3.3  | 表面微細加工技術を利用した相変化伝熱機能の創成と応用                        |
|      | ~微細加工による相変化伝熱の向上化と制御~・・・・・・・大竹浩靖 27               |

| IV. | 新機能表面・構造のマイクロメカトロニクス分野への応用・・・・・・・・・・・・・・29                |
|-----|-----------------------------------------------------------|
| 4.  | l 生物の表面機能の解明とロボットへの応用・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ |
| 4.  | 2 濡れ・付着機能の創成とマイクロマニピュレーションへの応用・・・・・・・・・見崎大悟 33            |

## 微細加工による新機能表面・構造の創成と応用 Creation and Application of Novel Functional Surfaces and Structures Based on Microfabrication Technology

FMSセンター長:鈴木 健司

#### 1. 研究プロジェクトの背景・目的

本学では、機械系、化学系の教員を中心に、2003-2007 年度にハイテクリサーチセンター整備事業として「マイクロ 先進スマート機械・マイクロバイオシステム実現へ向けての テクノロジー開発(SMBC)」,引き続き 2008-2012 年度には, 私立大学戦略的研究基盤形成支援事業として「スマート機械 システム創成技術に基づいた生体医工学研究拠点の形成 (BERC) が採択・実施されてきた.本プロジェクトは、2 つの先行プロジェクトで得られた知見と,整備されたマイク ロ加工設備,バイオ関連設備を活用した新規のプロジェクト として、2013年度に文部科学省私立大学戦略的研究基盤形 成支援事業に採択されたものであり、微細加工によって得ら れる表面の構造と機能に関する基礎技術の体系化と応用技 術の確立を目指すものである. プロジェクト名は「微差加工 による新機能表面・構造の創成と応用」であり、プロジェク トを推進する研究組織が「機能表面研究センター」(FMS: Functional Microstructured Surfaces Research Center) で あろ

近年のマイクロ・ナノ技術の進展にともない,表面の微細 構造によって様々な機能が発現することが明らかになって きた.また,微細加工技術の進展により,表面改質やテクス チャリング等の技術が発達し,流体,材料,光学,医療など 種々の分野で表面機能の活用が不可欠なものとなりつつあ る.さらに,ヤモリの指やハスの葉など,身近な生物の表面 にもナノメートルオーダの微細な構造が形成されており,こ れらが付着や撥水など生体にとって重要な役割を担ってい ることが明らかになってきた.最近では、「ヤモリテープ」 や「サメ肌水着」など、生体の表面機能から学んだ工業製品 も開発されるようになった.

しかし,各分野で独自の観点から研究が進められてきたた めに,表面の構造と機能に関する体系的な理解は手付かずの 状態にあり,分野横断的な知識の整理,体系化が求められて いる.そこで本研究プロジェクトでは,①微細構造によって 発現する表面機能とその加工技術に関する基礎的な学問・技 術体系の構築,②表面機能の種々の分野への応用技術の確立 の2点を目的とする.

#### 2. テーマ構成

図1に本プロジェクトのテーマ構成を示す.テーマ1の基礎研究では、SMBC で得られた知見、マイクロ加工・評価装置を有効に活用し、ミリメートルからナノメートルに及ぶ表面微細構造の加工技術、および微細構造により発現する表面機能の設計、制御、評価技術に関する研究を展開し、知識の整理・体系化を行う.応用研究では、SMBC、BERC で蓄積のある生体医工学分野(テーマ2)、流体・エネルギー分野(テーマ3)、マイクロメカトロニクス分野(テーマ4)における表面機能の応用技術の確立を目標とする.テーマ1の基礎研究で得られた技術および機能表面をテーマ2~4の応用研究に提供することにより、テーマ間の有機的な連携を図り、表面技術に関する総合的な研究・教育拠点の形成を目指す.



図1 FMS プロジェクトのテーマ構成

## 「微細加工による新機能表面・構造の創成と応用」

#### 3. 研究体制

機能表面研究センター(FMS)の研究組織は,機械系教 員および化学系教員を中心に、学内研究者11名,学外研究 者2名で構成されている.活動場所は,先行プロジェクトに 引き続き,八王子キャンパス16号館(MBSC棟)1~3階 のクリーンルーム,実験室を利用する.

基礎研究では、これまでに成果を挙げてきた MEMS 技術、 パルスビーム加工等によるトップダウンの手法、湿式プロセ スに基づくボトムアップの手法などを利用して新規の機能 表面・構造を開発し、応用研究のグループに技術の提供を行 う.応用研究では、BERC で行ってきた医学部研究機関や 各種企業との共同研究を進展させ、臨床応用や製品開発につ ながる研究を展開する.先行プロジェクトに比べて研究者の 人数を絞っており、テーマ間の密な連携によりプロジェクト の一体感を高めていく.

本プロジェクトの研究設備は、学部・大学院での「マイク ロ加工演習」などの教育、卒論、修論の研究に幅広く活用さ れている.企業出身の技術者を2名雇用しており、機器の保 守や教育・研究支援の体制を整えている.また、今年度はポ スドク1名を採用しており、次年度にはさらにRA1名を採 用予定であり、若手研究者の育成に努めている.

本プロジェクトで得られた研究成果は、国内外の査読付き 学術論文誌に積極的に投稿し、社会に還元するとともに、特 許出願を奨励し、研究成果を産業に結びつけるよう努める、 また、各種メディアへの発信、オープンキャンパスや地域の 小中学生向けの「理科教室」等での施設公開など、学内外に 向けた情報発信も積極的に行う.

#### 4.5年間の計画

<25~27 年度> 先行の SMBC プロジェクトで導入され たマイクロ・ナノ加工設備, 微細構造の評価装置の活用と, 新たに成膜装置,表面形状計測装置,流体力,粘弾性などの 評価装置の導入により,機能表面・構造に関する研究拠点の 整備を行う.研究報告会を年に4回程度開催するほか,基礎 と応用のテーマ間で機能表面材料の提供や情報交換を頻繁 に行うことにより,各テーマの有機的な連携を促進する.27 年度に中間報告会を開催して中間評価を受ける.

<28-29 年度> 27 年度までに整備された研究拠点を利用 して各小テーマの研究を展開する.研究報告会を年に4回程 度開催し,テーマ間の連携を促進する.また,学外の企業や 医療系研究機関との共同研究を進め,実用に結びつく研究を 展開する.基礎研究の成果は,ハンドブックの執筆などの形 で広く学外に発信する.29 年度には最終報告会を開催して 最終評価を受ける.

#### 5.2013年度の活動

#### ・FMS 運営委員会

機能表面研究センター (FMS)の運営委員会を4回開催 し,研究センターの運営,予算,機器の購入・管理,研 究会や報告会の開催などについての議論を行った.

·研究会,講演会,成果報告会

学内の研究者,学生が参加する FMS 研究会を3回開催 し,毎回2テーマずつ,テーマ紹介を兼ねたな話題提供 を行い,活発な討論が行われた. 海外の研究者を招聘した講演会を2回開催した.

3月には初年度の成果報告会を開催した.

#### ・安全講習会

FMSの設備を使用する学生全員に対し、4月に3回の安 全講習会を実施し、機器の使用のルールと安全に関する 講習を行った. 学内外の19研究室から合計203名の参 加があった.

#### ・研究設備の導入

以下の研究設備を導入した. 形状測定レーザーマイクロスコープ,レーザードップラ 一流速計,流体力計測装置,熱線流速計,3D加工装置 I. 新機能表面・構造創成のための基礎技術の体系化

## **1.1** マイクロ・ナノ規則性構造材料の創成 Fabrication of micro- and nano-ordered structures

阿相 英孝, 小野 幸子 Hidetaka ASOH and Sachiko ONO

Keywords: Micro- and nano-structures, Wet process, Chemical etching

#### 1. プロジェクトにおけるテーマ1の位置づけ

マイクロ・ナノスケールにおける加工技術,構造制御技術, 観察技術,評価技術等の進展にともない,固体表面に形成し た微細構造によって様々な機能が発現することが明らかに なってきた。また,表面改質やテクスチャリング等の様々な 表面処理技術が発達し,種々の分野で表面機能の活用が進め られている。しかし,各分野で独自の観点から研究が進めら れているものの,表面の構造と機能に関する体系的な理解に は至っていない。そこでテーマ1(基礎技術の体系化)では, 微細構造によって発現する表面機能とその加工技術に関す る基礎的な学問・技術体系の構築を目的とする。

基礎技術では,前プロジェクトで得られた知見及び整備済 みのマイクロ加工・評価装置を有効に活用し、ミリメートル からナノメートルに及ぶ表面微細構造の各種加工技術,表面 の制御技術,設計技術,評価技術に関する研究を展開し,知 識の整理・体系化を行う。また、それらの技術,知識を生体 医工学分野(テーマ2),流体・エネルギー分野(テーマ3), マイクロメカトロニクス分野(テーマ4)の応用研究に展開 し、表面技術に関する総合的な研究拠点の形成を目指す。

#### 2. テーマ 1.1 の研究目的

これまでに構築したマイクロ・ナノスケールでの基板表面 の構造制御技術、特に湿式プロセスに基づく規則的な表面構 造の制御技術をさらに発展させる。本プロジェクトにおいて、 微細構造によって発現する光学機能、トライボロジー機能、 濡れ・付着機能などを制御すべく、他グループが必要とする 各種表面機能を実現する微細構造の作製技術を開発する。

各種基板に対する、湿式プロセスをベースとした表面処 理・加工の幅広い知識・技術を活用し、他テーマ担当者への 材料提供、評価・計測面での技術提携が可能であり、研究テ ーマ2~4の応用研究に対して、機能性材料や加工法の提供、 表面機能に関する情報交換を行い、研究テーマ間の有機的な 連携を図る。表面機能の観点から他の課題を遂行する各分野 の研究者と密接な連携をとることにより、表面機能の設計・ 制御に関する総合的な知識の整理と応用展開が飛躍的に進 展することが期待される。2013 年度は、シリコン(Si)と化 合物半導体(GaAs)に対して、種々の化学エッチングを施 し、作製した構造の濡れ性や電気特性について評価した。

#### 3. 化学エッチングを施したシリコン表面の濡れ性に対す る微細構造の効果

Si 表面上にポーラス Si のような微細構造を形成すると反 射率や濡れ性などの表面特性が変化する。ここでは、種々の エッチングにより Si 表面に様々な微細構造を作製し、濡れ 性と構造の関係に関する基礎データの収集を目的とした。

試料としてアセトン脱脂後,HFにて自然酸化皮膜除去を したSi基板を用いた。試料に対して5 wt% NaOH 中でアル カリエッチングを行い,その後 HFに浸漬することで水素終 端化したSi凹凸構造を作製した。また,フォトレジスト製 ハニカムマスクを介してAuを用いた金属触媒エッチングを 行い,ミクロン周期のホールアレイを作製した。さらに,ナ ノメートルオーダーのホール構造を作製するため,無電解析 出による Ag を用いた金属触媒エッチングを行った<sup>1)</sup>。作製 した試料は走査型電子顕微鏡(FE-SEM:JSM-6701F)を用い て表面観察し,接触角測定には全自動接触角計(DM-700) を用いた。

図1に種々の化学エッチングを施した Si 表面の SEM 像を 示す。Si (100) 面に対しアルカリエッチングを行うと異方 性エッチングが進行しミクロンオーダーのピラミッド型構 造体が形成される(図1a)。また、レジストマスクを介して 金属触媒エッチングを行うと、マスク開口部の周期に依存し たミクロンオーダーのホール構造が作製できた(図1b)。さ らに、無電解析出でナノサイズの Ag 微粒子を不規則に析出 させ化学エッチングをすることで、Si 基板表面にナノポーラ ス構造を形成できた。しかし、基板表面において水平方向へ もエッチングが進行したため表面は粗雑化した(図1c)。

図2に図1a-cに対応する試料の水接触角を示す。Si表面を覆う官能基が親水基(-OH)の時,接触角は45°で親水性を示すが,HFにより水素終端化(-H)した場合には75°と疎水性を示した(図2FlatSi)。また,アルカリエッチングで作製したピラミッド型構造をHFで処理することで,接触角は83°となった(図2a)。これは,平滑面に比べて表面積が増加したことに起因する。サイズの異なるホール構造での接触角はマイクロホール構造で123°(図2b),ナノホール構造では138°であった(図2c)。基板と水滴の接する面積を減らし,空気(空隙)の割合を高めることで,接触角が大きくなり,撥水性表面を形成したと言える。次年度も引き続き,静的接触角,動的接触角,転落角,転落加速度などから表面の微細構造と濡れ性の関係を総合的に評価・検証する。



Fig. 1 SEM images of micro-/nanostructures formed on Si (100) by various etching. (a) in NaOH for 5 min at 90°C, (b, c) metal-assisted chemical etching for 10 min using Au and Ag catalyst, respectively.



Fig. 2 Contact angle of Si substrate with different structures. All experimental conditions were the same as in the case of Fig. 1a-c.

#### 4. 湿式エッチングによる GaAs ピラーアレイの構造制御と 電子エミッタへの応用

簡便で大量生産に適したウェットプロセスを用いて、電気・電子特性に優れた半導体素子を作製することが期待されている。先端を急峻に尖らせた金属や半導体に電界を印加することで電子を放出させるフィールドエミッタは、エミッタ電極の先端形状や配置を最適化することで低電圧でも安定した電子放出が可能となる。ここでは、GaAsに湿式エッチングを適用し、ニードル状あるいはナノワイヤ状の微小電極アレイを作製し、電子エミッタとしての電気特性を評価した。 n-GaAs(111)B 基板上にフォトリソグラフィーを用いて周

n-GaAs(111)B 基板上にフォトリワクワフィーを用いて周 期 3 μm のレジスト製ハニカムマスクを作製した。2 mol dm<sup>-3</sup> NH<sub>4</sub>OH-1.2 mol dm<sup>-3</sup> H<sub>2</sub>O<sub>2</sub>混合溶液でマスク開口部のみ選択 的に化学エッチングし, 逆三角錐型のエッチピットを作製し た。その後 1.7 mol dm<sup>-3</sup> HCl を用いて 10 分定電流電解(1 mA cm<sup>-2</sup>)を施し GaAs ホールアレイを作製した。一方,マスクを 用いずに GaAs 基板を 1.7 mol dm<sup>-3</sup> H<sub>3</sub>PO<sub>4</sub>-0.17 mol dm<sup>-3</sup> HCl 混合溶液中で直接電解エッチングし, GaAs ナノワイヤを作 製した。作製した微小電極の構造は走査型電子顕微鏡(SEM) で観察し,真空中において電子放出特性を評価した。

エッチピットを形成後,位置選択的に電解エッチングを行 うことで、一辺が約 200 nm、深さ約 70 μm の三角形状の孔 が周期3µmで規則的に配列したGaAsホールアレイを形成 した<sup>2,3)</sup>。その後 GaAs ホールアレイに対し, NH<sub>4</sub>OH-H<sub>2</sub>O<sub>2</sub> 混合溶液中で化学エッチングを施すことで基板水平方向へ の異方性エッチングにより孔壁が徐々に溶解し,隣接する孔 同士が連結した。その後も孔壁の溶解は進行し、エッチング 時間 3 分で、一辺が約 1.5 µm の三角柱状のピラーアレイ(周 期 3 µm)が得られた(図 3a)。エッチング 6.5 分においては、 高さ約10 µmで, 先端がニードル状に尖った微小電極アレ イが作製できた(図 3b)。しかしながらエッチング時間をさら に延長しても、ニードル先端部の角度は大きく変化せず、基 板垂直方向にもエッチングが進行したためアスペクト比が 減少した。一方、マスクを用いずに GaAs 基板を高電流密度 (100 mA cm<sup>-2</sup>)で 30 分アノードエッチングした場合,長さ約 100 µm, 直径約 200 nm, アスペクト比約 500 のナノワイヤ が密に集合した束(バンドル)構造が自発的に形成された。ア ノードエッチング後の試料に対して化学エッチングを施す と、エッチング時間の延長に伴いワイヤ径が減少し、エッチ ング時間 40 秒ではワイヤ径は約 150 nm となり,約 100 µm 間隔のバンドルアレイを形成した(図 3c)。図4に作製した微 小電極アレイの電子放出特性を評価した結果を示す。ナノワ イヤはニードルアレイと比べ,低い印加電圧においても高い エミッション電流が流れることから,電子放出特性が優れて いることが分かった。これは、ナノワイヤのアスペクト比が ニードルアレイ(約23)より約22倍高いことによると考えら れる。40秒化学エッチングしバンドル化した試料(図 3c)で は,電子放出サイトの間隔が広く電界遮蔽効果が抑制される ため,最も低い電圧において安定した電子放出特性を示した。 5. 今後の研究計画

引き続きナノ構造材料の濡れ性や接着性に関して系統的 な評価を実施する。さらには摩擦, 磨耗, 潤滑など基盤技術 でありながら, 学際的な位置づけが強い領域へもアプローチ し, 材料系と機械(トライボロジー)系の融合領域でも有益 な実験データ,実験技術の蓄積を図りたい。 <参考文献>

- H. Asoh, K. Fujihara and S. Ono, *Nanoscale Research* Letters, 8, 410/1-410/8 (2013)
- H. Asoh, S. Kotaka and S. Ono, *Electrochemistry* Communications, 13 (5), 458-461 (2011)
- S. Ono, S. Kotaka and H. Asoh, *Electrochimica Acta*, **110**, 393-401 (2013)



Fig. 3 SEM images of (a) GaAs pillar, (b) needle, (c) nanowire arrays formed by a combination of anodic etching and chemical etching.



Fig. 4 Current density-electric field intensity curves of anodized GaAs with different structures.

#### 査読付き論文

- <u>S. Ono</u>, S. Kotaka and <u>H. Asoh</u>, Fabrication and structure modulation of high-aspect-ratio porous GaAs through anisotropic chemical etching, anodic etching, and anodic oxidation, Electrochimica Acta, 110, 393-401 (2013)
- <u>H. Asoh</u>, K. Fujihara and <u>S. Ono</u>, Sub-100-nm Ordered Silicon Hole Arrays by Metal-Assisted Chemical Etching, Nanoscale Research Letters, 8, 410/1-410/8 (2013)
- F. Rashidi, T. Masuda, <u>H. Asoh</u> and <u>S. Ono</u>, Metallographic Effects of Pure Aluminum on Properties of Nanoporous Anodic Alumina (NPAA), Surface and Interface Analysis, 45, (10), 1490-1496 (2013)

#### 解説

 小野幸子,阿相英孝,アノード酸化ポーラスアルミナ皮 膜を用いたシリコンのナノ構造制御(解説),表面技術, 65(1),18-25(2014)

学会発表

- <u>S. Ono</u> and <u>H. Asoh</u>, Nano/Micropatterning of Semiconductor Substrates by Anisotropic Chemical Etching and Anodic Etching Combined with Sphere Photolithography (Invited lecture), The International Conference on Small Science (ICSS 2013), (Las Vegas, USA, 12/17, 2013)
- H. Asoh and S. Ono, Micro- and Nanofabrication of III-V Semiconductors by Anodic Etching and Anisotropic Chemical Etching (Invited lecture), The 1st International Conference on Surface Engineering (ICSE2013), (Busan, Korea, 11/19, 2013) 他

## 1.2. 微細構造を有する高分子系複合材料を用いたトライボマテリアルの開発 Development of Tribomaterials using Polymer Matrix Composites with Microstructure

## 西谷 要介 Yosuke NISHITANI

Keywords: Tribomaterials, Polymer, Composites, Microstructure

#### 1. 緒言

プラスチックをはじめとした高分子材料および高分子系 複合材料は、金属材料等とは異なり、自己潤滑性の特徴を有 するため、無潤滑下で使用できる利点があり、 摺動部材(ト ライボマテリアル)として幅広く用いられている(1).しかし ながら,最近では機械の小型・軽量・高機能化に伴い,更な る低摩擦化かつ耐摩耗性向上などの厳しい要求に対して,応 えることができていないのが現状である.本研究では、低摩 擦・耐摩耗性などの表面機能であるトライボロジー特性に優 れ,かつ簡便な成形加工性や機械的性質などの他物性とも高 度にバランスのとれた高分子系トライボマテリアルの開発 を目的とし、ナノ・マイクロスケールの微細構造を有する高 分子系複合材料の設計技術を構築し,それらを用いた高性能 な高分子系トライボマテリアルを開発する.具体的には(1) 材料設計による手法,(2)成形加工による手法,および(3) 表面構造付与による手法の3つの事項を中心に検討し,それ らの技術を組合せることでトライボロジー的性質だけでな く,他物性とも高度にバランスのとれた新規のトライボマテ リアルを開発する.本研究により,高分子系複合材料の構造 制御や表面機能に必要な基盤技術を体系的に構築すること ができ、トライボマテリアルに限らず、幅広い分野への応用 が期待できるものである.

#### 2. 材料設計による手法

トライボマテリアルとして高分子材料を用いる場合,その ままの単体で使用されることもあるが、多くの場合は何らか の手法により改質・改善して使用されるのが一般的である(1). その手法としては様々な手法があるが,工業的にも簡便かつ コスト面にも優れているため, 高分子材料ではフィラー充填 による複合化や他の高分子との組み合わせによるポリマ-ブレンド化,またそれらの組合せなどによる方法が盛んに用 いられている.この複合化およびポリマーブレンド化により, 高分子材料は様々な内部構造が形成される.この内部構造と 各種物性は密接に関係していることが知られており,各種性 能を向上させるためには材料内部構造を適切に設計する必 要がある<sup>(2)</sup>. また, 複合化は異種材料との組合せであるため, フィラーと高分子材料の間には物理的な界面が存在し,何か しらの相互作用が働いており,その量と質が複合材料全体の 物性を大きく左右するので表面処理などによる界面制御を 行う必要がある.本研究では第一の手法として,表面処理技 術を含めた複合化およびポリマーブレンド化技術などの材 料設計による手法を用いた高分子系複合材料の構造と物性 の関係を明らかにし、各種物性のバランスがとれたトライボ マテリアルの開発を検討する.

本年度はサブミクロンオーダーの沈降性炭酸カルシウム (CaCO<sub>3</sub>)をフィラーとし、ポリアミド6(PA6)とポリプ ロピレン(PP)のポリマーブレンドをベースとした多成分 系複合材料(PA6/PP/CaCO<sub>3</sub>)の構造と物性,特にトライボ ロジー特性に及ぼす CaCO<sub>3</sub>の表面処理の影響を検討した結 果を報告する.ただし、CaCO<sub>3</sub>の表面処理としては、未処 理(Untreated)、マレイン酸(MA)、脂肪酸処理(FA)、

アルキルベンゼンスルホン酸(LAS)およびアミノシラン (ASC)の計5種類を用い、CaCO3の充填量は5vol.%固定 とし、PA6/PP ブレンド比率を変化させたものである. Fig.2 に各種表面処理 CaCO3 を 5vol.%充填した PA6/PP/CaCO3 複合材料のトライボロジー特性を図1に示す.(a)図は摩擦 係数および(b)図は比摩耗率とブレンド比率(PP添加量)の 関係である.摩擦係数および比摩耗率ともに、ブレンド比率 および表面処理の違いにより異なる挙動を示し,成分比ごと に最適な表面処理を選択しなければならないことが示唆さ れる.このような理由としては、材料配合の違いにより材料 内部構造が変化し、それに伴い強度をはじめとした材料物性 も変化するためと考えられる.図2に PA6/PP/CaCO3 複合 材料の破断面を SEM 観察した結果を示す. ただし, PA6/PP =20/80 であり, PA6 が分散相(島), PP がマトリックス相 (海)となる.表面処理の違いにより PA6 分散相の粒径が 異なることも注目されるが、CaCO3の分散状態が大きく変 化していることも特徴的である.表面未処理では CaCO3が PA6 中および界面に存在しているのに対し, MA では PA6 中のみに CaCO<sub>3</sub> が存在し,また LAS および ASC は同様に PA6分散相中に CaCO3 が存在するが特に PA6/PP 界面に集 中的に存在している.一方, FA では, 逆に PP マトリック ス相のみに CaCO<sub>3</sub>が分散している. このようなモルフォロ ジーの変化と前述したトライボロジー特性では、残念ながら



Fig.1 Tribological properties of various surface treated CaCO<sub>3</sub> filled PA6/PP composites. (a) Frictional coefficient and (b) Specific wear rate.



Fig.2 SEM photographs of fracture surface for various surface treated CaCO<sub>3</sub> filled PA6/PP (=20/80) composites

単純な関係は成立していない.しかしながら,表面処理の違いにより,ブレンド相の大きさだけでなく,フィラーの分散状態や存在場所も変化することで,多成分系高分子材料の物性を制御できることが示唆されている.

#### 3. 成形加工による手法

前節で述べたような複合化とポリマーブレンド化を組み 合わせて創製する多成分系材料の場合,各種物性は成形加工 の影響を強く受けることも予想される.なぜならば、同一材 料の配合設計で多成分系複合材料を創製しても,溶融混練時 の混練手順(材料投入手順)などによっても、材料の内部構 造,例えば充填材の分散状態やブレンド分散相の形状・大き さなどが変化するためである. そこで、本研究での第二の手 法として,成形加工による手法を用いた高分子系複合材料の 構造と物性の関係を検討する.具体的には、PA6をマトリ ックス樹脂とし、マレイン酸変性スチレン・エチレン/ブチレ ン-スチレン・ブロックコポリマー (SEBS-g-MA) をブレン ド材とし、フィラーに多層カーボンナノチューブ (CNT) の一種である気相成長炭素繊維 (VGCF) を用いた多成分系 複合材料(VGCF/PA6/SEBS-g-MA)を例にとり、二軸押出 機による溶融混練時の材料投入手順(図3)が各種物性に及 ぼす影響を検討したものである. 材料投入手順としては4 種類の方法を用い, A 法は VGCF, PA6 および SEBS-g-MA を1段階で同時に混練する方法である.B法~D法は2段 階調整法であり, B法は PA6 と VGCF を混練して VGCF/ PA6 を調整した後に SEBS-g-MA を添加する方法, また C 法は PA6/SEBS-g-MA を調整した後に VGCF を充填する方 法, さらに D 法は VGCF/SEBS-g-MA を調整した後に PA6 を投入する方法である.これらの成形法の概略図を図3に示 す.これらの材料投入手順がトライボロジー特性に及ぼすに 及ぼす影響を検討した結果を図4に示す.ただし、(a)図は 摩擦係数および(b)図は比摩耗率と VGCF 充填量の関係であ



Fig.3 Schematic diagram of four kinds of processing method for VGCF/PA6/TPE composites.



Fig.4 Influence of volume fraction of fiber on the various tribological properties of VGCF/PA6/TPE composites. (a)Frictional coefficient and (b) Specific wear rate

る. 摩擦係数は VGCF 充填量の増加に伴い材料投入手順の 影響が現れてくるものの,あまり大きな変化は認められない が,比摩耗率については材料投入手順の影響が顕著に現れて いる. これらの結果から,成形加工による手法によっても材 料内部構造が大きく変化していることが予想されるため,今 後詳細なメカニズムの検討が必要である.

#### 4. 表面構造付与による手法

材料表面に微細加工を施しトライボロジー特性を改善す る試みが広く行われている<sup>(3)</sup>. 近年 MEMS をはじめとした 微細加工技術の発展により,その技術の応用が高く期待され ている.しかしながら,高分子材料表面への微細加工技術や それを付与した構造物の表面機能,特にトライボロジー特性 などは明らかになっていないのが現状である.本研究での第 三の手法として,表面構造付与による手法を用いた高分子系 複合材料のトライボロジー特性を検討する.具体的にはフェ ムト秒レーザーやナノインプリントなどの微細加工技術を 高分子材料表面に施し,その表面機能を明らかにすることで ある.本年度は高分子材料にフェムト秒レーザーを用いたマ イクロパターンの加工条件について検討した結果を報告す る.図5はフェムト秒レーザーのレーザー出力を変化させ高 分子材料(PA12E)にマイクロパターンを形成した例であ る. レーザー出力により溝形状や周囲部への影響が異なるこ とがわかる. 今後は, 各種材料についての加工条件を選定す るとともに、表面特性としてトライボロジー特性を評価して いく予定である.



Fig.5 Micro-structured surface of polyamide12 elastomer using femtosecond laser.

#### 5.結言

(1) CaCO<sub>3</sub>フィラー表面処理により材料内部構造を制御する ことができた.

(2) 材料投入手順の違いによりトライボロジー特性を改質 できることがわかった.

(3) 高分子材料表面にマイクロパターンを形成するための フェムト秒レーザー加工の条件の一部を明らかにした.

#### <参考文献>

- (1) 例えば、渡辺,関口,笠原,広中,高分子トライボマ テリアル,共立出版(1990).
- (2) Macosko, C.W., Macromol. Symp., 149, pp.171 (2000)
- (3) 例えば、トライボロジスト,55(2),2010

#### 解説

 西谷,トライボマテリアル フィラー表面処理による高 分子系複合材料のトライボロジー特性の改質,月刊ト ライボロジー,312,2013, pp. 51-53.

#### 学会発表

 <u>Yosuke Nishitani</u>, Masanori Shitsukawa, Kazuki Yamamoto, Takeshi Kitano, Effect of the Surface Treatment of CaCO<sub>3</sub> on the Tribological Properties of PA6/PP/CaCO3 Composites, Proceedings of 5th World Tribology Congress - WTC 2013, 2013, MT-358, Torino (Italy)

#### 他 22 件.

## 鈴木 健司 Kenji SUZUKI

Keywords: MEMS, Functional Surface, Microstructure, Electrowetting

#### 1. 緒言

本テーマは、過去 10 年間の SMBC および BERC プロジ ェクトにより蓄積された MEMS を中心とするマイクロ加工 技術を活用し、材料表面に微細加工を施すことにより、 種々 の機能を有する表面を創成することを目的とする.また,得 られた表面に対して,濡れ性,付着性,流体抵抗,トライボ ロジー特性などの評価を行い, 微細構造と各種機能の関係を 明らかにし、表面機能を付与するための設計手法を構築する. さらに微細構造によるパッシブな機能にとどまらず, 電界や 磁界,光などのエネルギーの印加や,MEMS センサとの組 み合わせによる表面機能のアクティブ制御を試み,新規のデ バイスの開発と応用分野の開拓を行う. MEMS 技術を利用 した表面微細構造の製作技術,各種機能表面の設計手法を構 築することにより,他のテーマに対し開発した表面や技術の 提供が可能になり、テーマ間の連携強化が期待できる.

今年度は、電圧の印加により材料表面の局所的な濡れ性を 制御し、微小な液滴の輸送やハンドリングを行う EWOD (Electro Wetting on Dielectric)<sup>(1)-(3)</sup>と呼ばれる技術に着目 し、液体の種類が液滴輸送性能に及ぼす影響を実験により調 べたので報告する.

#### 2. 液滴輸送の原理

EWOD を利用した液滴輸送の原理を図1に示す.液滴の 下部の基板には、導体の電極層、絶縁層、撥水層が順に成膜 されている. 液滴の下の2つの電極間に電圧を印加すると, 左右の電界の差により基板に平行な方向に静電力が働き液 滴が移動する. 液滴が2つの電極の中央に移動すると左右 の静電力がつりあい、液滴は平衡状態に達して静止する.液 滴を連続的に移動させるためには, 基板上に多数の電極列を 形成し, 電極の間隔を液滴の幅の半分以下とし, 電圧を印加 する電極を順次切り替えていけばよい. 今回の実験では連続 する3枚の電極に同時に電圧を印加し,印加する電極を1枚 ずつ移動するようにした.

#### 3. デバイスの製作

製作したデバイスの構造を図2に示す.ガラス基板上に電 極層の Cr をスパッタリングにより成膜し、フォトリソグラ



Fig.2 Cross section of the EWOD device

フィにより電極を形成した.次に絶縁層のパリレン C を成 膜し, 撥水層の Teflon AF2400 を塗布した.

#### 4. 液滴輸送実験

実験には.純水、食塩水、エタノール、シリコーンオイル (1cST)を使用した. 食塩水は生理食塩水(0.9%), 5%, 10% の3種類を用いた.使用した液体の特性を表1に示す. 液量の最適化

液体の種類により接触角が異なるため, 接地面積および輸 送に適した液量も変化する.輸送に最適な液量を調べるため, 表面張力が高い純水,表面張力の低いエタノールを使用し, 1µl, 3µl, 5µlで輸送実験を行った. その結果を表 2, 接 地面積の比較を図3に示す。純水は1µl,3µl,5µlの全 てで輸送が可能で 3μ1 が特に輸送しやすいという結果にな ったが、エタノールでは1µ1の場合にしか輸送できなかっ た. このことから純水や食塩水のような接触角の高い液体は, 液量に対する接地面積が小さいので液量が多くても輸送が 可能だが、エタノールやシリコーンオイルなどの接触角の低 い液体は液量あたりの接地面積が大きくなるので少ない液 量しか輸送できないと考えられる.本実験における電極のサ イズは 0.5mm×1.5mm, 電極ピッチは 0.53mm であり, 電 極 3 枚分程度(1.5mm×1.5mm) の接地面積が最適という 結果になった.以降の実験では、純水は1µlと3µl、食塩水 は 3µl, エタノールとシリコーンオイルは 1µl で行う.

|                         | electrical<br>conductivity<br>[S/m] | dielectric constant | surface<br>tension<br>[mN/m] |
|-------------------------|-------------------------------------|---------------------|------------------------------|
| Pure water              | 5.5×10 <sup>-6</sup>                | 80                  | 73                           |
| Saline<br>(0.9%,5%,10%) | 1.6~8.1                             | 50~80               | 73~80                        |
| Ethanol                 | 1.4×10                              | 24.6                | 23                           |
| Silicone oil (1cSt)     | -12<br>1×10                         | 2.7                 | 21                           |

#### Table1. Properties of liquid

#### Table2. Experimental results of transportation

|            | Volume of liquid droplet [µl] |   |   |  |
|------------|-------------------------------|---|---|--|
|            | 1                             | 3 | 5 |  |
| Pure water | 0                             | O | 0 |  |
| Ethanol    | 0                             | × | × |  |





Ethanol 3µl Pure water 3µl Ethanol 1µl Fig. 3 Difference in contact area

#### (2) 接触角の変化

デバイス上にそれぞれの液滴を滴下し、 $0V \sim 250V$  の範囲 で電圧を50Vずつ変化させた際の接触角の変化を測定した. その結果を図4に示す.純水と食塩水(0.9%, 5%, 10%) は 大きな差は見られなかった.また、純水や食塩水に比ベエタ ノールとシリコーンオイルの接触角の変化は少なかった.誘 電率が高い液体ほど接触角が大きく変化するという結果は、 EWOD での接触角の変化量を求める理論式(1)と一致す る.ここで、 $\epsilon_0$  は真空の誘電率、 $\epsilon$ は絶縁層の比誘電率、V は 印加電圧、 $\gamma_L$ は液体の表面張力、t は絶縁層の膜厚である.

$$\cos\theta = \cos\theta_0 + \frac{\varepsilon_0 \varepsilon V^2}{2\gamma_L t} \tag{1}$$

(3) 食塩水の輸送

純水と3 種類の濃度の食塩水で輸送実験を行い輸送に必要な最低の電圧と輸送可能な最高の周波数の測定を行った. 実験は電圧の測定時は周波数を10Hz,周波数の測定時は電 圧を100Vに固定した状態で行った.その結果を図5に示す.

輸送に必要な最低電圧には、食塩水の濃度の影響は見られ なかったが、輸送可能な最高の周波数は濃度が上昇するにつ れて低下が見られた.また、濃度が高い食塩水では実験回数 を重ねると徐々に輸送しにくくなる現象が見られた.これは デバイス表面が食塩により汚染されることが原因と考えら れる.

(4) エタノールとシリコーンオイルの輸送

純水,エタノール,シリコーンオイルを用いて輸送実験を 行い,輸送に必要な最低の電圧と輸送可能な最高の周波数の 測定を行った.実験は電圧の測定時は周波数を10Hz,周波 数の測定時は電圧を100Vに固定した状態で行った.その結 果を表3に示す.純水とエタノールは輸送できたが,シリコ ーンオイルはわずかに変形するのみで輸送できなかった.ま た純水はエタノールに比べて高い周波数での輸送が可能で あった.

実験の結果と実験に使用した液体の主な特性を表 4 にま とめる.特性と輸送の成否から,電気伝導率,誘電率,初期 接触角は輸送に影響があると考えられる.一方,表面張力, 接触角の変化量はエタノールとシリコーンオイルはどちら も小さい値で差も小さいが一方のみが輸送できることから 輸送の成否に影響は少ないと考えられる.また,電気伝導率 が 1.4×10<sup>9</sup> S/m の液体でも輸送できたことから,一般的に 絶縁体と呼ばれている液体であっても条件次第で EWOD に よる輸送が可能であることがわかる.

Table3. Experimental results of ethanol and silicone oil transportation

|                           | Pure water | Ethanol | Silicone oil |
|---------------------------|------------|---------|--------------|
| Maximum frequency<br>[Hz] | 240        | 140     | —            |
| Minimum voltage [V]       | 65         | 60      | —            |

| Table4. Properties of liquid and experimental res | s of liquid and experimental resu | results | perimental | and ex | auid | of lic | perties | Pro | Table4. |
|---------------------------------------------------|-----------------------------------|---------|------------|--------|------|--------|---------|-----|---------|
|---------------------------------------------------|-----------------------------------|---------|------------|--------|------|--------|---------|-----|---------|

|                     | Transport | Electrical<br>conductivity<br>[S/m] | Dielectric constant | Initial<br>contact<br>angle [°] | Variation<br>of contact<br>angle[°] | Surface<br>tension<br>[mN/m] |
|---------------------|-----------|-------------------------------------|---------------------|---------------------------------|-------------------------------------|------------------------------|
| Pure<br>water       | 0         | 5.5×10 <sup>-6</sup>                | 80                  | 120                             | 40                                  | 73                           |
| Saline<br>0.9,5,10% | 0         | 1.6~8.1                             | 50~80               | 110<br>~120                     | 30~40                               | 73~80                        |
| Ethanol             | 0         | 1.4×10 <sup>-9</sup>                | 24.6                | 40                              | 10                                  | 23                           |
| Silicone<br>oil     | ×         | 1×10 <sup>-12</sup>                 | 2.7                 | 20                              | 10                                  | 21                           |



Fig.4 Variation of contact angle with applied voltage



Fig. 5 Experimental results of saline transportation

#### 5. 結言

EWOD デバイスにおいて液体の種類が輸送性能に及ぼす 影響を調べ,以下の知見が得られた.

- (1) 適切な液量は液体の接触角によって変化し、デバイスとの接触面積が電極3個分程度となる量が輸送に適する.
- (2) 電気伝導率が 1×10<sup>9</sup> S/m, 比誘電率が 24.6, 初期接触角 40°以上の液体は輸送可能である. 輸送の成否に対する液 体の表面張力, 接触角変化の影響は少ない.

#### <参考文献>

- Chang-Jin Kim, et al., Journal of Microelectromechanical Systems, 12, 1 (2003) pp.70-80.
- (2) R. B. Fair, Microfluidics and Nanofluidics, 3 (2007) pp. 245-281.
- (3) K. Suzuki, et al., Journal of Advanced Mechanical Design Systems and Manufacturing, 4, 1 (2010) pp.365-372.

学会発表

- (1) 柳澤典男, 鈴木健司, 高信英明, 三浦宏文, エレクトロ ウェッティングを利用した液滴輸送の研究~液体の種 類が液滴輸送に及ぼす影響~,日本機械学会情報・知 能・精密機器部門講演会(IIP2014),東京, 2014, H-1-3.
- (2) 谷優樹,大家渓,<u>鈴木健司,藤江裕道</u>,フェムト秒レー ザによりチタン表面に形成したナノ周期構造の軟組織 適合性,日本材料科学会平成 25 年度学術講演大会, 2013. 他1件

## 1.4 パルスビーム加工による材料表面の機能創成と応用 Functional Creation and Application of Material Surface by Pulse Beam Machining

## 武沢 英樹 Hideki TAKWZAWA

*Keywords* : EDM, Micro-bubble, Surface roughness, Permanent Magnet, Surface Magnetic Flux Density

#### 1.緒 言

高硬度材料の精密加工を得意とする放電加工は,絶縁液中 で電極と工作物間にパルス電圧を印可し, 微小な放電を繰り 返すことで、材料を溶融除去する加工法である.非接触熱エ ネルギ加工であり,加工反力が小さいため微細加工への応用 が広がっている.加工面は、微小な放電痕の累積で形成され ており, 放電条件を一定とすれば, ほぼ同様な除去量の放電 痕形状が重なり合い、表面粗さもそれに従った値に落ちつく. その一方で,放電面には溶融部が飛散しきれずに残留した溶 融再凝固層が存在する.加工材料にもよるが,鉄鋼材料では 溶融部が急冷されることで加工面には引張り応力が残留し, クラックの原因ともなっている.このように、液中パルス放 電加工では、加工面性状に幾つかの特徴を有している.金型 に代表される現状のアプリケーションでは、デメリットとな る特徴もあるが、工夫を行うことで従来の加工法では実現で きなかった面性状が創造できる可能性もある.

その一つに、マイクロバブルを混入させた加工液中での放 電加工がある. 混入気体を空気以外にも窒素など各種気体に することで,極間の高温高圧状態で化学反応が進行し,加工 面に各種化合物を生成できる可能性がある.粉末を圧縮した 圧粉体電極を用いた放電表面処理が開発されているが,それ に変わる手法になり得る.

その他放電加工は、従来の機械的な加工法では困難な材料 でも形状加工が可能であり,最近では加工初期に工夫を施す ことで非導電性材料も実績がある.絶縁性セラミックスがそ の代表であり、従来の研削面とは異なる加工面を得ることで、 摺動特性など異なった特性が得られている.このように特殊 な材料を放電加工することで材料表面に新たな機能を創成 することが可能である.中でも、磁性材料は硬脆材料に加え 磁力の影響から機械加工が困難な材料として知られている. 形状加工が必要な場合は,着磁前の工程で研削加工により成 形され、その後着磁される. ところが、非接触熱エネルギ加 工である放電加工であれば,着磁後の磁石でも形状加工が可 能である. さらに, 磁石の磁力は温度依存性を有するため, 放電加工による磁石内部温度の上昇により,形状と同時に磁 力の変化も期待できる. その結果, 従来加工では実現されな かった新たな磁石形状や磁束密度分布など新たな可能性も 考えられる.

#### 2. 研究目的

本研究では、放電加工に代表されるパルスビーム加工を用 いた各種材料の表面機能の創成を目的としている.特に2つ の項目に注目し研究を進める.1つは、マイクロバブルを混 入させた加工液中での放電加工による加工面性状の向上と 機能性膜の生成であり,もう1つは永久磁石に対する放電加 エおよびパルスレーザ照射による形状加工ならびに磁気特 性の制御である.

前者は液中放電加工で重要な要素である気化爆発力への 影響に注目している<sup>1)</sup>. さらに, 混入気体を空気以外にする ことで,極間の高温・高圧中で化学反応が発生し,材料表面 に機能性膜が生成することを期待している.後者は、機能性 材料である永久磁石の形状と表面磁束密度を同時にあるい は個別に制御する手法の確立を目指している.表面機能に着 目すれば、面性状に加え磁気パターニングの創成も含まれて おり、従来手法では困難な表面機能の創成が期待される.

#### 3. マイクロバブル混入放電加工

加工実験は、ソディック製の形彫放電加工機 AM3L を用 いた.マイクロバブル混入加工液の効果を確かめるために, 加工油および純水にマイクロバブルを混入し,未混入の加工 液の加工特性と比較した.比較する加工特性は,加工速度, 加工面粗さ(Ra),単位時間当たりの放電回数,電極消耗率 の4項目とした.マイクロバブルの生成にはアスプ製 MA5S を用いた.予備実験の結果,単に加工槽へマイクロバブル混 入加工液を溜めるだけでは加工特性に有意な差が生じなか った. これは、マイクロバブルの直径が 50µm 以下であるの に対して, 放電加工の極間距離は数十 µm であるため, 極間 にマイクロバブルが効率よく存在していないためと考えた. そこで,加工液を電極中心から噴射させて直接極間に加工液 を導入し加工を行った.工具電極には直径 10mm の銅電極 に 1mm の噴射口を開けたものを,工作物は表面を研磨した S45Cを使用した. 放電条件は Table 1 に示す放電エネル Tabl ns

| able 1 Discharge conditio | ble 1 | Discharge | conditio |
|---------------------------|-------|-----------|----------|
|---------------------------|-------|-----------|----------|

| Electrode | Discharg  | Pulse    | Pulse    | D.F. |
|-----------|-----------|----------|----------|------|
| polarity  | e current | duretion | interval |      |
| (+) , (-) | 20A       | 200µs    | 200µs    | 50%  |







Fig.2 Surface roughness (pure water)



Fig.3 Electrode wear rate (pure water)

ギの高い条件にて各加工液で電極極性を変えて15分の加工 実験を3回行い、その加工特性を評価した.その結果、加工 由にマイクロバブルを混入させても、未混入の加工特性と有 意な差が生じなかった.今後、加工条件等を広げて再度確認 する必要はあるが、粘性など純水との物性値の違いが影響し ていることが考えられる.一方、純水にマイクロバブルを混 入させると、Fig.1~3に示すように、両極性とも加工速度 は向上し加工面粗さが良好になる傾向が確認された.通常の 放電加工では両者は相反する傾向を示すが、どちらも改善さ れれば有益な手法となる.今後、加工メカニズムを含め詳細 を検討していく.

#### 4. 永久磁石に対する放電加工

加工対象には、磁力が強力なネオジム磁石を用いた.磁性 材料では、形状やその寸法に依存して、内部に反磁場と呼ば れる磁石表面に現れる磁場と反対向きの磁場が発生する<sup>2)</sup>. このため、表面磁束密度は磁石形状に依存し、形状が変化す れば磁束密度も変化する.そのため、着磁後の磁石を放電加 工で形状加工を行えば、形状変化に伴う磁束密度の変化を得 られる.加えて、熱エネルギ加工である放電加工により、磁 石内部温度が上昇すれば、温度上昇に起因する磁力の低下が 生じ、形状変化と合わせた複合的な磁束密度変化を示すと考 えられる.そこで、はじめに突き当て加工により磁石高さが 変化するのみの加工において、放電条件に起因する表面磁束 密度の低下を調べた.

ネオジム磁石は、直径 10mm、高さ 10mmの市販の磁石 であり、Table 2 のような特性を示す. この磁石に対して、 直径 11mmの銅電極を用い、磁石N極側から加工深さ指定 1mmの突き当て加工を行った.放電条件は、電極極性を(+) とし、Table 3 に示す 2 種類の条件で比較した. No.1 の条件 は入力エネルギの少ない低速加工の条件であり、No.2 の条 件は入力エネルギの大きな高速加工の条件である.加工後の 加工面の表面磁束密度を、テスラメータ(カネテック製 TM-601)にて計測した.測定は、中央部一断面を 0.5mm ピッチで行った.

Fig.4に、加工前および No.1, No.2の条件で加工後,さらに高さ9mmの未加工磁石の表面磁束密度の比較を示す. 表面磁束密度は、全てN極面を測定した.いずれの測定においても、直径10mmの磁石の両脇は、端部の影響で磁束密度が低下している.高さ10mmの加工前磁石の磁束密度は、実測で480mT程度であった.一方,No.1の条件で1mm除去加工を行い、高さ9mmになった磁石表面の磁束密度は、460mT程度とわずかに減少する.ただしこの値は、高さ9mmの未加工磁石の磁束密度とほぼ同等であり、磁石高さが1mm減少した影響であることがわかる.ところが、同じ高さ1mmの除去加工であるにも関わらず、No.2の放電条件で加工すると、加工後の磁束密度は270mT程度にまで

Table 2 Characteristics of Neodymium magnet

| Surface magnetic<br>flux density | Density                       | Thermal Coefficient                 |
|----------------------------------|-------------------------------|-------------------------------------|
| 520mT                            | $7.3 \sim 7.5 \text{ g/cm}^3$ | $-0.11 \sim -0.12 \% \cdot °C^{-1}$ |
| Curie Temperature                | Coercive Force(bHc)           | Coercive Force(iHc)                 |
| 310°C                            | $\geq$ 859kA/m                | $\geq$ 955kA/m                      |

| Table 3 Discharge conditions |                          |                        |                        |         |
|------------------------------|--------------------------|------------------------|------------------------|---------|
|                              | Discharge<br>current (A) | Pulse<br>duration (µs) | Pulse<br>interval (µs) | D.F (%) |
| No.1                         | 5                        | 32                     | 32                     | 50      |
| No.2                         | 20                       | 128                    | 128                    | 50      |

減少する.これより, No.2 の高速加工の条件で加工すると, 磁石高さの低減に加え, 放電加工されたことによる影響で磁 束密度が大きく低減することがわかった. No.1 の条件では, 磁石高さが低減したことによる変化のみで, 放電加工による 影響で磁束密度は低減しない.これより, No.2 の条件で表 面磁束密度が大きく低減したのは, 放電加工による磁石温度 の上昇に起因する磁束密度の低下か, あるいは比較的大きな パルス電流が磁石に流れることで生じる磁界の影響による ものではないかと考えられる. 今後は, 磁石内部温度の測定 などを含め, 放電条件の違いによる磁束密度の変化のメカニ ズムを明らかとする.

#### 5.まとめ

パルス熱エネルギ加工である放電加工を用いて,各種材料 の表面機能の創成を目的に実験を進めた.2つのアプローチ により以下の結果を得た.

- (1) 純水にマイクロバブルを混入した加工液による放電加 工では、電極極性によらずに加工速度が向上し、表面粗 さも良好となる.
- (2) ネオジム磁石の突き当て放電加工では、放電条件により 加工後の表面磁束密度が変化することがわかった.これ により、放電条件により加工後の表面磁束密度を制御す ることが可能となる.

<参考文献>

- Hideki TAKEZAWA et al., A Study on Single Discharge Machining with Low Melting Temperature Alloy, 15th International symposium for Electromachining (ISEM XV), pp.69-73(2007)
- (2) 佐川眞人, 浜野正昭, 平林眞 編, 永久磁石-材料科 学と応用-, アグネ技術センター, p.77, 2007

#### 査読付き論文

(1) <u>Hideki TAKEZAWA</u>, Yoshihiro ICHIMURA, Nobuhiro YOKOTE, Naotake MOHRI, Change in Surface Magnetic Flux Density in EDM of Permanent Magnets, Procedia CIRP, Volume 6, 2013, pp.112-116

#### 学会発表

- Kiichi Suzuki, <u>Hideki Takezawa</u> and Naotake Mohri, Characteristics of Electrical Discharge Machining in a Working fluid mixed with Micro-bubbles, 5th International Conference of Asian Society for Precision Engineering and Nanotechnology, 2013
- (2) Nobuhiro Yokote, <u>Hideki Takezawa</u> and Naotake Mohri, Influence of external magnetic field on Permanent Magnet by EDM, 5th International Conference of Asian Society for Precision Engineering and Nanotechnology, 2013



Fig.4 Change of magnetic flux density each conditions

Ⅱ.新機能表面・構造の生体医工学分野への応用

## 2.1. 表面技術の生体医工学応用 Application of Surface Technology to Biomedical Engineering

## 橋本 成広,安田 利貴 Shigehiro HASHIMOTO, and Toshitaka YASUDA

Keywords: Micromachining, Biomedical engineering, Cell, Flow

#### 1. 緒言

本研究では、細胞の挙動・組織の形成を観察するための in vitro 実験システムを構築する. 生体医工学研究センター BERC の成果として得られた細胞培養流路(1)を応用して、細 胞のマイクロ流路内での挙動を解析する実験システムを構 築する. 毛細血管や, 臓器, 血管分岐などの血液流路を模し た流路システムにおいて細胞の挙動を解析するシステム,細 胞の配向・増殖・分化・組織化などへの力学刺激の影響を解 析するシステムなどの開発を進める.細胞は足場に付着して 増殖する性質を有するため,表面の親水性・疎水性の制御技 術の開発の成果を,細胞の付着制御の技術へ応用するなど, 他のテーマと連携して、本テーマの研究の推進を加速する. 培養細胞の配向・増殖・分化・組織化を制御するための力学 的刺激の方法がわかれば,再生医療における細胞の組織化の 加速技術などに寄与することが見込まれる.マイクロ加工技 術によって、細胞培養用のプレートの表面にマイクロメート ルオーダーの凹凸パターンを設計し、また、表面加工技術を 確立する.

#### 2.材料と方法

#### 2.1 平行平板間流路試験

せん断流れに対する細胞の挙動を観察するために,平行平 板間流路を作成した. ポリジメチルシロキサン平板に挟まれ た厚さ 0.1 mm のシリコンゴムプレートに菱形の孔を空け, 高さ 0.1 mm, 幅 2 mm~4 mm, 長さ 52 mm の流路を構成 した. 実験で使用した細胞は, 正常ヒト臍帯静脈内皮細胞 (HUVEC), マウス筋芽細胞 (C2C12), マウス繊維芽細胞 (L929) である. 培養液 (D-MEM) 中に分散された細胞を 流路に導入して24時間培養し、細胞を流路壁面に付着させ た.シリンジポンプによって培養液を一定の流量で吸引する ことにより,壁面に一定のせん断応力を発生させた.平行平 板間の放物線状の速度分布を仮定し,壁面せん断速度と流体 の粘性係数からせん断応力を算出した.流量を段階的に調節 することによって,壁面せん断応力(0.2 Pa-6 Pa)を変え ながら,壁面に付着した細胞の挙動を光学顕微鏡で観察した (Fig.1). また,光造形法 (Fig.2) によってポリジメチル シロキサン壁面に円柱(Fig.3)や穴(Fig.4)を設け、流れ 下における細胞の変形・移動挙動を観察した.

#### **2.2 持続流れ下培養**

継続的に流れ刺激を加えながら細胞を培養するために,培 養皿底面に密着させたポリジメチルシロキサン円板の周囲 にドーナツ型の流路を構成した.この培養皿をシェーカーの 上に載せて,シェーカーの動作によって,培養液が連続的に 反時計回りに流れるようにした(Fig.5).この装置をインキ ュベーター内に置いて,仔牛胎児血清 10%を含む D-MEM 中で細胞を 7 日間培養した.実験で使用した細胞は, HUVEC, C2C12, L929 である.

#### 2.3 マイクロ凹凸上での培養

固体表面に縞状のマイクロ凹凸を施した足場上で細胞を 培養し、細胞の配向を観察した(Fig.7).



Fig.1 HUVEC during flow stimulation (wall shear stress of 1 Pa -3 Pa) to be exfoliated (A, B). Dimension from left to right is 2.0 mm



Fig.2 Photorithography



Fig.3 L929 flows from left to right through micro slits between micro columns. The bar shows 0.05 mm



Fig.4 C2C12 is trapped in the hole. Flow from right to left (1.4  $\times 10^{-10} \text{ m}^3\text{/s})$ 



Fig.5 Culture dish placed on shaker: counter clockwise flow



Fig.6 HUVEC cultured in flow for 6 days: arrow shows direction of flow. The bar shows 0.1 mm



Fig.7 C2C12 near the multiple ridges after seven days of culture. Dimension from left to right is 1.0 mm

#### 3. 結果および考察

平行平板間流路試験において,細胞の延伸,移動,剥離が 観察された.持続流れ下培養において,流れによる細胞の剥 離,流れの遅い中心側から周辺側への細胞付着の進行が観察 された.HUVEC (Fig.6)は流れに沿った方向,C2C12,L929 は流れに対して垂直な方向に配向する傾向が観察された.せ ん断応力の高いところから細胞が剥離する様子が観察され た. 縞状のマイクロ凹凸の付近では,細胞の長軸が縞の方向 に配向した (Fig.7).

#### 4. 結言

(1) 「マイクロ流体デバイス」を用いて,固体表面付近の流体せん断応力による細胞の変形・剥離を観察するシステムを 開発した. (2) 細胞の変形能の観察を可能にするマイクロ隙間を開発した.

(3) 壁面付近を移動する細胞を捕捉するマイクロ窪地の表面加工を実現した.

(4) 持続流れ下培養装置を用い,流れ刺激が細胞の配向に影響を与えることを実験的に示した.

(5) 固体表面に縞状のマイクロ凹凸を施した足場上で細胞を培養し、細胞の配向を実験的に示した.

#### <参考文献>

 Sato, F., Hashimoto, S., Ooshima, T., Oya, K., Fujie, H. and Yasuda, T., Proc. 16th World Multi-Conference on Systemics Cybernetics and Informatics, 2 (2012) pp.103-108.

#### 査読付き論文

- (1) <u>Shigehiro Hashimoto</u>, Motofumi Toda, Masa Mizobuchi, Takashi Kuromitsu, Simulation of Cell Group Formation Regulated by Coordination Number, Cell Cycle and Duplication Frequency, Journal of Systemics, Cybernetics and Informatics, Vol. 11(4), 2013, pp. 29-33.
- (2) <u>Shigehiro Hashimoto</u>, Keiji Tachibana, Effect of Magnetic Field on Adhesion of Muscle Cells to Culture Plate, Journal of Systemics, Cybernetics and Informatics, Vol. 11(4), 2013, pp. 7-12.
- (3) <u>Shigehiro Hashimoto</u>, Haruka Hino, Takeshi Iwagawa, Effect of Excess Gravitational Force on Cultured Myotubes in Vitro, Journal of Systemics, Cybernetics and Informatics, Vol. 11(3), 2013, pp. 50-57.
- 国際会議プロシーディングス(査読付き)
- <u>Shigehiro Hashimoto</u>, Reona Nomoto, Shuhei Shimegi, Fumihiko Sato, <u>Toshitaka Yasuda</u>, Hiromichi Fujie, Micro Trap for Flowing Cell, Proc. 17th World Multi-Conference on Systemics Cybernetics and Informatics, Vol. 1, 2013, pp. 1-6.
- (2) <u>Shigehiro Hashimoto</u>, Tsutomu Horie, Fumihiko Sato, <u>Toshitaka Yasuda</u>, <u>Hiromichi Fujie</u>, Behavior of Cells through Micro Slit, Proc. 17th World Multi-Conference on Systemics Cybernetics and Informatics, Vol. 1, 2013, pp. 7-12.
- (3) Haruka Hino, <u>Shigehiro Hashimoto</u>, Masashi Ochiai, <u>Hiromichi Fujie</u>, Effect of Mechanical Stimulation on Orientation of Cultured Cell, Proc. 17th World Multi-Conference on Systemics Cybernetics and Informatics, Vol. 1, 2013, pp. 19-24.
- (4) Fumihiko Sato, <u>Shigehiro Hashimoto</u>, <u>Toshitaka Yasuda</u>, <u>Hiromichi Fujie</u>, Observation of Biological Cells in Rhombus Parallelepiped Flow Channel, Proc. 17th World Multi-Conference on Systemics Cybernetics and Informatics, Vol. 1, 2013, pp. 25-30.
- (5) Yoshinori Yaguchi, <u>Shigehiro Hashimoto</u>, Takahiro Minezaki, Haruka Hino, <u>Hiromichi Fujie</u>, Effect of Micro Ridges on Cell Culture, Proc. 17th World Multi-Conference on Systemics Cybernetics and Informatics, Vol. 1, 2013, pp. 34-39.

#### 学会発表

- Tsutomu Horie, <u>Shigehiro Hashimoto</u>, Fumihiko Sato, Haruka Hino, Yusuke Takahashi, Biological Cell Behavior in Micro Flow Channel, 19th Congress of the European Society of Biomechanics, 2013, Patras (Greece).
- 他7件.

## 2.2 ナノバイオメカニクスと組織修復への応用 Application of nanobiomechanics to tissue repair

藤江 裕道(首都大学東京システムデザイン学部) Hiromichi FUJIE (Tokyo Metropolitan University)

Key Words : Nanobiomechanics, Stem cell-based self-assembled tissue (scSAT), Femtosecond laser processing

#### 1.5年間の研究計画

平成 20~24 年度に工学院大学で実施された戦略的研究基 盤創成支援事業(BERC, 生体医工学研究センター)におい て、膝滑膜から採取した間葉系幹細胞 (Mesenchymal stem cells: MSCs) に細胞外基質を自己生成させて作製される組 織 (Stem cell-based self-assembled tissue : scSAT)<sup>1)</sup> について研 究が進められた.また、フェムト秒レーザ加工に関する研 究が開始され、金属表面へのナノ周期構造加工が実現でき るようになった. 平成 25 年より同学で開始される戦略的研 究基盤創成支援事業 (FMS,新機能表面構造創成)では、こ れらの研究成果を基に、scSATの生成を、フェムト秒レーザ 加工により創成されるナノ周期構造上で行い、異方性を有 する高強度 scSAT を創成することを目的とする. また, BERCにおける軟組織修復の研究において、組織内のコラー ゲン線維構造の未熟さが問題となった.そこで、上記の scSAT 修復において、コラーゲン線維をスキャフォールドと して用い、軟組織の構造再構築を図ることも目的とする.

#### 2. 本年度の研究成果

#### 2.1. はじめに

間葉系幹細胞から創成された scSAT は、組織修復能が高 く, 腱や靭帯の再生医療材料として期待されている. しか し、通常培養法で得られる scSAT は力学強度が低いという 問題がある.この解決策として、MSCsによる細胞外基質の 生成を促進させて組織の強度を向上させることと、組織に 腱や靭帯のような構造異方性を付与し、一方向への強度を 高めることのふたつが考えられる. このふたつを同時に実 現するためには、周期的な溝構造をもつ基板表面上でscSAT を作製することが有効である.これまでに、フェムト秒レ ーザによりチタン表面に形成したナノ周期構造 (図 1) 上で MSCs を培養することにより、細胞の接着特性が向上し、細 胞配向を制御できることがわかっている<sup>2)</sup>. 一方, フェムト 秒レーザ加工によるナノ周期構造は,加工条件により変化 すると考えられる. そこで本研究では、フェムト秒レーザ 加工におけるレーザフルエンスや加工速度、レーザ出力な どのパラメータを変化させ、チタン表面に加工されるナノ 周期構造の形態の違いを調査した. さらに、加工表面形状 の違いがMSCsの細胞接着特性におよぼす影響を調査した.

#### 2.2. 実験方法

研磨紙で湿式研磨を施した直径 8 mm, 厚さ 1.5~2.0 mm の



Fig.1 SEM image of nanoperiodic-structured titanium surface created by a femtosecond laser processing.

JIS2 種の工業用純チタンを試料とした. 基本波長 780 nm のフェムト秒レーザ装置 (IFRIT, サイバーレーザ)を用い て,パルス時間幅 190 fs,レーザフルエンス 0.5 J/cm<sup>2</sup>,走査 速度を 50,300,600,および 1200 mm/min に変化させてナノ周 期構造をチタン表面に形成した.以下,それぞれ結果を N50,N300,N600,N1200 と表記する. 各試料表面を走査型電 子顕微鏡 (JSM-6380LA,日本電子)により観察し,画像解 析ソフト (ImageJ, version 1.46, NIH)を用いて,得られた SEM 像からナノ周期構造のピッチを測定した.さらに,原 子間力顕微鏡 (AFM, VN-8000,キーエンス)を用いて表面 形状を計測し,溝の深さと表面粗さ (R<sub>a</sub>)を測定した.

ヒト膝滑膜由来MSCsを含む細胞群を,ナノ構造上に初期 細胞密度 3.0×10<sup>3</sup> cells/cm<sup>2</sup>で播種し,1,6,24 時間培養した. それぞれを固定,脱水処理した後に,細胞接着の様子を SEM で観察した.SEM 像より,細胞の形態観察を行った.

#### 2.3. 結果

形成したナノ周期構造のピッチ,深さ,粗さ(R<sub>a</sub>)を示す (表1). 走査速度の増加に伴い,ピッチが広くなり,溝が浅 く,粗さの小さな表面が形成される傾向が示された.N50 は最もピッチが狭く,溝が深く粗い表面だった.N300 と N600は,ピッチと粗さに有意差はなかったが,N300の方が N600 と比較して有意に深い溝を有していた.N1200 はピッ チが他の試料と比較して有意に広く,さらに,溝が有意に 浅く滑らかな表面だった.

培養1時間後,6時間後,および24時間後のMSCsの観察 像を示す(図2). 溝方向は図の横方向である.培養1時間 後において,N600,N1200上の細胞は大きく伸展していた. 培養6時間後において,N1200上の細胞は紡錘型をしてい た. 培養24時間後において、すべての細胞が紡錘型をして いた.

| specimen surfaces |            |            |           |                     |
|-------------------|------------|------------|-----------|---------------------|
|                   | Scan speed | Pitch [nm] | Depth[nm] | R <sub>a</sub> [nm] |
|                   | [mm/min]   | (n=60)     | (n=20)    | (n=15)              |
| N50               | 50         | 331±51     | 126±46    | 43±9                |
| N300              | 300        | 498±75     | 92±37     | 40±6                |
| N600              | 600        | 506±49     | 75±35     | 32±4                |
| N1200             | 1200       | 540±54     | 55±23     | 27±4                |

Table 1 Pitch, depth, and roughness (R<sub>a</sub>) of nano-processed



Fig.2 SEM images of cells cultured on various specimens cultured for 1, 6, and 24hs.

MSCsのアスペクト比は、播種1時間後および6時間後に おいて,N300,N600およびN1200の細胞はN50と比較して 有意に高く、培養6時間の時点で真円を意味する1の2倍以 上であった(Fig.3). MSCsの接着面積は、培養1時間後に おいて、試料の違いによる有意な変化はなかったが、培養6 時間後において、N1200の細胞接着面積が最も大きかった. 溝方向から±30°以内に配向する MSCs の割合は, N50, N300, N600 では 40% 程度だったのに対し、N1200 では 70% 以上で あり、MSCsの異方性が強かった.

#### 2.4. 考察・まとめ

チタン表面へのナノ周期構造形成において、レーザの走 査速度の増加とともにピッチが拡大し、溝深さが浅くなり、

粗さが減少した. したがって、フェムト秒レーザ加工にお けるナノ周期構造表面の形成には、レーザフルエンスの他 に走査速度も加工表面形態に影響をおよぼす因子であるこ とが示された. MSCs は基板に接着する前は球状であり、接 着後,最初は等方的に伸展し,最終的に紡錘型になる.各 試料上のMSCsのアスペクト比から,培養1時間後および6 時間後の各試料上の細胞は、走査速度の増加に伴ってアス ペクト比が有意に高かった. これらの結果から、フェムト 秒レーザの走査速度が大きい場合,ナノ周期構造は細胞の 伸展を促進することが考えられる.一方,配向角度測定結 果より、ナノ周期構造をもつすべてのチタン試料は細胞の 配向を制御できることが示された.特に,N1200は他の試 料と比較して細胞の配向を最も促進する表面であることが わかった. N1200 は他の試料と比較して有意にピッチが広 く、深さが浅く、さらに粗さが小さい表面であり、これら のパラメータが細胞配向に影響をおよぼしたと考えられ ろ.



Fig.3 Aspect ratio of MSCs cultured on nano-processed surfaces for 1, 6, and 24 hs.

文 献

- Ando W, Fujie H, Nakamura N, et al, Biomaterials 28, 2007, 1) 5462-5470.
- Oya K, Nakamura N., and Fujie H., et al, Jpn. J. Appl. Phys. 2) 51, 2012, 125203.

#### 査読付き論文

- (1) 大家 渓,,藤江裕道,他,培養表面のマイクロ周期構造 が間葉系幹細胞自己生成組織の力学特性におよぼす影響, 材料の科学と工学 50(1), 2013, 34-39.
- (2) 望月翔太,藤江裕道,他,膝関節軟骨の変性が動摩擦に及 ぼす影響,臨床バイオメカニクス 34,2013,427-432.
- (3) 今出久一郎, 藤江裕道, 関節軟骨表層の透水率が摩擦特 性に及ぼす影響,臨床バイオメカニク 34,2013,441-445.
- (4) Fujie H, Nakamura N, Frictional properties of articular cartilage-like tissues repaired with a mesenchymal stem cell-based tissue engineered construct, Conf Proc IEEE Eng Med Biol Soc., 2013, 401-4.
- (5) Shimomura K, Fujie H, Nakamura N, Osteochondral repair using a scaffold-free tissue engineered construct derived from synovial MSCs and a hydroxyaptite-based artificial bone, Tissue Engineering, In press.

#### 学会発表

(1) Imade K, Fujie H, Effect of anisotropic permeability of the superficial layer on the frictional property in articular cartilage, Summer Bioengineering Conference (ASME), 2013, 14396. 他20件.

## 2.3 バイオシステムに対するナノ・マイクロ規則構造表面の機能解明 Functional role of Nano-/Micro-Ordered Structures on Micro-biosystem

## 小野 幸子, 阿相 英孝, アナワチ Sachiko ONO, Hidetaka ASOH, and Anawati

Keywords : Nano-/Micro-ordered structures, Biomaterials, Hydroxyapatite, Biocompatibility

#### 1. プロジェクトにおけるテーマ 2.3 の位置づけと目標

ナノメートル,マイクロメートルスケールでの基板の構造 制御技術,特に湿式プロセスに基づく規則的な表面構造の制 御技術をさらに発展させ,微細構造を制御した半導体基板や, 生体適合性の高度化が期待される金属基板上での細胞培養 などバイオシステムへの応用を展開し,テーマ1での開発と も相まって,要求された表面機能を実現する微細構造の作製 技術を開発する。材料は、半導体,軽金属材料などの種々の 材料への応用を展開すべく,他のテーマとの連携を通じて, 技術・情報の共有を図る。

本テーマの展開においては、各種基板の湿式プロセスによ る表面処理・加工に関する幅広い知識・技術を活用し、他テ ーマ担当者への材料提供も視野にいれる。生体物質や細胞表 面との界面であるバイオナノインターフェースを高度に設 計・制御することは重要な課題であり、新たな足場材料、生 体材料、革新的加工技術を必要としている再生医療、組織工 学の分野へ有益な知見をもたらすものと期待される。

平成25年度においてはAl, Tiなどの金属および半導体基 板を加工対象として、主に水溶液中でのアノード酸化処理で 基板表面にナノメートルオーダーの孔を持つ酸化膜や周期 構造を付与する。電解パラメータ(電流,電圧,時間など) の調整により、固体表面の微細構造(孔径,孔周期,皮膜厚 さ、組成など)を制御した細胞培養時の足場材料を作製し、 生体親和性を評価することを今年度の目標とした。

#### 2. 細胞接着および増殖に及ぼす足場材料表面の微細構造 の影響

老化や疾病,事故などによって失われた人体機能の修復あ るいは再建には多くの生体材料が用いられており,その用途 に応じて金属, セラミックス, 高分子材料などが使い分けら れている。中でも金属材料は優れた機械的特性から体内埋入 部材の約80%を占めており、生体適合性や生体機能性を付 与するために様々な表面処理や表面改質が施されている。こ れまでにも,細胞の接着性および増殖性の制御因子の解明を 目的として、チタニアナノチューブなどのナノポーラス材料 上での細胞培養<sup>1)</sup>により, 孔径 15 nm 程度のチタニアナノチ ューブ上で比較的良好な細胞接着および増殖性を示すこと が報告されてきた。当研究室ではアノード酸化により形成し た直管状の孔を持つポーラスアルミナ皮膜を足場材料とし て線維芽細胞を培養し、ポーラス皮膜におけるナノメートル オーダーの孔径, 膜厚, 表面粗さなどの構造因子が細胞の接 着性および増殖性に影響を与えることを報告してきた<sup>2,3)</sup>。 本研究では,種々のバルブ金属に対しアノード酸化を行うこ とでナノからミクロンオーダーで表面微細構造を制御した 基板を作製し、細胞培養により材料の細胞適合性を評価した。 特に細胞の接着,増殖および伸展形態と材料表面の濡れ性ま たはナノおよびミクロンスケールの表面構造因子といった 細胞応答と材料の表面特性の相互的な関係の解明を目的と した。

次に構造制御したアノード酸化ポーラスアルミナ皮膜上 での細胞培養について検討した。図1に作製したポーラスア ルミナ皮膜の代表的な表面および破断面 SEM 像を示す。生 成電圧を調整することで孔径約5 nm から 100 nm のポーラ スアルミナ皮膜(膜厚 1 μm)を作製した。生成電圧の増加に伴 い皮膜表面の凹凸は大きくなり,セルの三重点には針状の突 起が観察された(図 1f,矢印)。これら孔径の異なるポーラ ス皮膜上で2日培養した細胞の伸展形態を図2に示す。孔径 5 nm のポーラス皮膜上において,細胞は組織培養皿(Control) 上と同等の伸展形態を示した。



図 1 孔径の異なるポーラスアルミナ皮膜の(a-c)表面および(d-f)破断面 SEM 像 孔径(生成電圧): (a, d)5 nm (5 V),(b, e) 40 nm (40 V), (c, f)100 nm (80 V)



図 2 孔径の異なるポーラス皮膜上における TIG-1 細胞の 伸展形態(培養2日目) (a) 孔径5 nm, (b) 40 nm, (c) 100 nm.



図 3 TIG-1 細胞の増殖性に及ぼす孔径の影響 (a) control dish, (b) 孔径 5 nm, (c) 40 nm, (d) 60 nm, (e) 80 nm, (f) 100 nm.

一方,孔径100 nmの皮膜上では細胞はあまり伸展してお らず,細胞同士の凝集も観察された。孔径の・;異なる皮膜 上で TIG-1 細胞を4 日間培養した際の細胞増殖曲線を図3 に示す。5 nmから60 nmの孔径を持つ皮膜上においては比 較的良好な増殖性を示したが,孔径が80 nm以上の場合では 細胞の増殖率が低下した。ナノメートルオーダーの孔を持つ 皮膜上においては孔径が小さい皮膜上で良好な細胞増殖性 および伸展形態を示し,特に孔径5 nmの微細孔上で組織培 養皿と同等の細胞伸展形態および細胞増殖性を示した。この ことから,足場材料表面の孔径60 nm以下の微細な孔が細胞 増殖および細胞の伸展を促進する重要な因子であることが わかった。

#### 3. アノード酸化で表面構造を制御したステンレス鋼の生 体適合性評価

ステンレス鋼は表面に生成するクロム由来の不動態皮膜 (自然酸化皮膜)により耐孔食性が高く体内埋入部材に適す るが,ハイドロキシアパタイト(以下HAp)の形成能は低く表 面処理での生体適合性の改善を要する。当研究室ではアノー ド電解を用いてステンレス上にポーラス構造を持つ数ミク ロンの酸化皮膜を得ており,交互浸漬法(AIM)を行った際の HAp 形成能の改善が期待できる。本研究ではSUS304 と, より耐食性に優れるSUS316Lをアノード酸化し形成される 基板表面の構造と組成の解析と,擬似体液(SBF)浸漬での HAp形成能の評価を目的とした。

SUS304, SUS316L に対し硫酸単浴中でアノード電解を行 うことで粒径10 nm 程度の粒状物質からなる孔径 20 nm の ポーラス構造が形成された。一方,硫酸-過酸化水素混合液 中でアノード電解することで粒径 10 nm 程度の粒状物質か らなる膜厚 1.3 μm, 孔径 10 nm のポーラス構造が形成され た。硫酸単浴で作製した構造体には酸素が検出されなかった ことからポーラス金属であり、硫酸-過酸化水素混合液で作 製した構造体はポーラス酸化皮膜であることがわかった。硫 酸中に素地中のCr<sup>2+</sup>, Ni<sup>2+</sup>, Fe<sup>2+</sup>が活性溶解し過酸化水素に よって酸化されることでCr 水酸化物に覆われた(Cr<sub>2</sub>Fe)O<sub>4</sub> の酸化物クラスターが堆積されるためポーラス酸化皮膜が 生成すると考えられる。各表面構造に対してAIM および SBF 浸漬処理したが、合金種によらずポーラス金属とAIM 未処理のポーラス酸化皮膜ではSBF 浸漬でHAp 析出が観 察されなかった。ポーラス酸化皮膜ではAIM を 10 回以上 行ったとき粒状のHAp が析出した。ポーラス酸化皮膜を形 成する粒状酸化物はポーラス金属を形成する粒状物質より 微細で孔径が小さく孔が多かったことから,保持できる浸漬 液の量が比較的多く反応量が大きくなるためと考えられる。 SUS316L 上に形成されたポーラス酸化皮膜へのHAp 付与 処理後の表面SEM 像を図4 に示す。AIM 未処理の試料(a) をSBF 浸漬してもHApは析出せず,結晶が析出した(b)。10 回のAIM後に粒径 100 nm の粒状, 20 回のAIM 後には粒径 150 nm の粒状のHAp(b, c)が析出し, 加えてSBF 浸漬を行 うとAIM10 回では粒状HAp を覆う膜状(e), AIM20 回では 表面全体を覆う網目状(f)のHAp が析出した。ポーラス酸化 皮膜ではAIMで付与した粒状のHAp を核発生の場所として SBF 浸漬処理により膜状,網目状のHAp が析出したと考え られる。よってAIM でのHAp の付与がステンレスへの体親 和性付与を可能にしたと言える。

#### 4. マグネシウム合金への生体親和性の付与

Mg は高比強度で弾性率が生体骨に近いだけでなく,生体 必須元素であることから生体内で分解しても安全性が高い ことが予想される。これまでに,血管内ステントや骨固定材 等の硬組織代替材料への応用が検討されてきたが,いずれの 場合も Mg の分解期間が短いことが示唆されている。そこで, 表面処理により耐食性を改善した上で分解速度を制御する だけでなく,生体適合性を付与することを試みた。今年度の 研究によりマグネシウム表面をあらかじめ NaOH 浸漬などのアルカリ処理をすることで、SBF 中での HAp 析出が大幅 に改善されることを見出した。



図4 SUS316L上ポーラス酸化皮膜のアパタイト付与後の表 面 SEM 像 a)処理なし b)SBF 浸漬 c)AIM10 回 d)AIM10 回+SBF 浸漬 e)AIM20 回 f)AIM20 回+SBF 浸漬

#### 5. 今後の研究計画

種々の金属および半導体表面に付与したナノ・マイクロ規 則構造がバイオ材料として機能を発現する原理の解明を目 指して今後も系統的な評価を実施する。特に細胞の接着,増 殖および伸展形態と材料表面の濡れ性またはナノおよびミ クロンスケールの表面構造因子といった細胞応答と材料の 表面特性の相互的な関係の解明の進展を期したい。

#### 6. 平成 25 年度業績リスト

#### 査読付き論文

- <u>S. Ono</u>, S. Kotaka and <u>H. Asoh</u>, Fabrication and structure modulation of high-aspect-ratio porous GaAs through anisotropic chemical etching, anodic etching, and anodic oxidation, Electrochimica Acta, 110, 393-401 (2013)
- <u>H. Asoh</u>, K. Fujihara and <u>S. Ono</u>, Sub-100-nm Ordered Silicon Hole Arrays by Metal-Assisted Chemical Etching, Nanoscale Research Letters, 8, 410/1-410/8 (2013)
- Y. Sato, <u>H. Asoh</u> and <u>S. Ono</u>, Effects of Electrolyte Species and Their Combination on Film Structures and Dielectric Properties of Crystalline Anodic Alumina Films Formed by Two-step Anodization, Materials Transactions, 54, (10), 1993-1999 (2013)
- K. Tateishi, H. Ogino, A. Waki, T. Ohishi, M. Murakami, <u>H.</u> <u>Asoh</u> and <u>S. Ono</u>, Anodization Behavior of Aluminum in Ionic Liquids with a Small Amount of Water, Electrochemistry, 81, (6), 440-447 (2013)
- F. Rashidi, T. Masuda, <u>H. Asoh</u> and <u>S. Ono</u>, Metallographic Effects of Pure Aluminum on Properties of Nanoporous Anodic Alumina (NPAA), Surface and Interface Analysis, 45, (10), 1490-1496 (2013)

#### 解説論文

 小野幸子, <u>阿相英孝</u>, アノード酸化ポーラスアルミナ皮 膜を用いたシリコンのナノ構造制御(解説),表面技術, 65 (1), 18-25 (2014)

#### 学会発表

- 国際会議講演10件(内招待講演4件)
- 国内会議講演23件(内招待講演4件)

Ⅲ. 新機能表面・構造の流体・エネルギー分野への応用

## スポーツ用機能性生地の開発 Development of the functional fabrics for sports

伊藤 慎一郎,水野 明哲 Shinichiro ITO, Akisato MIZUNO

Dept. of Mechanical Engineering, Kogakuin University

Key Words: Fabrics, Drag reduction, Sports wear

#### 1. 緒 言

レーザーレーサーに代表される低抵抗競泳水着の登 場は記憶に新しい.レーザーレーサーとはイギリスの SPEEDO 社が開発した低抵抗の競泳水着であり,2008 年に発表されたこの水着を着用した選手が次々と世界 記録を更新し話題となった.この水着生地は超撥水布 地とポリウレタンフィルムを張り付けたフィルム素材 部分よりなり,その効果は摩擦抵抗の減少と,締付け により圧力抵抗の軽減とによるものであった.さらに 布地の縫製においても超音波溶着という手法を用いて 水着表面には殆ど凹凸が存在していなかった.これら の抵抗軽減措置によりこの低抵抗水着は機能していた.

しかし 2010 年 1 月に世界水連(FINA) により水着 に使用できる布地は「繊維を織る・編む・紡ぐという 工程でのみ加工された素材」に限定されることとなり, ポリウレタンフィルム等の合成素材は使用できなくな り,レーザーレーサーは事実上,公式な大会での使用 は禁止となった.

しかし、レーザーレーサーが世界に与えた影響は大きい.着ることによりタイム短縮を可能であることが 分かったのである.これにより流体分野を中心として 様々な研究が進められた.Luthら<sup>1)</sup>は他のスポーツへ の応用としての低抵抗布地の開発を行っている.

本研究では布地の素材,表面加工の粗度の違い,縫 製の違い等による流体力抵抗の変化を観察・考察し, あるスポーツにおいての速度域で最良な布地を提案す ることを目的とする.

#### 2. 実験方法

2.1 抵抗試験 抵抗には形状による圧力抵抗と表面摩 擦による摩擦抵抗の2種類がある.流れの様態によっ て変化する圧力抵抗に関しては真球,円柱を過ぎる一 様流の実験において,レイノルズ数(Re数)を増加してい くと抗力係数が急激に減少するドラッグクライシスと いう現象が知られている. Achenbach<sup>2</sup>は無回転球に対 する風洞実験を行い,ドラッグクライシスが発生する Re 数(臨界 Re 数)が約  $3 \times 10^5$  である事を示した.また, 球に粗度を与える事で臨界 Re 数が低くなる事を見出 した<sup>3</sup>. この仕組みを利用して布地の微細な変化を抵 抗変化として把握が可能である.この圧力抵抗は速度 の二乗に比例する.一方,摩擦抵抗も表面の粗度に関 係し,速度の大きさに比例する.

工学院大学流体工学実験室設置の380×380の矩形断 面を有する低乱流風洞を用いて,風速を6~30m/sまで 1m/sごとに変化させることでレイノルズ数を変化させ, 供試布地を巻いた φ114 の塩ビパイプ円筒の流体抵抗 を計測した. Fig.1には圧力抵抗を計測する鉛直支持型 実験装置の様子を, Fig.2には摩擦抵抗を計測するコブ ラ型実験装置を示す.

摩擦抵抗計測においては布地を張り付けた円筒のみ の摩擦を計測するためにセッティング治具のテア抵抗 を除去することで布地の摩擦抵抗を計測した.



Fig.1 Pressure drag measurement system



Fig.2 Friction drag measurement system

2.2 供試布地と縫製 某線維メーカーより提供 された表面粗度,折り目の細かさの異なる布地用 いた.また同一布地であってもの縫製の違いによ り変化する抵抗を計測した.

#### 3. 実験結果および考察

3.1 **圧力抵抗係数** *C*<sub>0</sub> 滑面である塩ビパイプの素地 そのものでは、実験装置の速度域ではドラッグクライ シスを迎えてはいないが、布地の粗度によって早いも のでは*Re*=0.4×10<sup>5</sup>のエリアからドラッグクライシスが 発生していることが分かる.これは Re 数が高まる連 れて、すなわち速度が速まるにつれて層流境界層が乱 流境界層に遷移し、それに伴って剥離ポイントが後方 にずれ、*C*<sub>0</sub>値の変化が *Re* の低い領域で起こったもの である.臨界後の *C*<sub>0</sub>値は表面の粗度によって徐々に上 がっていく様子が見られた.

3.2 摩擦抵抗係数 C<sub>f</sub> 滑面である塩ビパイプの素地 が最も低い値を示した.a で示す布地以外は速度が上 がるにつれて緩やかに上がっていく様子が分かる.a は比較的粗度の高い布地であったが,特異な粗度形状 によるためか逆に下がっていた.摩擦抵抗は層流境界 層から乱流境界層に遷移するに従って大きくなる.滑 面に近い粗度の生地の C<sub>f</sub>は低く,粗度により乱流境界 層へ遷移する生地の C<sub>f</sub>は高いことが分かる.また摩擦 抵抗に関しては Re 数影響は大きくないことも分かっ た.

3.3 縫製の違い 圧力抵抗は剥離ポイントの違いに より変化することは前述に述べたとおりであるが, Fig.5 に示すような縫い目を利用することで強制的に 乱流遷移を発生させ,抗力を減ずる試みを行った.縫 い目位置は一定とし,縫い目形状によってに変化する 抗力を図5に示す.低い Re 数においてドラッグクラ イシスが発生し,そのままの低抵抗を保っていること が分かる.剥離ポイントを固定させる効果のある縫い 目形状があることが分かる.

#### 5. 結言

布地生地の抵抗について下記の知見を得た. (1) 圧力抵抗計測では,表面の粗い布地においてド ラッグクライシスを確認した.表面加工の違いに よっても異なることを確認した.

(2) 摩擦抵抗計測では逆に表面の粗い布地は抵抗 値が大きくなる. 立体構造のものは特に摩擦抵抗 が大きい.

(3) 圧力抵抗を減じさせる効果のある縫い目が存 在することを確認した.





Fig. 4 Skin friction drag coefficient



Fig. 5 Seam of fabrics



the differeneseams

#### 文 献

- S.Luth and L. Oggiano, L. M. Bardal, C. Saeter, L. Saetran, Dynamic measurements and drag crisis hysteresis in garment aerodynamics, Procedia Engineering 60 (2013) 99~105
- (2) E.Achenbach: Experiments on the flow past spheres at very high Reynolds numbers, J. Fluid Mech. 54, (1972), pp.565-575.
- (3) E.Achenbach: The effects of surface roughness and tunnel blockage on the flow past spheres, J. Fluid Mech. 65, (1974), pp.113-125.

## **3.2** 気泡の運動により生成されるシンセティックジェットの流動特性 Flow Characteristics of Synthetic Jet Produced by Bubble Motion

佐藤 光太郎, 横田 和彦, 武沢 英樹 Kotaro SATO, Kazuhiko YOKOTA and Hideki TAKAZAWA

Key Words : Synthetic Jet, Bubble, Electric Discharge, Stroke, Onset Condition

#### 1. 諸言

シンセティックジェットは連続資流の代替として期待が高まっ ている.従来,連続資流の生成には部品点数が多いファンやブロ アが用いられてきたが、シンセティックジェットは比較的構造が 簡単で小型化・軽量化に適しているスピーカやダイアフラム等を 利用したアクチュエータが主流である.また,最近では翼の境界 層制御などを目的としてプラズマ方式によるシンセティックジェ ット・アクチュエータ[1]が考案されている.しかし、いずれの方 式においてもジェットの詳細な発生条件や発生メカニズム、流動 特性には今なお不明な点が少なくない他、大きな運動量を得るこ とが難しいなどの課題も多く残されている.さらに将来予想され る幅広い分野からの要求に応えるためには多様な原理によるジェ ット生成方法の確立が不可欠である.

本研究では、液中放電で発生する気泡の非線形振動を利用した シンセティックジェット・アクチュエータを提案し、機械的駆動 部を極力排除したマイクロシンセティックジェット生成を目指す. 本報では試作したシンセティックジェット・アクチュエータ内部 で生成される放電気泡の振動特性について調べるとともに生成さ れたシンセティックジェットの挙動観察を行う.これまでの報告 でシンセティックジェットの発生は無次元ストロークに大きく依 存することが明らかになっていることから、無次元ストロークと 噴流構造との関係について検討を行った.

#### 2. 実験装置及び方法

本研究で用いた電源回路はコンデンサに電荷を充電する充電 回路部と放電パルス信号を発生させる放電回路部からなる. パ ルス幅及び連続放電時の放電周期はFET のゲート信号に入力さ れる Function generator(F/G)からの出力により決定される. 極間の 電圧測定には周波数帯域 DC~25MHz,最高サンプリングレート 100MS/sのDigital Oscilloscope(PDS5022S:OWON社製)を用いた. また,放電電流は放電回路と絶縁して測定可能な Current Monitor(Model110:PERSON 社製)を用い,その出力(10A /IV)を Oscilloscope に取り込んだ.気泡及びジェットの観察には高速度 カメラ(Photron FASTCAM-MAX120)により撮影[2]を行った.ま た,本実験で使用したシンセティックジェット・アクチュエー タを Fig.1 に示す.



 $Fig. 2 \ \ Schematic \ of a \ synthetic \ jet \ generator$ 

放電加工の分野では、印加電圧 100~200V の場合、電極間距 離が数~十数µm で絶縁破壊が起こることが知られている.こ のため、例えば形彫放電加工機ではサーボ機構を用いて放電で 除去された分に相当する送り込みを行い、連続放電を実現して いる.しかし、本実験装置では一層の小型化を実現するためサ ーボ機構を使わずに.加工液中に金属粉を混入することで連続 放電を目指した.加工液中に Si 粉を混入することで放電頻度が 上昇するという報告[3][4]があることから、本研究では加工液に Si 粉および Al 粉を混入し実験を行った.

#### Nomenclature

| t: time                                             | [s]  | f: discharge frequency                 | [Hz] |  |
|-----------------------------------------------------|------|----------------------------------------|------|--|
| t <sub>p</sub> : pulse duration                     | [µs] | R: bubble radius                       | [mm] |  |
| I <sub>p</sub> : discharge current                  | [A]  | R <sub>m</sub> : maximum bubble radius | [mm] |  |
| R*: Dimensionless number of bubble radius = $R/R_m$ |      |                                        |      |  |

#### 3. 結果及び考察

Fig.2 に灯油系放電加工液中の放電確率に及ぼす Si, Al 濃度の 影響を示す. 放電周波数は f=100,200,400,800Hz である. なお, 全ての条件で初期電極間距離は 50µm に設定して実験を行った. 本図から加工液中に Si 粉, Al 粉を混入することで放電確率が向 上していることが確認できる. ところで条件によっては Si 及び Al 濃度が 30%を超えると,放電確率が低下している様子が伺え る. これは金属粉濃度が大きくなると加工液はスラリー状にな ることから,気泡の運動が緩慢になり,放電周期が短い場合に 電極間が気相で占められたことに起因すると思われる.

Fig.3 に放電電気条件 Ip=50,25A, tp=250,50µs に対するアクチュエータ内部での気泡の半径の時間的変化を示す. なお, Rayleigh-Plesset の式[5]の計算結果を参考のため示す. いずれの 条件でも気泡が成長し,その後崩壊しており,アクチュエータ 内でシンセティックジェット生成に必要な体積変動が生じてい ることが推察される. ただし,本条件では気泡の運動特性に対 してパルス幅が大きいため,いずれも気泡崩壊時間が延び, Rayleigh 気泡の運動周期の4倍以上となっている.



Fig.1 Probability of electric discharge



Fig.3 Oscillation of a bubble produced by single discharge in the actuator



Fig.4 Sequential magnified photographs of synthetic jet using bubbles (K=15.48, Re=674,  $\tau_c$ =0.37)

Fig.4 は気泡の非線形振動により形成されるシンセティックジェットの過渡的挙動の高速度撮影例である. τ d=0 の放電開始から気泡は生成される. 放電電気条件は, Ip=50A, tp=250µs, fd=200Hz である.本図では気泡生成と同時に AI 粒子がアクチュエータ内部から噴出するため時間経過とともに下流に平均流が形成されていく様子が確認できる.

高速度カメラの画像でAI粒子を追跡することで算出した噴流 先端速度をFig.5 に示す. なお,粒子の軌跡から算出しているた め、シンセティックジェットであってもノズル出口速度は0に はなっていない.本実験条件範囲ではノズル近傍での速度は放 電電気条件の電流値 Ip(50A, 25A)に依存するものの x/b0≥20 では顕著な違いは認められない.しかし、データ数が少なく詳 細については今後の課題である.

#### 4. 結言

液中放電により生成される気泡の非線形振動を利用したシン セティックジェット・アクチュエータの開発を行い,アクチュ エータ内部で生成された気泡及び形成されたジェットの噴流構 造について調べた主な結果を以下に示す.

- (1) 加工液中の放電確率に及ぼす Si, Al 濃度の影響を示した.
- (2) アクチュエータ内部に生成された気泡の運動特性を示し、 ノズル出口流速の時間変化を見積もった.
- (3) 放電気泡により生成されたシンセティックジェットの過渡的挙動を観察し、金属粒子の移動距離から過渡的な噴流速度の検討を行った。



Fig.5 Variations of trangent jet velocity at center

#### 5.参考文献

- 小河原ほか:プラズマシンセティックジェットアクチュエ ータによる翼まわりの流れ制御,日本機械学会論文集b編 Vol.69,No.686,(2003),p.2237
- [2] 柳田ほか:低融点合金を用いた単発放電に関する研究(第 10報),2006年度電気加工学会全国大会講演論文集
- [3] 毛利ほか:粉末混入加工液による放電仕上加工,電気加工 学会誌, Vol.25, No.49, (1991)
- [4] 武沢ほか:粉末混入放電加工における混入粉末と極間現象の関係,精密加工学会春季大会講演論文集(2008), pp.361-362
- [5] 加藤洋治:キャビテーション(増補版), 槇書店, (1990)
- [6] Holman, R rt al., AIAA Journal, Vol.43, No.10, (2005), pp.2110-2116

#### 査読付き論文

(1) 工藤正規,中沢孝則,高橋政行,佐藤光太郎,西部光一, 旋回流発生器に生じる不安定流れの制御,日本混相流学会 誌「混相流」,掲載決定

#### 国際学会発表(査読付も含む)

- Masanori KUDO, Koichi NISHIBE, Masayuki TAKAHASHI, <u>Kotaro SATO</u>, Yoshinobu TSUJIMOTO, Study on Flow Characteristics Downstream of Annular Inlet Guide Vanes, ASME 2013 Fluids Engineering Division Summer Meeting, July7-11,2013, Incline Village, NEVADA, 2013
- (2) Yuhei ITO, Akira HIWATA, <u>Kotaro SATO</u>, Fundamental study on oil mist separation in swirl flow, ASME 2013 Fluids Engineering Division Summer Meeting, July7-11,2013, Incline Village, NE-VADA, 2013
- (3) Koichi Nishibe, <u>Kotaro Sato</u>, Hideki Takezawa, Donghyuk Kang, Kazuhiko Yokota, Investigation on a synthetic jet actuator using bubble produced by electric discharge, Int. Conf. on Jets, Wakes and Separated Flows September, Nagoya, 2013
- (4) Masanori Kudo, Masayuki Takahashi, <u>Kotaro Sato</u>, Donghyuk Kang, Kazuhiko Yokota, Control of Flow Instabilities Induced between Two Parallel discs, Int. Conf. on Jets, Wakes and Separated Flows September, Nagoya, 2013

## 3.3. 表面微細加工技術を利用した相変化伝熱機能の創成と応用 ~微細加工による相変化伝熱の向上化と制御~ 一凝縮熱伝達に及ぼす各種表面金属薄膜の影響—

# $\label{eq:creation} \begin{array}{l} \mbox{Creation and Application of Phase-Change Heat Transfer by using MEMS Technology} \\ \sim \mbox{Enhancement and Control of Phase-Change Heat Transfer by MEMS Technology} \\ --\mbox{Condensation Heat Transfer on Micro Structured Surfaces} \\ \end{array}$

大竹 浩靖(工・機械工学科) Hiroyasu Ohtake

Keywords: Condensation, Drop-wise Condensation, Film-wise Condensation, MEMS, Sputtering

#### 1. 緒言

熱流体工学,とりわけ、相変化を伴う熱流動と表面性状と のかかわりは深い.沸騰は、加熱面上に存在する傷等に予め 捕獲された気相が、気液界面での熱的平衡条件が崩れ、蒸気 泡へと成長する.また、凝縮においても、冷却面の濡れ性に より膜状凝縮または滴状凝縮になり、滴状凝縮の熱移動能力 は膜状凝縮に比べ十数倍も高い<sup>(1)</sup>.つまり、表面性状により、 相変化伝熱の熱移動能力の向上化や熱制御が可能となる.本 研究は、MEMS 技術を利用し、伝熱面表面に、マイクロおよび ナノメートルオーダーの加工を施し、傷の寸法や、表面の濡 れ性を制御することで相変化を伴う熱流動の向上化と制御を 図ることを目的とする.

凝縮伝熱については、滴状凝縮による高い熱伝達を得るこ とを目的とし、凝縮面へ凝縮促進剤(プロモータ)の塗布や金 メッキを施すなど、冷却面の表面性状を変化させる手法が数 多くとられてきた<sup>(2)</sup>.しかしながら実用上、滴状凝縮は 10,000時間程度継続することが必要とされるものの、一般的 にどの手法も長時間滴状凝縮を持続させることに成功してい ない、それ故、工業上、主として膜状凝縮が利用される.

一方,近年の MEMS (Micro Electro Mechanical System) 技 術の発達により,表面構造の物理的性状を変化させることが 可能となった<sup>(3)</sup>. すなわち, MEMS 技術が,滴状凝縮実用化の 一手法と成り得る.本研究ではその一例として,スパッタリ ング加工を用いて,金属表面薄膜が凝縮熱伝達に及ぼす影響 を検討した.特に,各種金属材のスパッタリング加工を施し た凝縮面で凝縮実験を行い,各種表面金属薄膜が凝縮熱伝達 に及ぼす定性的な影響,すなわち滴状凝縮が達成されるか否 か(膜状凝縮か)を実験的に調べるとともに,凝縮熱伝達率の 定量化も検討した.

#### 2. 実験装置および手順

実験装置の概略図を Fig. 1 に示す. 実験装置は, 凝縮容器, 水蒸気供給系統, 真空排気系統から構成されている. 凝縮容 器は完全密封構造である. 冷却部である銅ブロックは二つに 分かれており高熱伝導率タイプの両面テープで接着されてい る. 凝縮面を含む先端部は¢15mm, 長さ 20mm である. 銅は 凝縮容器側面より挿入され, 冷却には端面に取り付けたペル チェ素子を用いた. このペルチェ素子放熱部の冷却には冷却 水を用いる. 蒸気はボイラーから供給しており,供給水には 純水を用いた.

凝縮テスト部は純度 99.96%の銅製で,形状を Fig. 2 に示す. 銅ブロックには 10mm 間隔で K型シース熱電対が挿入されて おり,測定値と校正直線から表面温度及び凝縮面での熱流束 を 1 次元のフーリエの式を利用して求める.またテスト部は テフロン材で断熱されている.実験手順は,凝縮容器から不

m 2 (P (то DC View Window **Power Supply** τC View Win onden 06 Surface Exhaust 5 (4) 0) (TC) Drainag Chaml (8) 9 (11) Exhaust Draina

①Evaporator ②Heater ③High Speed Camera ④Condenser ⑤Peltiert Device ⑥Rotameter ⑦Pump ⑧Unit Cooler ⑨Tank ⑪Trap ⑪Vacuum Pump





凝縮性ガスを真空ポンプで十分除去した後,試験流体である 飽和水蒸気を流入圧力一定のもと凝縮容器に流入させる.

この時,流入した蒸気が凝縮面上方に噴出し,凝縮面周囲 の不凝縮ガスを吹き飛ばすように流入口(約5m/sの蒸気流) を設置.以上の準備が整った後,銅ブロックの冷却を開始す る.実験中,蒸気は継続的に供給し,凝縮容器内圧力が0.1MPa に保たれるよう,余剰蒸気は排気弁を通して排気する.容器 内圧力と温度はブルドン管圧力計およびK型熱電対にて計測 を行う.実験は20時間程度継続(6時間の実験後,再度の実 験)し,凝縮面の様子は凝縮容器側面にある観察窓から1時 間ごとに高速度カメラにて撮影を行う.実験条件である凝縮 面の表面性状は5000番の耐水紙やすりで磨き,鏡面に仕上げ た銅ブロック表面およびこの面にCrとTiのスパッタリング 加工を施した各種金属薄膜面である.

#### 3. 膜状凝縮に関する理論式

実験より得られた凝縮伝達率を比較,そして確認を行うために,代表的な Nusselt の膜状理論式を円形鉛直凝縮面用に補正した O<sup>^</sup> Neill と Westwater の式を以下に示す.  $k_f$ は熱伝達率[W/m<sup>2</sup>K],  $\rho_f$ は密度[kg/m<sup>3</sup>], g は重力加速度,  $h_{fg}$ は凝縮潜

熱[kJ/kg], Lは凝縮面代表長さ $[m], \mu_f$ は粘性係数 $[Pa \cdot s], T_g$ は蒸気温度 $[K], T_w$ は凝縮面温度[K]を示す.添え字fは凝縮 液膜, gは蒸気を示す.

$$\bar{h} = 0.83404 \left[ \frac{k_f^3 \rho_f^2 g h_{fg}}{L \mu_f (T_g - T_w)} \right]^{1/4}$$
(1)

#### 4.実験結果および考察

Fig. 3 に実験開始直後および 20 時間程度実験を続けた後の 凝縮面の様子を, Fig. 4 と Fig. 5 にそれぞれ, 熱流束と過冷度 の関係, 熱伝達率と過冷度の関係を示す. Fig. 3 から, 実験 直後『Cu-bare(Cu ブロック),Cr(Cr スパッタ)』においては滴状 凝縮を示しているのに対し, 『Ti-bare(Ti ブロック),Ti(Ti スパ ッタ)』においては膜状凝縮となっている. その後『Cu-bare』 凝縮面は 9 割以上を水膜で覆われ, Fig. 4 において, 熱流束 も滴状凝縮時と比べ 30(W/m2)程度低下している. この原因と して, 滴状凝縮を促していた Cu-bare 表面の不凝縮ガス<sup>(4)</sup>(空 気)が蒸気の噴出により除去され, Cu 本来の凝縮形態である 膜状凝縮に形態が遷移したと考えられる. これにより, 20 時 間経過した凝縮面は『Cr』以外すべて膜状凝縮となった. 過 去に行った実験では, より高い過冷度において『Cr』の凝縮 形態は膜状になる結果が出ているため, 今後, 形態の遷移す る温度など滴状となる条件について検討する.

滴状凝縮を示した熱流束においては、Fig.4 に示す通り理論 値と定性的に一致しており、十数倍高い数値を示している. しかし、膜状凝縮となった Cu-bare における数値は比較的低 い値を示しているものの、Ti-bare および Ti においては凝縮 形態が膜状凝縮となっているのにもかかわらず熱流束、Fig.5 の熱伝達率ともに理論値より十数倍高い数値を示している. この結果の原因として、『Ti』スパッタが剥がれ、凝縮面部分 に銅ブロックが露出したことや、凝縮面直径が小さく、水膜 が薄くなったことで滴状凝縮時と同等の熱伝達率となったこ とが考えられる. 今後、Ti のスパッタ条件による実験のやり 直しのほかに、凝縮面直径その他表面性状の影響を考慮し、 現在の凝縮面より径の大きい凝縮面や、AFM(原子間力顕微 鏡)を用いた凝縮面付着力の計測などを検討中である.

#### 5. 結論

 (1) 実験開始から 20 時間経過後,『Cu-bare』の凝縮形態は 変化し,『Cu-bare,Ti-bare,Ti』は膜状凝縮を示したが,『Cr』 は滴状凝縮を維持した.

(2) 『Cu-bare』は膜状凝縮において理論値に近い熱流束を示したが、『Ti-bare,Ti,Cr』は膜状凝縮,滴状凝縮いずれも熱





流束,熱伝達率は理論値の十数倍高い値を示した. 参考文献

- 棚沢一郎,凝縮研究の最近の進展-滴状凝縮を中心として,機論,Vol. 78, No. 678, pp.439-445, (1975).
- (2) 日本機械学会, 伝熱工学資料 改訂版第5版, pp.119-130, (2009).
- (3)諸貫信行,表面微細構造による濡れ性の制御,日本伝熱 学会,Vol.46, No.194, pp.46-51, (2007).
- (4) Jun-De Li, Mohammad Saraireh, Graham Thorpe, Condensation of vapor in the presence of non-condensable gas in condensers, International Journal of Heat and Mass Transfer Vol.54, pp. 4078–4089 (2011).

#### 査読付国際学会

K. Yamazaki and H. Ohtake, "Study on Condensation Heat Transfer on Micro Structed Surfaces, Effect on Condensation Heat Transfer of Metal-Sputtering Surfaces",

The 21<sup>st</sup> International Conference on Nuclear Engineering,

ICONE21-16315, (2013). (ほか2編)

#### 学会発表

矢部・大野・大竹・長谷川,凝縮熱伝達に及ぼす各種表面 金属薄膜の影響,日本機械学会 関東支部第20期総会・講演 会,(2014-3).

小田・大竹・長谷川, 沸騰熱伝達の機構と促進, 第 51 回 日本伝熱シンポジウム, (2014-5). (ほか6編) Ⅳ. 新機能表面・構造のマイクロメカトロニクス分野への応用

## 4.1. 生物の表面機能の解明とロボットへの応用 Functions of Biological Surfaces and Their Applications to Robots

## 鈴木 健司 Kenji SUZUKI

Keywords: Bio-inspired robot, Functional surfaces, Microstructure, Water repellency

#### 1. 諸言

生物の表面は, 毛や突起などの複雑な微細構造を有してお り,その構造によって様々な機能を発現していることが知ら れている.本テーマでは、MEMS 等のマイクロ加工技術を 利用し、微小な生物、とくに昆虫の表面を模擬した微細構造 を加工し、生物の機能を再現することにより、表面の構造と 機能の関係を明らかにする.具体的には昆虫の脚の付着性や 撥水性,飛翔昆虫の羽の微細構造による気流の制御などに着 目し、これらの構造を MEMS 技術などを用いて再現し、種々 の機能を発現させる.また,製作した微細構造をロボットの 表面に用いて小型ロボットを組み立て, 羽ばたき飛翔, 水面 移動,壁面歩行など昆虫と同様な運動機能を有する自律移動 ロボットを開発する.これらのロボットの開発を通して,生 物の表面機能の原理の解明を行うとともに,新たな表面設計 の指針を抽出し、他のテーマの研究や工業製品への応用を検 討する.また開発したロボットを狭所や危険な場所での情報 収集や, 医療, ヘルスケア等に応用することを目指す.

#### 2. アメンボの脚を規範とした撥水表面

平成25年度は、アメンボの脚表面の微細構造を規範として、ロボットの脚に用いる真鍮ワイヤの表面に微細な溝加工を施して撥水化し、水面上での支持力、引き離し力、抗力などを測定することにより、アメンボの水面移動の原理の解明を行った。アメンボの脚の表面は多数の毛に覆われており、さらにワックスのような物質を分泌することによって超撥水性が実現されている<sup>(1)</sup>. これまでにアメンボを規範とした水面移動ロボットについて様々な研究、開発が行われているが<sup>(2)</sup>、実際のアメンボの脚の接触角167±4[deg]<sup>(1)</sup>と比較するとロボットの脚の撥水性はまだ劣っている.また、アメンボの脚の超撥水性が水面移動にどのように寄与しているかについても十分に解明されていない.

本研究では,直径 1.0mm の真鍮線の表面にフェムト秒レ ーザー加工機を用いて,微細な凹凸加工を施し,アメンボの 脚を模擬した撥水性の高い脚を製作した.そして,表面の微 細構造が,脚の撥水性,水面での支持力,引き離し力,水の 抗力に及ぼす影響を実験により調べた.

#### 3. 撥水性支持脚の製作

アメンボの脚を模擬したワイヤ状の撥水脚を製作するため、図1のように直径1.0mmの真鍮線をステッピングモータで回転させながら、フェムト秒レーザー加工機により螺旋状の溝加工を行った.さらに、加工したワイヤ表面にフッ素系撥水剤 FS-1010(株式会社フロロテクノロジー製)を浸漬により塗布した.溝の深さが13µmと28µmの2種類の撥水脚A,Bを加工した.加工条件を表1に示す.

#### 4. 水の接触角,水面上での支持力,引き離し力

撥水脚A,Bと,比較のために加工していない真鍮線に撥 水剤(FS-1010)を塗布したもの,および何も塗布していな い真鍮線を用いて, 脚の表面の水の接触角を測定した.



Fig. 1 Laser machining on the surface of a brass wire

|                              | A(13µm) | B(28µm) |
|------------------------------|---------|---------|
| Laser power [W]              | 0.1     | 0.5     |
| Feed rate [mm/s]             | 0.0023  | 0.0023  |
| Circumferential speed [mm/s] | 0.286   | 0.242   |
| Groove depth [µm]            | 12.75   | 28.19   |
| Groove width [µm]            | 25.09   | 30.85   |

Table1 Machining conditions



Fig. 2 Geometry of the sample

また脚を水面にゆっくり押し付けた際の,水面を破る直前 の支持力(Lift force)と、脚を水に沈めた状態から水面上 にゆっくり引き上げる際の引き離し力(Pull-off force)の測 定を行った.測定には、電動 z 軸ステージ,平行板ばね、レ ーザー変位計を用い、ばねの変位にばね定数を乗じて.力を 求めた.図2に測定に用いた撥水脚の形状を示す.

測定結果を、表2に示す.水の接触角は溝が深いものほど 増加しており、溝加工により撥水性が強められていることが わかる.支持力は 接触角が 90°より大きい撥水脚では、 接触角によらずほぼ一定の値が得られた.これは、表面張力 に起因した支持力は、最大でも単位長さ当たり水の表面張力 の2倍(144mN/m)にしかならないことと合致している. 一方、引き離し力は、接触角が大きく撥水性が高いものほど 小さくなった.これは、水が脚から離れる際の水の形状が接 触角に依存するためと考えられる.

Table2 Contact angles, Lift forces and Pull-off forces

|                        | A<br>(13µm) | Β<br>(28μm) | FS-1010 | Brass<br>wire |
|------------------------|-------------|-------------|---------|---------------|
| Contact<br>angle [deg] | 125         | 146         | 120     | 80~90         |
| Lift force<br>[mN]     | 5.8         | 5.8         | 5.6     | 4.7           |
| Pull-off<br>force [mN] | 1.8         | 1.2         | 2.8     | 3.3           |

#### 5. 水の抗力・推進力

次に製作した撥水脚 A, B を用いて,水面上を一定速度で 移動させたときの抗力の測定を行った.リニアガイドに板ば ねとレーザー変位計を固定し,板ばねの先端に図2の形状の 脚を取りつけ,脚を水平に移動させたときに水から受ける力 を板ばねで測定した.この力は,アメンボの支持脚では抗力, 駆動脚では推進力として働く.水面に押し付ける深さは1~ 4mm まで 1mm 間隔で変化させ,移動速度は 50~250mm/s まで 50mm/s 間隔で変化させた.測定結果を図3,4に示す.

実験結果から, 撥水脚 A, B は, 撥水処理をしていない真 鍮線に比べて高い速度まで水没せずに動かせることがわか る.また,より深くまで押し付けて高速で動かすと抗力(ま たは推進力)が大きくなることがわかる.一方,脚が完全に 水没すると抗力は急激に減少する.これは,水没していない ときには,水面のくぼみによって移動方向に垂直な投影面積 が増加するためと考えられる.

抗力の理論式  $F = 1/2 C_d \rho A V^2$  と実験結果を比較するため、図4の押し付け深さ3mmの結果を用いて、速度の2乗 と抗力の関係を求めた(図5).抗力は速度の2乗にほぼ比例しており、水面上での実験値は抗力係数 $C_d = 0.125$ の直線にほぼ重なり、水没時の実験値も抗力係数 $C_d = 0.18$ の直線とほぼ重なっていることから理論とよく一致している.次に、深さが増加した場合は理論では投影面積が増加し、抗力は線形に上昇するはずだが、図3のグラフは線形ではなく理論と一致していない.この原因を調べるため脚の移動時の水面を観察したところ、図6のように水面が隆起していること













Fig. 6 Ridge of the surface of water



Fig. 7 Drag as a function of projection area

が確認された. 隆起の高さは深さ 2mm のとき 0.5mm, 深さ 3mm のとき 2.5mm となった. この隆起を考慮し, 押し付け深さと 隆起の高さを加えて投影面積 A を計算すると, 図 6 のよう に抗力と投影面積が線形の関係になり,  $C_d = 0.125$ の理論値 とほぼ一致することが確認された.

#### 6. 結言

本研究では、アメンボの脚を模倣し、表面に微細な溝を有 する撥水性の高い脚の製作を行った.また、製作した脚を用 いて、微細な表面構造が、接触角、支持力、引き離し力、抗 力に及ぼす影響を調べた.その結果、溝の深い方が接触角が 高くなり、引き離し力が減少することが確認された.また抗 力の測定により、深く押し付けながら速く動かすと抗力が増 加することがわかった.また、抗力は速度の2乗と、脚の深 さと水面の隆起を考慮した投影面積に比例し、抗力の理論式 と一致することが確認できた.

#### <参考文献>

- (1) Xuefeng Gao and Lei Jiang, Nature, 432, 2004, p.36.
- (2) Yun Seong Song and Metin Sitti, IEEE Transactions on Robotics, 23 (3), 2007, pp.578-589.

#### 査読付き論文

 柏原稔樹,野中昂平,<u>鈴木健司</u>,高信英明,三浦宏文, MEMS 技術を利用した気流センサの研究,計測自動制 御学会論文集,49(4),2013,pp.411-416.

#### 学会発表

- (1) 岩部純一, <u>鈴木健司</u>, 高信英明, 三浦宏文, アメンボを 規範とした水面移動ロボットの研究―脚の撥水性が水 面移動に及ぼす影響―, 日本機械学会情報・知能・精密 機器部門講演会 (IIP2014), 東京, 2014, H-2-2.
- (2) 小林憲司, 鈴木健司, 高信英明, 三浦宏文, 昆虫を規範 とした壁面移動ロボットの研究―液体の粘性を利用し た壁面付着―, 日本機械学会情報・知能・精密機器部門 講演会 (IIP2014), 東京, 2014, H-2-3.
- (3) 伊藤慎一郎,中村晃洋,工藤憲作,<u>鈴木健司</u>,トンボ規 範型ロボットの翼位相変化に伴う空力特性,日本機械 学会 2013 年度年次大会,岡山, 2013, J027034.他1件

#### 報道

(1) ぶらーりキャンパス,研究編 工学院大,昆虫型マイク ロロボット,無駄ない動きに注目,東京新聞,2013年4月 22日,p.22. 他2件

## 4.2. 濡れ・付着機能の創成とマイクロマニピュレーションへの応用 Construction of wetting and adhesion function for micro manipulation

## 見崎 大悟 Daigo MISAKI

*Keywords*: Micro manipulation, SMA, Liquid bridge force

#### 1. 緒言

100µm 程度の対象物に関するマイクロマニピュレーションは、顕微受精や微小部品のアセンブリングなど、近年ニ ーズが増えている.この領域に対して、さまざまな手法が提 案されているが,対象物の離脱の難しさや、マニピュレータ の操作の難しさなどが問題とされている.我々はマイクロロ ボットに搭載可能な液滴制御による顕微作業システムに着 目しており、これまで研究をおこなってきた.本研究では、 このシステムの作業効率を高めるために、液滴マニピュレー タの濡れ・付着機能と入力インターフェースの動特性に着目 したマニピュレーションの開発および基本特性の解析を目 的とする.本年度は、マニピュレータの製作をおこない任意 の場所の微細物を自由に姿勢変化させ半自動でハンドリン グおよびプレースを可能とする機構の設計・製作をおこなう. 2.マイクロマニピュレーションシステム

本研究で利用するマイクロマニピュレータ(1)は、図1に示 す 100μm 程度のマイクロパーツの立体的な顕微鏡下作業 が可能な顕微作業支援システムである.基本構成は、パソコ ン (windows7, Intel Core i 7,) と微細物や作業空間を見る ための顕微鏡 (Navitar 社 ズームレンズカメラ 1-60191+ 対物レンズ5×: (焦点距離: 40[mm],視野範囲 1.15 - 0.17 [mm])), CMOS カメラ (マイクロビジョン社 VC-4303: 画 素数 640×480,YUV422 8bit), 微少液滴ハンドリングツー ルを移動するための XYZ 位置決めテーブル(神津精機 YA07A-R1+ZA07A-X1: 位置決め分解能 0.25 µ m/step,可動 範囲 ±10.0mm.最高速度 2.5mm/sec) および顕微鏡を移動 するための X 位置決めテーブル(神津精機 XA10A-R1: 位 置決め分解能 0.25 µ m/step,可動範囲 ±12.5mm,最高速度 2.5mm/sec) によって構成されている. USB 接続のジョイ スティックと、PHANToM Omni をもちいた入力装置をも ちいて,対象物の把持にもちいるキャピラリの位置決めをお こない, 顕微作業を実施する.





#### 3. 液架橋力をもちいた対象物のハンドリング

対象物の把持には、液架橋力をもちいたこれまで提案した 手法<sup>(2)</sup>をもちいる.外径 100µm内径 20µm程度のキャピ ラリをもちいて、空圧インジェクタによりキャピラリ内の液 圧を制御することで、キャピラリ先端部と操作対象の間に、 十数µNの液架橋力を発生させることで 100µm程度の対 象物の把持を実施することができる.液架橋力をもちいて図 2および図3に示すようにマイクロパーツのピックアップと プレースが可能である他、複数のマイクロパーツ間の液架橋 力を利用することでパーツの自己整列も可能である.



Fig.3 マイクロパーツのプレース

#### 4.6自由度の回転マニピュレータ

XYZ ステージに固定したキャピラリによる作業では, 顕 微作業のより複雑な立体組み立てが困難であるために, 図 4 に示す 6 自由度の回転マニピュレータの機構を図 1 の顕微 作業システムの XYZ 位置決めテーブルに接続してより自由 度の高い作業の実現をめざして設計・開発をおこなった.ま た,機構の全体の構造として, 微小対象物を載せた作業台を 囲むような構造となっている.この構造は各回転軸が作業台 を干渉せずに, 各回転軸の回転中心を機構の先端に合わせる ためである.これにより, 機構の先端を動かさず回転させる ことができる.

X, Y軸回りの機構のアクチュエータはバイオメタルを使 用した.バイオメタルは SMA(Sharp Memory Array:形状 記憶合金)で,電流を与えると収縮する針金のような形状の アクチュエータである.また X, Y軸回りの機構はバイアス を用いており,図4に示すように関節を一方からはバイオメ タル,もう一方は引張りバネで反力を与え関節の角度を変化 させる構造である.

Z軸回りの機構は作製した機構の先端部なため,軽量であ る必要がある.そのためアクチュエータはバイオメタルで動 作する軽量のサーボモータ「スマートサーボ RC-1」を使用 した.



Fig.46自由度の回転マニピュレータ

#### 5. 基本実験

基本実験として、精密天秤をもちいて液架橋力の大きさを 測定した.利用液体は、純水、キャピラリの先端径は内径  $20 \mu m$ 外径  $110 \mu m$  とし引き上げの対象としてもちいた微細 部品は、対象物は直径  $200 \mu m$  のマイクロビーズとした.図 6 は、引き上げ距離と液架橋力のグラフ(引き上げ速度  $1 \mu$ m/s) である.また、図 6 は引き上げ速度を  $1 \sim 25 \mu$  m/s の間 で変化させ、発生する液架橋力を各 5 回ずつ測定して、発生 した最大液架橋力の平均からグラフを作成した.液架橋力を 制御することができれば、微細物のピック&プレースがより 簡単になることが予想されるが、現状では制御の幅が不十分 であるために、キャピラリの表面特性などとの組み合わせを 今後検討していく.



Fig.5 液架橋力の測定方法





Fig.7 引き上げ速度における液架橋力の変化

次に、作成した6自由度の回転マニピュレータをもちいて 微細部品の整列・組立を行い基本性能の評価をおこなった. 実験方法として無作為に置かれたチップコンデンサ 200× 400×200  $\mu$ m(幅×奥行き×高さ)3個を立たせて整列した 後、立たせたチップコンデンサを縦に3段組立する.

図8に実験風景図を示す.結果としてチップコンデンサの 整列・縦に2段組立が可能であった.しかし,回転中にエン ドエフェクタ先端部の移動により断続的な作業が困難だっ たことや常に10~50µm 程度の上下運動が起きてしまい,3 段目の組立を失敗したため,より安定性がますような改善が 必要である.



Fig.8 マイクロパーツの組み立て実験

#### 6. 結言

濡れ・付着機能の創成とマイクロマニピュレーションへの 応用についての研究を実施するために,提案するマニュピュ ーレタの基本特性の評価と 6 自由度の回転マイクロマニピ ュレータの設計・作製をおこなった.

基本実験の結果,目標とする100μm程度の微細部品の立体組み立て作業を実施するマニュピューレタとしての性能として,十分な点不十分な点を確認することができた.今後,これらの点を改良していくためのひとつ方法として,キャピラリおよび作業するステージ上への濡れ・付着機能の創成が,安価・簡易な手法で改善効果が見られると考え,今後検討をおこなっていく.

#### <参考文献>

- Daigo misaki, Ryuuhei Kurokawa, Satoshi Nakajima, Shigeomi Koshimizu, Use of AR/VR in Micro Manipulation Support System for Recognition of Monocular Microscopic Images, International Journal of Automation Technology, Vol.5, No.6, pp.886-874, (2011).
- (2) S.Koshimizu, Application of Liquid Bridging Force in Manipulation and Assembly of Microparts, Int. J. of Automation Technology Vol.3 No.3,(2009).

#### 学会発表

- Masatomo Suzukia, Ryuhei Kurokawaa, <u>Daigo Misaki</u>, Shigeomi Koshimizu, Micro Assembly Support System with Control of Liquid-Bridging Force, Proc. of the 4th TSME International Conference on Mechanical Engineering (TSME-ICoME2013), 2013.
- (2) Tasuku Akiyama, Ryuhei Kurokawa, <u>Daigo Misaki</u>, Study of virtual reality and haptic feedback for 3D micro manipulation system, Proc. of the 4th TSME International Conference on Mechanical Engineering (TSME-ICoME2013), 2013.