1.1 マイクロ・ナノ規則性構造材料の創成

電子デバイス応用に向けた アノードエッチングGaAsナノワイヤの 表面構造評価

工学院大学 総合研究所 相川 慎也

H. Asoh, et al. Mater. Res. Express 1, 045002 (2014).

本日のメニュー

- デバイス試作・評価
- ・ <u>GaAs NW表面の評価</u>
- 課題
- まとめ

背景

近年,半導体工場の省エネを促進する新規なデバイス作製法として, 溶液ベースの半導体デバイス開発が注目

> Extremely flexible carbonbased transistors

経産省 電機・電子温暖化対策審議会 資料

11. 省エネ取組み事例 生産プロセスーデバイス分野①

http://www.meti.go.jp/committee/sougouenergy/shoene_shinene/sho_ene/pdf/007_01_06.pdf

目的

アノードエッチングにより形成された<u>高特性ナノ構造半導体材料</u>を用いて, <u>高性能な機能電子デバイス</u>を開発

<u>テーマ内外での連携</u>

作製したデバイス以外にも作製工程などの手法も活用

特性評価装置

コンタクト界面のバンド図 (Schottky接合)

アノードエッチングGaAs NW:3つの利点

① GaAsの電子移動度: 8500 cm² V⁻¹ s⁻¹ (6 times higher than Si)

<u>GaAs NW作製法による比較</u>

		Molecular beam epitaxy (dry process)	Anodic etching (wet process) [3]
	形成法	触媒成長 (ボトムアップ)	単結晶基板のエッチング (トップダウン)
	スループット	~ 20 nm/min [1]	> 3000 nm/min
2	プロセス温度	> 500 °C [1]	Room Temp.
3	結晶構造	混晶 (Zinc blende/Wurtzite) [2]	Zinc blendeのみ? (未確認)

[3] H. Asoh, et al. Mater. Res. Express 1, 045002 (2014).

デバイス開発に向けた本年度の成果

① 親水/疎水パターンの形成
 → 溶液ベースでのデバイス作製に不可欠
 → 親水/疎水マイクロパターンを持つ表面の形成

② アノードエッチングGaAs NWの表面構造評価 → TEM観察およびRaman分光分析

親水/疎水パターンの形成

S. Aikawa, et al. Nano Res. 4, 580 (2011).

PR: Photoresist

トランジスタ試作と評価 (more than 50 devices)

アノードエッチングGaAs NWの表面構造評価

アノードエッチングGaAs NWの表面構造評価

まとめ

(1)親水/疎水パターニング → ウェットプロセスで狙ったところに直接半導体膜を形成

(2)アノードエッチングGaAs NW表面 → 20 nmのアモルファスGaO_x層が形成

(3)アモルファス層の除去

→ Carrier伝導のバリアになっていると考えられるため

