高感度化に向けた In2O3 薄膜トランジスタガスセンサーの表面改質

Surface modification of In₂O₃ thin-film transistor gas sensors for high sensitivity

菅野 仁紀(電気電子工学科)

Masaki Sugano

高機能デバイス研究室 指導教員 相川 慎也 教授

1. 緒言

近年,環境,医療,農業などの様々な分野で,高感度な CO2 ガス センサーの開発が求められている. CO2 ガスセンサーとしては様々 な方式があるが,その中で薄膜トランジスタ(TFT)方式は小型で安 価,低電圧動作可能な特徴がある.

TFT は高抵抗・サブスレッショルド・低抵抗領域があり,ゲート電 圧を制御することで電流値を選択できるため,ガスセンサーとして 比較的低温で良好な感度が期待できる.また,酸化物 TFT センサ ーの候補材料としていくつか提案されているが, In₂O₃ は活性表面 を持つため,高感度ガスセンサー用の半導体材料として期待され ている.

当研究室では、In2O3 TFT を用いることにより、150℃の動作温度 で高感度の TFT CO2 ガスセンサーを報告している[1]. ガスセンサ ーのさらなる消費電力低減のためには室温駆動させる必要があり、 そのための高感度化が必要となっている. 高感度化の手法として はいくつか検討されているが、ここでは酸素プラズマ照射による半 導体表面の改質に着目した.

酸素プラズマは酸素分子が活性化されたものであり,プラズマ 中には酸素ラジカル,酸素イオン,電子などの高エネルギー粒子が 生成される.これらのうち,酸素イオンが半導体表面に吸着すると, 電子が奪われキャリア密度が減少する.これにより,電気抵抗が増 加する.この状態で,CO₂ガスが半導体表面に接触すると,電子を トラップした酸素イオンが脱離の際に電子を放出し,半導体薄膜が 低抵抗化する.この一連の状態をドレイン電流の変化として観測す ることで,ガス検知するのがTFT 方式によるCO₂ガスセンサーのメ カニズムである[2].したがって,吸着させる酸素イオンを最大化さ せれば,センサーの高感度化が狙えるはずである.

そこで本研究では,様々な条件で In2O3 TFT に酸素プラズマを 照射し,In2O3薄膜の表面改質を行うことで,CO2ガスセンサー高感 度化を目的とする.

2. 実験方法

SiO₂ 200 nm を有する Si 基板上に、ボトムゲート構造の TFT を 作製した.その断面概略図を図1に示す. In₂O₃ チャネル層は RF マ グネトロンスパッタリングにより O₂ 濃度 25%の室温下で 20 nm を 成膜した.その後、反応性イオンエッチングを用いて、O₂ 流量 5.0 sccm、3.0 Pa、10 min で 20 W、40 W、60 W の 3 つの条件で酸素プ ラズマを照射した. Transfer 特性評価のため、半導体パラメータ・ア ナライザを用いて I-V 特性評価を行った.ゲート電圧 V_G:-40~40 V、ドレイン電圧 V_D:5 V とした.

図 1:ボトムゲート構造の概略図

3.実験結果及び考察

In₂O₃ TFT のチャネル表面に酸素プラズマを照射した際の Transfer 特性の結果を図 2 に示す. as-deposited 膜と比較し、プラズ マ照射を施した TFT のヒステリシスが大きくなったことが確認でき た. 検討した条件では 60 W で最もヒステリシスが大きくなった. 酸 素分子が半導体表面に吸着することで、電子トラップが生じる. そ の結果としてヒステリシスが生ずるため、ヒステリシスの増大は酸 素イオンの吸着として考えられる[3]. したがって、60 W でプラズマ 照射を施した TFT において CO₂ ガスセンサーとしての感度が最も 感度が高くなると考えられる.

図 2:大気中の Transfer 特性

4. 結論

本研究では In2O3 TFT CO2 ガスセンサーの高感度化のために TFT チャネル表面に酸素プラズマを照射し表面改質を行った.酸素 プラズマ照射により I-V 特性のヒステリシスが大きくなり,検討した 3 条件の中では 60 W が酸素イオンの吸着が最も多くなったと考え られる.今後は,吸着酸素イオン量の電力依存を明らかにするとと もに, CO2 雰囲気中でのガスセンシングを行う.

5.参考文献

- [1] A. Nodera, et al., Mater. Sci. Eng, B, Vol. 299, p. 117034 (2024).
- [2] A. Dey, Mater. Sci. Eng, B, Vol. 229 pp.206-217 (2018).
- [3] R. Hu, et al., IEEE Electron Device Lett., Vol. 36, pp. 1163-1165 (2015).