令和2年3月17日

発表者 大山 透

[Journal] J. Org. Chem. 2020, 63, 2588-2619.

[Title] Synthetic lethality in pancreatic cancer: Discovery of new RAD51-BRCA2 small molecule disruptor that inhibits homologous recombination and synergizes with olaparib

[Affiliation & Authors]

Bologna University

Greta Bagnolini, Giuseppina Di Stefano, Marinella Roberti, Andrea Cavalli

(Abstract)

がん抑制遺伝子の一つである BRCA2 (breast cancer susceptibility gene II) は、DNA 2本鎖切断 (DBS) における相同組換え修復 (HR) において中心的な役割を担う RAD51 を損傷箇所ヘリクルートすることで DNA 損傷の修復に関与している。 BRCA 遺伝子の変 異は、乳がんや卵巣がんなどの罹患リスクを上昇させる一方で、BRCA 変異性がんにおけ る DNA 修復は PRAP による塩基除去修復に依存することから、BRCA 変異性がんは PRAP 阻害剤によって合成致死をもたらす。筆者らの先行研究によって見出された化合物 3 は、 本来 PRAP 阻害剤が不活性であるヒト膵臓腺がん細胞株(BxPC-3)において、BRCA 変 異を模倣し、PRAP 阻害剤との併用により合成致死をもたらす。この作用機序として、 RAD51 に結合して RAD51-BRCA2 タンパク間相互作用(PPI)を阻害し、修復箇所への RAD51 のリクルートを阻害することで HR を抑制していることが示唆された。筆者ら は、新しいケモタイプの RAD51-BRCA2 タンパク間相互作用阻害剤の創製を目的に、ハ イスループットスクリーニングにより見出された化合物 4d の構造最適化、および得ら れた化合物の作用機序の解明を検討した。化合物 4d のキノロンピラゾリンコア周辺の 芳香環やアシル鎖を変換した結果、中程度の RAD51-BRCA2 タンパク間相互作用阻害活 性(EC50=19 µM) および HR 阻害(54%, 20 µM) を示す化合物 35d が見出された。 化合物 35d は BxPC-3 細胞において、PARP 阻害剤との併用により有意に細胞増殖抑制 および細胞死を誘導した。このことから、化合物 35d は合成致死を誘導することが示さ れた。本研究により、PPI 阻害により遺伝子変異を模倣することで、合成致死を誘導する 革新的な概念が提供された。今後、様々な遺伝子およびがん種における応用が期待され る。