Sanua

回路計の製作実習

目 次

I 取	汲説明		2-6	補助単位	21
1 - 1	安全に関する項目~使用前に必ずお読みください。~	1	2 - 7	倍率器(マルチプライヤ)	21
1 - 2	製品説明	2	2 - 8	分流器(シャント)	22
1	用途と特長	2	2 - 9	整流回路	23
2	各部の名称	2	2 - 10	抵抗計の原理	24
1 - 3	機能説明	3	2 - 11	カラーコード・定格記号について …	25
1	各機能説明	3			
1 - 4	測定方法	4	III テ	スタの組立	
1	始業点検	4	3 - 1	はんだの特性について	26
2	測定前の準備	4	3 - 2	はんだ付けの方法	26
3	直流電圧(DCV==)の測定 ········	5	3 - 3	はんだ付けの練習	27
4	交流電圧(ACV~)の測定	6	3 - 4	組立準備	27
	直流電流(DCA)の測定	7	3 - 5	組立・配線	28
6	抵抗(Ω)の測定	8			
(7)	バッテリチェック(1.5 V)	9	IV 動	作試験と校正	
	その他の測定方法	10	4 - 1	簡易動作チェック	43
1-5		12	4 - 2	テスタの校正	45
	保守点検	12	4 - 3	測定結果	46
	校 正	13	$4 \! - \! 4$	結果のまとめ	47
(3)	8.1.14	13			
(4)	保管について	14	∨ テ	スタの回路計算	
1-6	トラブルシューティング	15	5 - 1	メータ回路	48
1 - 7	補修部品について	15	5 - 2	直流電流計(DCA)回路	49
1 - 8	仕 様	16	5 - 3	直流電圧計(DCV)回路	49
(1)	一般仕様	16	5 - 4	交流電圧計(ACV)回路	51
(2)	測定範囲と許容差	16	5 - 5	抵抗計(Ω)回路	52
			5 - 6	バッテリチェック回路(1.5 V) …	54
II テ	スタ(回路計)の基礎知識		• K	IT-8D形回路図	55
2-1	テスタとは	17			
2 - 2	メータの原理	17	VI 別	売付属品ブザーキットの組立	56
2 - 3	テスタの構造	18	• 台	紙部品表	61
2 - 4	オームの法則	20			
2 - 5	合成抵抗の求め方	20			

I 取扱説明

1-1 安全に関する項目~ 使用前に必ずお読みください。~

このたびはサンワテスタ・キット〈KIT-8D〉をお買い上げいただき、誠にありがとうございます。本製品のご使用にあたりましては、取扱説明書に記載されている「安全にご使用いただくために」「測定方法」「保守管理について」の項目は特に重要な内容ですので、よくお読みいただき正しく安全にご使用ください。なお取扱説明書は製品と一緒にして大切に保管してください。

取扱説明書を読まずに使用された場合、やけどや感電などの人身事故および本器破損につながるお それがありますので、必ずこの取扱説明書をよくお読みいただいてからご使用ください。

●警告マークなどの記号説明

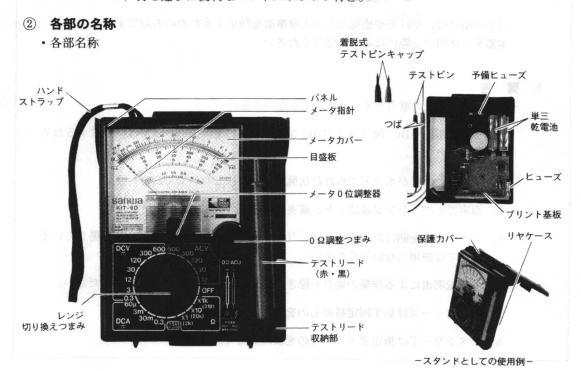
本文中の"警告"および"注意"の記載事項は必ずお守りください。使用方法を誤るとやけどや感電などの人身事故、および本器の破損につながる場合があります。

- ・本器および「取扱説明書 | に記載されている記号の意味について
- ☆ 安全に使用するための特に重要な事項を示しますので、この説明書をよく読んでください。 特に警告文は人身事故を防止するためのものです。注意文は本器を壊すおそれのあるお取り扱いについての注意です。必ずお守りください。
- 4 高電圧が印加されるため注意してください。
- 日 ヒューズ
- 直流(DC)
- ~ 交流(AC)

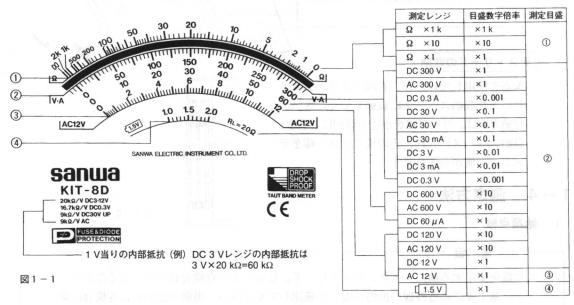
● ↑安全にご使用していただくために -

以下の項目は、やけどや感電などの人身事故を防止するためのものです。 本器をご使用する際には必ずお守りください。

↑ 警告


- 1.6 kVA以上の電力ラインでは測定しないこと。
 - 2. 被測定電圧がDC 70 VまたはAC 33 Vrms, 46.7 Vpeak以上では、感電するおそれがあります。
 - 3. 本器または手が水などでぬれた状態での使用はしないでください。
 - 4. 測定ごとの「レンジ確認」を、確実に行ってください。
 - 5. リヤケースを開けた状態または、リヤケースおよびその絶縁部分が損傷している 状態では使用しないでください。
 - 6. 取扱説明書による作業の場合を除き、本器の改造、分解はしないでください。
 - 7. 内蔵ヒューズは必ず同定格のものを使用してください。
 - 8. テストリードは指定タイプのものを使用してください。

- 取扱計詞
- 9. 被覆の傷ついたテストリードは、使用せず、交換してください。
- 10. 測定中はつばよりテストピン側を持たないでください。
- 11. 脈流波や、パルスを含んだ波形の測定では、過電圧とならぬよう注意してください。
- 12. 本器の点検は1年に1回以上は必ず行ってください。
- 13. 測定中に他のレンジに切り換えないでください。
- 14. 誘起電圧、サージ電圧の発生するモータなどのライン測定はしないでください。
- 15. 屋内で使用すること。


1-2 製品説明

① 用途と特長

- ・用途 …… 本器は小容量電路の測定用に設計された、学習用の携帯形キット製品です。 小形の通信機器や家電製品、電灯線電圧や電池の測定などに適します。
- ・特長 …… 1) 軽量、小形、高感度、耐ショックタイプのトートバンド機構のメータを搭載。
 - 2) DCV、ACV、DCA、 Ω の基本機能に加え1.5 Vの乾電池を実負荷 (20 Ω) でチェックできるバッテリチェックレンジ付き。
 - 3) テストリードは直付け方式で紛失の心配はなく、本体に収納スペースを設けて あるので収納にも便利。
 - 4) スタンド兼用のパネル面の保護カバー付き。
 - 5) 持ち運びに便利なハンドストラップ付き。

・ 目盛板の読み取り方

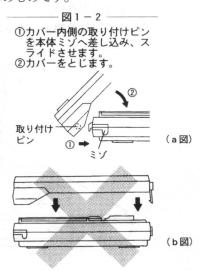
1-3 機能説明

① 各機能説明

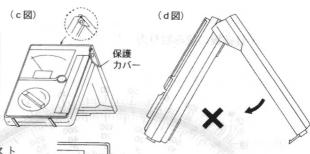
レンジ切り換えつまみ

測定機能を選択するスイッチのつまみです。レンジ切り換えつまみを**測定**したいレンジに合わせます。

メータ0位調整器


メータ指針を0(目盛左端)に合わせるためのものです。

ΟΩ調整つまみ


 Ω 測定前、指針を Ω 目盛の0(目盛右端)に合わせるためのものです。

保護カバーの使い方

- 1. 本器を使用しない場合はパネル面へ、使用する場合はリヤケース面へa図のように取り付けます。b図のように真上からはめ込みますとカバーが破損しますのでしないでください。
- 2. スタンドとして使用する場合は、c図のように本体と結合してください。d図のようにスタンドにした状態のままとじますと、カバーが破損しますので行わないでください。

注)スタンドとして使用される場合メータが水平 状態でないため指示誤差が大きくなること があります。

テストリードの収納

本器を使用しないとき、右図のようにテスト リードを収納スペースに収納してください。 収納方法は、リード線を小さく3回ほど巻き、 収納スペースに入れ、その後でテスト棒をテ ストピン側から入れます。

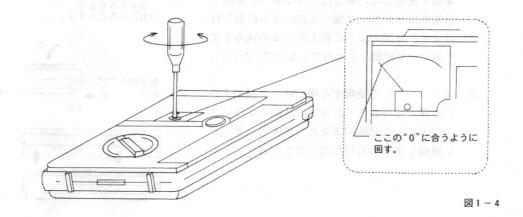
☑ 1 - 3

1-4 測定方法

① 始業点検

- 🖈 警告-

本器を使用する前に、本体、テストリード、ヒューズの点検を必ず行ってください。


- 1. 落下等による外観の損傷がないか確認してください。損傷が認められる場合は使用しないでください。
- 2. テストリードのコード部分の損傷および心線が露出しているものは、感電のおそれがあります。使用しないでください。
- 3. テストリード、内蔵ヒューズの断線がないことをご確認ください。 (P. 12「保守管理について」の"①-3 内蔵ヒューズ"の項参照)

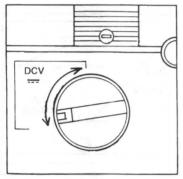
② 測定前の準備

1) メータの 0 位調整

メータの0位調整器を回して、指針を目盛左端の0目盛に合わせます。これは、たびたび行う必要はありませんが、ゼロの狂い分だけ指示誤差がでますので注意が必要です。また、測定器を使う際の基本ですから習慣づけることが大切です。方法は下図を参考にしてください。

2) レンジ切り換えつまみにより目的の測定レンジを選定します。

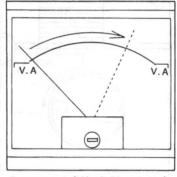
③ 直流電圧(DCV--)の測定 最大測定電圧DC 600 V


- \land 警 告 -

- 1. 各レンジの最大測定電圧を超えた入力信号は絶対に印加しないでください。
- 2. 測定ごとの「レンジ確認」を確実に行ってください。
- 3. 測定中は他のレンジに切り換えないでください。
- 4. 絶対にぬれた手では測定しないでください。
- 5. 測定中はつばよりテストピン側を持たないでください。
- 1) 測定対象

電池類全般、ラジオ、アンプ等の直流電圧が対象です。

- $0.3/3/12/30/120/300/600 \text{ V} \mathcal{O} 7 \mathcal{V} \mathcal{V} \mathcal{V}$
- 3) 測定方法


直流電圧の測定ですので電源の極性に注意し、(極性が逆ですと、メータが逆振れします。) 回路と並列に接続します。手順は以下のとおりです。

DCVレンジの中で最適な レンジに合わせます。

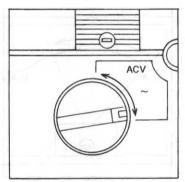
1.レンジ切り換えつまみを 2.赤のテストピンを被測定物 のプラス側に、黒のテスト ピンをマイナス側にあてま す。

3.メータの振れをV · A 目盛 で読み取ります。

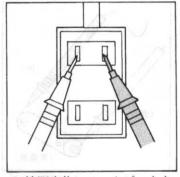
—— 図1-5---

最適なレンジとは読み取り精度をよくするため、できるだけ最大日盛に近い(右側)日 盛で読むことができるレンジです。(例えば2 Vのときは3 Vレンジ、10 Vのときは 12 Vレンジというように、測定する値より大きく、かつ近いレンジを選びます。) また、測定値の見当がつかない場合は、最大レンジ(600 V)で測定してみます。

④ 交流電圧(ACV~)の測定 最大測定電圧AC 600 V



- 1. 各レンジの最大測定電圧を超える入力信号は絶対に印加しないでください。
- 2. 測定ごとの「レンジ確認」を確実に行ってください。
- 4. 測定中は他のレンジに切り換えないでください。
- 5. 測定中はつばよりテストピン側を持たないでください。
- 1) 測定対象


小形電源トランスのタップ電圧、電灯線電圧などです。

- 2) 測定レンジ 12/30/120/300/600の 5 レンジ
- 3) 測定方法

交流電圧の測定ですので電源の極性は関係なく、**回路に並列に接続して測定を行います**。 手順は以下のとおりです。

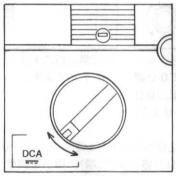
ACVレンジの中で最適な レンジに合わせます。

てます。

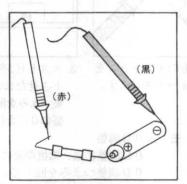
1. レンジ切り換えつまみを 2. 被測定物にテストピンをあ 3.メータの振れをV・A目盛 で読み取ります。(ただし AC 12 Vレンジは、AC 12 V 専用目盛で読み取ります。)

—— 図1-6 —

- 注意 ●波 形 の 影 響:正弦波以外の測定では、誤差を生じます。
 - ●周波数の影響:周波数が高くなると誤差が大きくなります。

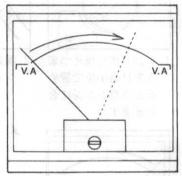

周波数は30 Hz~50 kHz(AC 12 Vレンジ)の範囲で使用してください。

⑤ 直流電流(DCA--)の測定


最大測定電流DC 0.3 A

- / 警告-

- 1. 電流測定レンジには、電圧を印加しないでください。やけどや感電のおそれがあ ります。
- 2. 入力端子に最大測定電流を超えた入力信号は絶対に加えないでください。
- 3. 必ず回路と直列になるように接続してください。
- 4. 測定ごとの「レンジ確認」を確実に行ってください。 こく この かまり はいま
- 5. 必ず弱電回路のみ使用してください。
- 6. 絶対にぬれた手では測定しないでください。
- 7. 測定中は他のレンジに切り換えないでください。
- 1) 測定対象 電池を使用した回路や整流回路の電流等を測定します。
- 2) 測定レンジ 60 μ/3 m/30 m/0.3 Aの4レンジ
- 3) 測定方法 直流電流の測定ですので電源の極性に注意し、回路と直列に接続して測定を行います。 測定手順は以下のとおりです。



1. レンジ切り換えつまみを 2. 被測定回路の電源をOFF DCAレンジの中で最適な レンジに合わせます。

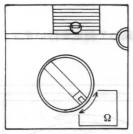
にしてから回路を切り離し、 赤テストピンをプラス側、 黒テストピンをマイナス側 に接続します。

——図1-7 —

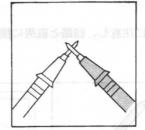
3.被測定回路の電源をONに しメータの振れをV・A目 盛で読み取ります。

注意 ●電流測定では電流レンジの内部抵抗が直列に入り、この分だけ電流が減少しますの で、低抵抗回路では影響が大きくなります。

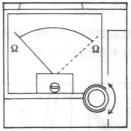
⑥ 抵抗(Ω)の測定

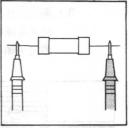

最大測定抵抗2 MΩ

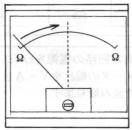
- 小 警 告 -


- 1. 抵抗レンジでは絶対に電圧を印加しないでください。
- 2. 測定ごとの「レンジ確認」を確実に行ってください。
- 3. 電圧が加わっている回路での測定はできません。
- 4. 絶対にぬれた手では測定しないでください。
- 5. 測定中は他のレンジに切り換えないでください。
- 1) 測定対象

固定抵抗器の抵抗測定や、配線の接続、断線のチェックを行います。


- 2) 測定レンジ ×1/×10/×1 kの3レンジ
- 3) 測定方法 以下の手順にて測定を行います。


1. レンジ切り換えつま みを目盛中央で読め るようなレンジに合 わせます。


2.両方のテストピンを ショートさせます。

3. テストピンをショートさせたまま 0 Ω 調整つまみを回し、 Ω 目盛の 0 に合わせます。

3. テストピンをショー 4. 被測定物にテストピトさせたまま 0 Ω 調 ンをあてます。

5.メータの振れをΩ目 盛で読み取ります。

メ モ · 0 Ω調整

0 Ω調整とは、抵抗測定に先立ちテストピンをショートさせ、 0 Ω調整つまみを回して、Ω目盛の0(右端)に指示を調整す ることです。レンジを切り換えたらそのつど、連続測定の場 合は適時0 Ω調整を行ってください。

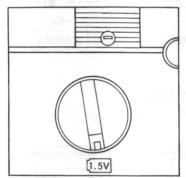
- 0 Ω調整を行ったとき、0 Ω調整つまみを右いっぱいに回しても0 Ωまで振れない場合は、内蔵電池が消耗していますので、電池を交換してください。
 - ・抵抗測定時のテスタの極性 抵抗レンジは回路図からもわかるように、赤テストリードが マイナス、黒テストリードがプラスの極性になります。
- ・テストピンに指を触れて測定すると人体の抵抗の影響を受け、誤差を生じます。(特に×1 kレンジ)
 - ヒューズの抵抗

定格 (0.5~A) より小さなヒューズや消弧剤入りヒューズをご使用になりますと、ヒューズ抵抗の影響で、 $\times 1$ レンジの0 Ω 調整ができなくなったり、測定精度が低下します。必ず同定格、同仕様のヒューズをご使用ください。

⑦ バッテリチェック(1.5 V)

負荷抵抗RL=20 Ω

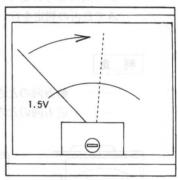
- ^ 警告—


- 1. 測定ごとの「レンジ確認」を確実に行ってください。
- 2. 測定中は他のレンジに切り換えないでください。

1) 測定対象


マンガン乾電池(SUM-1/R20, SUM-2/R14, SUM-3/R6)やアルカリ乾電池(LR20, LR14, LR6)など。

- 2) 測定レンジ 1.5 V/RL=20 Ω 1レンジ
- 3) 測定方法

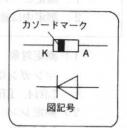

電池に負荷抵抗をつなぎ、そのときの電流を取り出して電圧を測定します。よって、使 用状態に近いチェックを行うことができます。測定手順は以下のとおりです。

1. レンジ切り換えつまみをバッ 2. 赤のテストピンを被測定物 3.メータの振れをバッテリチェッ テリチェックレンジに合わ せます。

のプラス側に、黒のテストク目盛で読み取ります。 ピンをマイナス側にあてま

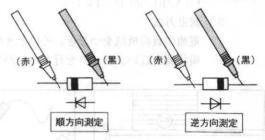
注意 ・負荷が大きいので、電流容量の小さいボタン形電池の測定はしないでください。

図 1 − 9


・電池の判断の目安としては0.9~1.6 V位で良品と判断できます。ただし使用する機 器によってこの値は変わりますのでご注意ください。

⑧ その他の測定方法

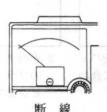
ここではΩレンジを使用した電子部品の簡単なチェック方法をご紹介します。各電子部品の動 作なども確認できますので以下の方法を参考にして、行ってください。


a) ダイオードのチェック

下図の要領によってダイオードの良否の判定を行 うことができます。良品では順方向でメータが大 きく振れ、逆方向ではほとんど振れません。チェッ クしたときの各状態は図のとおりですので、参考 にしてください。

チェック方法

測定レンジを×10または×1 kにし て、0 Ω調整を行います。テストピ ンを図のようにあて、指針の振れを みて良否の判定を行います。

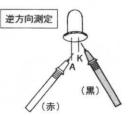

判定

指針の位置は左が∞方向、 順方向のときの指針振れ ······ 逆方向のときの指針振れ 右側が0Ω方向です。

順逆方向とも図 / 順逆方向とも図 の位置の振れ

の位置の振れ

図記号


- b) 発光ダイオード(LED)のチェック
- a) で説明したダイオードと同様にしてLEDの チェックも行うことができます。

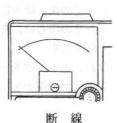
LEDにより発光させるための測定レンジは多少 異なります。

チェック方法

測定レンジを×1または×10にして、 0 Ω調整を行います。テストピンを 図のようにあて、指針の振れをみて 良否の判定を行います。

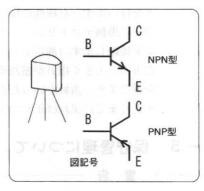
注)×1では過電流とならぬようLEDの容量に注意してください。

判定


----- 順方向のときの指針振れ 指針の位置は左が∞方向、 ------- 逆方向のときの指針振れ 右側が0Ω方向です。

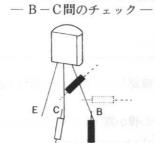
良品 順方向のとき 発光

「順逆方向とも) 発光せず

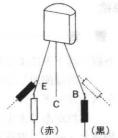


順逆方向とも 発光せず

c) トランジスタのチェック


トランジスタも Ω レンジを使用する事によって簡単な良否の判別が可能です。


判別の方法は下記の方法を参考にしてください。



チェック方法

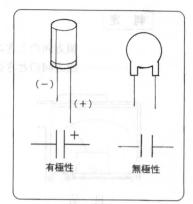
測定レンジを $\times 1$ kにして、0 Ω 調整を行います。図のようにテストピンをトランジスタにあて判定を行います。

判定

NPNの場合

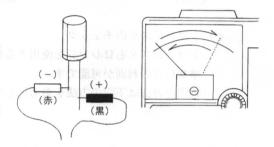
・実線方向の測定で指針が振れて、点線方向の測定で指針が振れなければ良い。 (B-C, B-E両チェックとも)

PNPの場合


・点線方向の測定で指針が振れて、実線方向の測定で指針が振れなければ良い。 (B-C, B-E両チェックとも)

d) コンデンサのチェック

電解コンデンサのような比較的容量の大きなコンデンサのチェックを行うことができます。


テストピンをあてますとコンデンサの充電電流で指針が振れ、その後、徐々に指針は戻っていきます。小容量のコンデンサの場合は、充電電流が小さいため、一瞬ピクッと動く程度です。

なお、チェックを行う際には、コンデンサを1度放電(コンデンサの端子をショート)させてから行ってください。

チェック方法

コンデンサの両極にテストピンをあて、チェックを行います。(有極性の場合はコンデンサの+に黒側テストピン、一に赤側テストピンを接続します。)測定レンジは、なるべく右方向に大きく指針が振れるようなレンジを選びます。指針がいったん振れ、その後∞近くまでに戻れば正常です。

1-5 保守管理について

- △ 警告-

取扱説明書に記載された保守・管理に必要な作業を除き、リヤケースをむやみに開けないでください。

① 保守点検

- 企 警告-

- 1. 外観:落下等による外観の損傷がないか確認してください。損傷の認められるものは使用しないでください。
- 2. テストリード: コード部分の損傷および心線が露出しているものは、感電のおそれがあります。使用しないでください。
- 3. 内蔵ヒューズ: 内蔵ヒューズが切れたりしていないか確認してください。確認方法は以下を参照してください。

● 内蔵ヒューズの確認方法

- ① レンジ切り換えつまみをΩレンジの×1 kにします。
- 2 テストピンをショートさせます。
- ③ メータが振れれば正常、振れなければヒューズの断線の疑いがあります。内蔵の予備ヒューズと交換してもう一度調べてください。

② 校 正

- ▲ 警告-

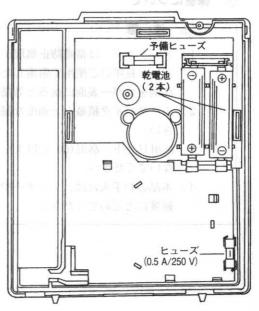
安全と確度の維持のため1年に1回以上は校正、点検をしてください。校正、点検の 代行につきましては販売代理店、発売元までお問い合わせください。

③ 電池およびヒューズ交換 100 人質 ケヤ しゅんりょうしょ 200 とまる 100 フリルン・コリ

- A 警告-

- 1. この説明書どおりの作業手順で内蔵電池、ヒューズの交換を行う場合を除き本器 のリヤケースをはずさないでください。
- 2. 作業を行う前に、必ず被測定回路からテストピンが離れている状態か、確認して ください。
- 3. 交換ヒューズは同定格のものをご使用ください。 別定格のヒューズを用いたりヒューズホルダ端子間を銅線などで短絡することは 絶対にしてはいけません。

1) 電池の交換


内蔵電池が消耗してきますと、 Ω レンジにて 0 Ω 調整つまみを右いっぱいに回しても 0 Ω 調整ができなくなります。調整ができなくなりましたら、内蔵電池の交換をしてください。

交換方法

- ① 本体に取り付けられている保護カバーを取り外します。
- ② ケース止めねじをはずし、リヤケースをは ずします。
- ③ 消耗した電池を取り出して、新品の電池と 交換します。⊕、⊝の極性を間違えぬよう 注意し、電池ホルダにしっかり入れてくだ さい。
- 4 リヤケースをパネルに合わせ、ケース止め ねじをしめます。
- 5 保護カバーを本体に取り付けます。
- 注意・本器に使用する電池は指定の電池を使用 してください。

(単三乾電池 UM-3/R6 2本)

電池はパネルに表示されている極性にしたがって電池を入れてください。

2) ヒューズの交換

▲ 警告-

ヒューズは安全や性能を維持するため、同定格のヒューズを使用してください。 (入手しにくい場合は、当社へご注文ください。)

使用ヒューズ定格

0.5 A/250 V (直径5.2 mm、長さ20 mm、ガラス管入り、遮断容量300 A)

 Ω やDCA、バッテリチェックレンジに誤って電灯線電圧 (100 V) などを加えますと、ヒューズが切れて回路を保護します。

Ωレンジでメータを振らせる操作をしても、メータがまったく振れない原因の多くはヒューズ 切れです。

交換方法

- ① 本体に取り付けられている保護カバーを取り外します。
- ② ケース止めねじをはずし、リヤケースをはずします。 サースル はんしょう
- ③ ヒューズホルダから溶断したヒューズを抜き取り、新品ヒューズと交換します。
- ④ リヤケースをパネルに合わせ、ケース止めねじをしめます。
- 5 各レンジの指示が正常かチェックします。
- 6 保護カバーを本体に取り付けます。

●内蔵の予備ヒューズをご使用ください。

④ 保管について

· A 注意 -

- 1. メータカバーは帯電防止処理がされております。布などで強くこすらないでください。長年のご使用で帯電した場合は、応急処置として水で数倍にうすめた中性 洗剤をカバー表面に塗ると効果があります。
- 2. モータバイク積載など過度な振動は、メータ故障の原因となります。避けてください。
- 3. 直射日光下、高温(60 ℃以上)、多湿(85 %以上)、結露する場所に長時間、置かないでください。
- 4. 本品のお手入れは、シンナーやアルコールの使用を避け、筆や布などで軽く払う 程度にとどめてください。

.____

1-6 トラブルシューティング

本器を修理に出される前にご確認ください。

故障状況	チェックポイント	\$:1°	処	为(置)/
全レンジの指示がでない	ヒューズは切れていませんか?	ヒュー	ーズを交換	奥してください。
(メータが振れない)	テストリードは断線していませんか?	当社	へ修理依頼	質してください。
Ωレンジの指示がでない、0 Ω調整ができない。	内蔵電池は消耗していませんか?	電池	を交換して	てください。

1-7 補修部品について

●交換用ヒューズ(0.5 A/250 V、直径5.2 mm、長さ20 mm、ガラス管入り、遮断容量300 A) 交換用ヒューズのお求めは当社のサービス課あてに、代金+送料分の切手を添えて、製品型名、 部品名を明記してご注文ください。

ヒューズ 1本 ¥42 (消費税込み)

送 料 10本まで ¥120

〔送り先〕 三和電気計器株式会社 サービス課

〒205-0023 東京都羽村市神明台4-7-15 TEL (042) 554-0113 FAX (042) 555-9046

製品に対するご質問などありましたら当社へお問い合わせください。

東京本社

: TEL (03) 3253-4871 FAX (03) 3251-7022

大阪営業所

: TEL (06) 6631-7361 FAX (06) 6644-3249

お客様計測相談室: 0120-51-3930

受付時間9:30~12:00 13:00~17:00 (土日祭日を除く)

三和電気計器 (株) ホームページ:http://www.sanwa-meter.co.jp

① 一般仕様

AC 整流方式	半波整流	故障状況
メータートプリ側交立スー	内部磁石式トートバンド機構の可動コイル形	全レンジの指示がでない
許容差保証温室度範囲	21~25 ℃ 75 %RH以下 結露なき事	(メータが振れない)
使用温室度範囲	3~43 ℃ 80 %RH以下 結露なき事	QLンジの指示がでない。
保存温室度範囲	-10~50 ℃ 70 %RH以下 結露なき事	() の の 調整ができない。
使用環境条件	高度2000 m以下・環境汚染度 Ⅱ	
安全規格	EN61010-1 2nd (2001)	C STATE AND SET OF THE

	The state of the s
回路保護	商用電源AC 200 Vまでの電圧を、全レンジに5秒間印加しても、ヒューズとダイオードで保護します。(くり返し印加すると、ダイオードが劣化することあり)
周波数特性	30~50 kHz (AC 12 Vレンジ)
内 蔵 電 池	単三形マンガン乾電池UM-3(1.5 V)×2本
内蔵ヒューズ	0.5 A/250 V、直径5.2 mm、長さ20 mm、ガラス管入り 遮断容量300 A 2本(1本は予備)
付 属 品	取扱説明書 1冊
別売付属品	ブザーキット34年24期前神経諸皇泉 2005-0023
寸法・質量	159.5×129×41.5 mm 約320 g

過電圧カテゴリ

過電圧カテゴリⅡ (CAT II): コンセントに接続する電源コード付き機器の一次側電路 🔒 🗐 👼

過電圧カテゴリⅢ(CAT Ⅲ): 直接分電盤から電気を取り込む機器の一次側および分岐部からコンセントまでの電路

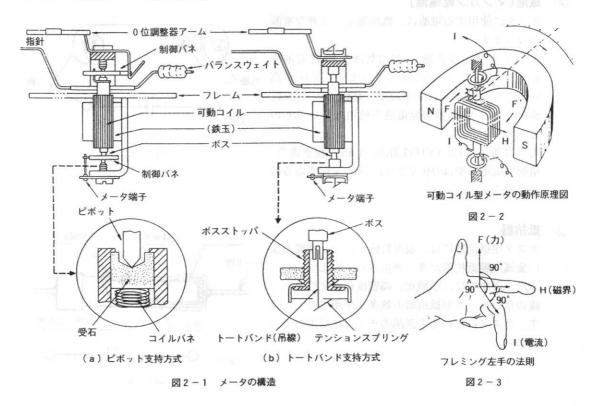
② 測定範囲と許容差

測定機能		許 容 差
直流電圧(DCV)	0.3 V(内部抵抗16.7 kΩ/V) 3/12 V(内部抵抗20 kΩ/V) 30/120/300/600 V(内部抵抗9 kΩ/V)	最大目盛値の±3 %以内
交流電圧(ACV)	12/30/120/300/600 V(内部抵抗9 kΩ/V)	最大目盛値の±4 %以内
直流電流(DCA)	$60\mu/3$ m/30 m/0.3 A $\Big($ 端子間電圧降下0.3 V $\Big($ (注) ヒューズの抵抗を含まず $\Big)$ (5 k Ω /100.5 Ω /10.5 Ω /1.5 Ω) (内部抵抗) (注) ヒューズの抵抗を含む	最大目盛値の±3 %以内
抵 抗(Ω)	×1/×10/×1 k (20 Ω/200 Ω/20 kΩ) (中央目盛値)	目盛長さの±3 %以内
バッテリチェック	単1~単4形乾電池(負荷抵抗20 Ω)	

注) 許容差保証条件

- 温度:23±2℃
- 湿度: 45~75%
- · 姿勢: 水平(±5°)
- 交流レンジは正弦波(50 Hzまたは60 Hz)

Ⅱ テスタ(回路計)の基礎知識


2-1 テスタとは

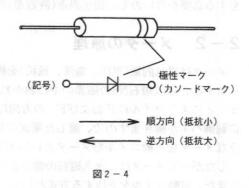
テスタ(サーキット・テスタ)はその名が示すとおり、回路点検用に非常に便利にできている測定器です。テストリードのさしかえやロータリースイッチの切り換えにより、電圧、電流、抵抗など広範囲の測定ができるような構造になっています。しかし、精密測定には回路構成上むきません。簡単にいえば医者の聴診器のようなものといえます。ただ聴診器と違う点は、通常見えない電気を、はっきりとメータで値として知らせてくれることです。一般の電気回路では特殊な場合を除き、精密な測定をする必要がないので、指示誤差(許容差)が比較的多いテスタでも十分に回路点検が可能です。

2-2 メータの原理

メータは電気的量(電圧、電流、抵抗)を機械的量に変換する装置です。簡単に図2-2を使って説明しますと、永久磁石NSの磁界の中におかれたコイルに電流を流すと、フレミングの左手の法則、図2-3によりコイルはFおよびF′の方向に回転します。そして電流に正比例した角度に振れるように制御バネが働きますので、流した電流の量を回転角度で均等な目盛に表すことができます。このようなメータを可動コイル形メータといいます。

したがってメータは、永久磁石の強さとコイルの巻数と、制御バネの強さが重要な要素といえます。また、可動コイルを支持する方式として、図2-1(a)はピボットと軸受を使用していますのでピボット支持方式といい、(b)のようにトートバンド(吊線)を使って支持するものを、トートバンド支持方式といいます。可動コイル形メータには、永久磁石が可動コイルの外側にある外部磁石式と、内側にある内部磁石式とがあります。内部磁石式メータは、磁気効率がよく、磁極片も不要ですから小形・軽量にでき、閉鎖リングの働きで外部磁界の影響を防止できます。外部磁石式メータは、大形磁石が使用でき、高感度メータに適します。

2-3 テスタの構造

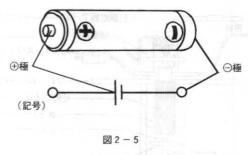

テスタは基本的には電気量を指示するメータと、その目盛を拡大する抵抗器、交流を直流に変換する整流器(ダイオード)、抵抗測定用の電源としての電池から構成されています。

これに安全性を考慮した保護回路として、ダイオードやヒューズなどが回路部品として付加されています。

① 整流器(ダイオード)

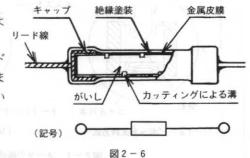
交流は周期的に電流の方向が反転しますので、可動コイル型メータでは両方向の振れが打ち消しあって、ほとんど動作しません。この交流の1方向のみを通して直流に変換する役目が整流器です。テスタに使用されている整流器は、逆耐電圧、周波数特性などのよい、シリコンダイオードが一般的に使用されています。また、本器ではAC 12 Vレンジが専用目盛となっています。

その理由は、倍率器と直列に接続されている整流 器の抵抗値変化(電流の大きさにより変化する。)


が低圧レンジでは倍率器の抵抗値が低いので大きく影響を受けてしまうためです。高圧レンジでは倍率器の抵抗値が大きいので、その変化を無視することができ、指示に影響がでないのです。

② 電池(マンガン乾電池)

テスタに使用する電池は、抵抗測定に必要な電源 となります。


小型テスタでは普通、UM-3型 $(1.5\ V)$ 乾電池を $1\sim 2$ 本 $(1.5\ V)$ 0 で 電圧が高いほど高抵抗が測れますので、高級テスタでは、 S-006P $(9\ V)$ の積層乾電池を使用しているものもあります。

電池は新品で1.5 Vの約1割高い1.65 V程度あり、 積層型電池もやはり9 Vより高い10 V程度あるの が普通です。

③ 抵抗器

テスタ用抵抗器には、温度特性がよく、精度もよい金属皮膜抵抗器が多く使用されています。 また、近年では、小型化、高密度化によりリード 線のないチップ形抵抗器も数多く使用されていま す。テスタにおいても部品のチップ化が進んでいます。

④ 0Ω調整器

0 Ω調整器には、炭素型の可変抵抗器が使用されています。テスタの可変抵抗器の役目は、内蔵電池の電圧変化(消耗)を回路で補って、抵抗の測定誤差をできるだけ少なくするためです。

⑤ コンデンサ

テスタに使うコンデンサは、直流は通さないが交流は通すという特性を利用して、低周波出力を測定する場合に多く用いられます。また、本器の保護回路に入っているコンデンサは、高周波の影響を防止するためのバイパス用のコンデンサとして使用しています。

この他コンデンサには、電気を貯める特性もあり、抵抗器と共に、電気回路に広く利用されています。

⑥ メータ保護ダイオード

シリコンダイオードは常温で0.5~0.6 V程度から 図2-9のように電流が大きく流れ出す特性をもっ ています。この特性を利用して、メータを保護す るわけです。

テスタの通常の測定の状態ではダイオードに電流が流れないようになっています。(流れると誤差になってしまう)過負荷の場合は、メータ端子間の電圧があがり、それと並列のダイオードが導通状態となり、電流のほとんどがダイオードに流れてしまい、メータは破損しないで済みます。

順 方20-電流 (mA) 10-0 0.2 0.4 0.6 0.8 1.0 - 順方向電圧 (V)

現金のマーヤ ネータの法則

図2-7

図2-8

(記号)

(記号)

図 2 - 9

⑦ プリント基板

プリント基板には、ベーク板、紙エポキシ板、ガラスエポキシ板等の種類があり、テスタには厚さ1.6 mmのベーク板が一般的に使用されています。(ディジタルマルチメータでは、ガラスエポキシ板が多く利用されています。)

テスタの場合、スイッチの接点を兼ねているため 回路配線の簡略には相当効果があります。しかし、 耐電圧やリーク電流(漏れ電流)といった問題が生 じてきます。本器では基板にソルダレジスト(緑 色)をかけ、必要な箇所には割りを入れてあり安 心です。しかし、リーク防止のため汚れた手など で、プリント基板面を持たないように注意が必要 です。

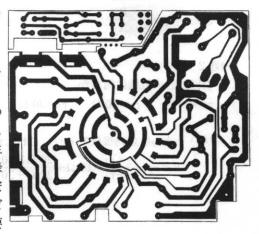
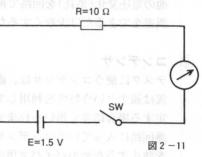


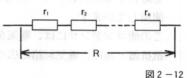
図 2-10

2-4 オームの法則

テスタの回路は、このオームの法則と次の合成抵抗の求め方で、ある程度理解できます。すなわち 電気量、電圧E [V]、電流I [A]、抵抗R $[\Omega]$ の関係は次の三つの式で表すことができます。

I:電流「A] E:電圧[V]


R:抵抗 [Ω]


[例題1] 図2-11でSWを入れた場合、電流は何A流れるか。

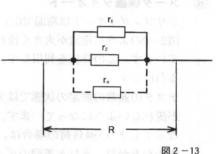
(答)オームの法則
$$I = \frac{E}{R}$$
 $[A]$ より

E=1.5 V R=10 Ω であるから

$$I = \frac{E}{R} = \frac{1.5 \text{ V}}{10 \Omega} = 0.15 \text{ (A)}$$

合成抵抗の求め方 2 - 5

(a) 直列接続


 $R = r_1 + r_2 + \cdots r_n$

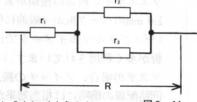
(b) 並列接続

$$\frac{1}{R} = \frac{1}{r_1} + \frac{1}{r_2} + \cdots \frac{1}{r_n}$$

$$\therefore R = \frac{1}{\frac{1}{r_1} + \frac{1}{r_2} + \dots + \frac{1}{r_n}} \dots (5)$$

なお一般によく使用する抵抗2本の接続は

$$R = \frac{1}{\frac{1}{r_1} + \frac{1}{r_2}}$$
 を変形して



〔例題2〕

右図の合成抵抗は何Ωか。

$$r_1 = 10 \Omega$$
 $r_2 = 20 \Omega$ $r_3 = 30 \Omega$

(答) r_2 と r_3 は並列接続であり、これと r_1 は直列接続であるから(4)、(6)式より

$$R = r_1 + \frac{r_2 \times r_3}{r_2 + r_3} = 10 \Omega + \frac{20 \Omega \times 30 \Omega}{20 \Omega + 30 \Omega} = 10 \Omega + 12 \Omega = 22 (\Omega)$$

補助単位 2 - 6

表示したり計算する場合、電圧〔V〕などの電気量が大き過ぎたり小さ過ぎると、取り扱いが大変 なので補助単位が使われます。計算する場合、単位をそろえることが大切です。

また、指数表示(例 4.1×103)を使うことも必要です。

補助単位	M	k	m	μ	n	p
呼び方	メグ	キロ	ミリ	マイクロ	ナノ	ピコ
倍 数	106	10^{3}	10-3	10-6	10-9	10^{-12}
例	1.8 MΩ 1800 kΩ	4.1 kΩ 4100 Ω	25 mA 0.025 A	50 μ A 0.05 mA	200 nF 0.2 μ F	1000 pF 0.001 μ F

[例題3] 200 µ Aは何Aか、また何mAか。

(答) μは表より10⁻⁶であるから

 $200 \,\mu\,\text{A} = 200 \times 10^{-6} \,\text{(A)} = 2 \times 10^2 \times 10^{-6} \,\text{(A)} = 2 \times 10^{-4} \,\text{(A)} = 0.0002 \,\text{(A)}$ μ は10⁻⁶ mAは10⁻³その差が10⁻³であるから

 $200 \,\mu\,\text{A} = 200 \times 10^{-3} \,(\text{mA}) = 2 \times 10^{2} \times 10^{-3} \,(\text{mA}) = 2 \times 10^{-1} \,(\text{mA}) = 0.2 \,(\text{mA})$

[例題4] 図2-15の回路で電池Eは何〔V〕か。

(答) 合成抵抗Rは

$$R=5 k\Omega + \frac{20 k\Omega \times 20 k\Omega}{20 k\Omega + 20 k\Omega} = 15 k\Omega$$

オームの法則より

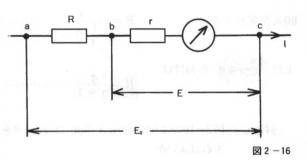
 $E = I \cdot R = 600 \times 10^{-6} A \times 15 \times 10^{3} \Omega = 6 \times 10^{2} \times 10^{-6} \times 15 \times 10^{3} V = 90 \times 10^{-1} V = 9 (V)$

[A]の単位 [Ω]の単位 そろえて計算する。

2-7 倍率器(マルチプライヤ)

E:拡大前の電圧計

[V]


E₀: 拡大後の電圧計 (V)

R:倍率器の抵抗 $[\Omega]$

r:メータの内部抵抗 $\lceil \Omega \rceil$

(コイルの抵抗)

[A] I:メータの電流感度

またac間はオームの法則(3)式より

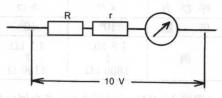
(8)式を(9)式に代入すると

$$[= \frac{E}{r} \quad \dots \quad (8)$$

$$E_0 = I \cdot (R + r) \cdot \dots \cdot (9)$$

$$E_0 = \frac{E}{r} \cdot (R + r) \dots \qquad (10)$$

600 µA

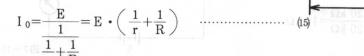

$$R = (E_0 - E) \cdot \frac{r}{E} = (E_0 - E) \cdot \Omega/V$$
(11)

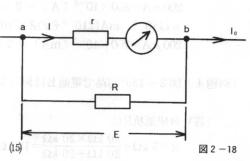
$$R = r \cdot \left(\frac{E_0}{E} - 1\right) \dots (12)$$

また
$$\frac{E_0}{E}$$
=n とおけば(nは拡大率)

$$R = r \cdot (n-1) \qquad (13)$$

〔例題5〕 図2-17のように500μA 500 Ωのメータを 10 Vの電圧計にするには抵抗Rを何オーム にすればよいか。




(答) (13)式に代入すると

$$\begin{split} n = & \frac{E_0}{E} = \frac{10 \text{ V}}{(500 \times 10^{-6} \text{ A}) \times 500 \text{ }\Omega)} = 40 \\ R = & r \cdot (n - 1) = 500 \text{ }\Omega \times (40 - 1) = 19500 \text{ }(\Omega) = 19.5 \text{ k}\Omega \end{split}$$

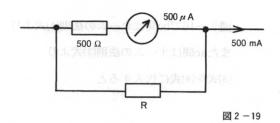
2 - 8分流器(シャント)

図 2-18の電流 I はオームの法則(1)式より $I=\frac{E}{2}$ これを変形すると E = I · r (14) I₀はオームの法則(1)および抵抗並列接続(5)式より

(15)式に(14)式を代入すると

$$I_0 = I \cdot r \cdot \left(\frac{1}{r} + \frac{1}{R}\right) = I \cdot \left(1 + \frac{r}{R}\right) \cdots$$
 (16) $I_0 : 拡大後の電流計 R : 分流器の抵抗$

$$I_0 = I \cdot r \cdot \left(\frac{1}{r} + \frac{1}{R}\right) = I \cdot \left(1 + \frac{r}{R}\right) \cdots$$
 (1)


$$R = \frac{r}{\left(\frac{I_0}{I}\right) - 1}$$
 ……… (17) $r: \mathsf{y} - \mathsf{y} \cap \mathsf{y}$

また $\frac{I_0}{I}$ = n とおけば

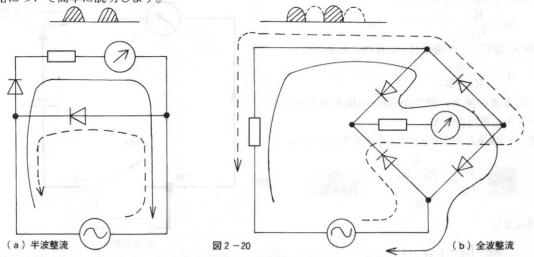
$$R = \frac{r}{n-1} \qquad (18) \qquad \text{if } R =$$

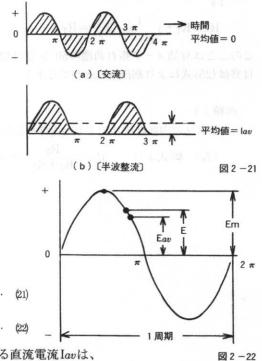
[例題6] 図2-19のように500μA 500 Ωのメータを500 mAの電流計にするには、抵抗Rを何オームに すればよいか。

(答) (49式に代入すると
$$n = \frac{I_0}{I} = \frac{500 \times 10^{-3} \text{ A}}{500 \times 10^{-6} \text{ A}} = 1000$$
$$R = \frac{r}{n-1} = \frac{500 \Omega}{1000-1} = 0.5 (\Omega)$$

2-9 整流回路

テスタは直流だけでなく、交流も測定できる構造になっています。そこで交流を直流に変える整流 回路について簡単に説明します。




図 2-20のように整流回路には大きく分けて 2 種類ありますが、一般的には(a)の半波整流回路が、テスタには多く使用されております。また、メータは測定電圧の平均値を指示しますので、図 2-21

(a)の交流をメータに加えた場合、20~30 Hz 以上になるとほとんど振れません。そこで整流器(ダイオード)で整流することにより、図(b)のように平均値はIavとなりメータは振れます。このIavは入力電圧にほぼ正比例しますので交流を測定することができます。

なお交流の大きさは、一般的に平均値では なく実効値で表すのが便利ですから、テスタ の目盛は実効値になっております。正弦波交 流の最大値、実効値の関係は、次のようにな ります。

また、正弦波交流電流 I を半波整流したときに得られる直流電流 Iav は、

(19)式と20)式の変形により
$$Iav = \frac{2 \times (\sqrt{2} \times \frac{1}{2}I)}{\pi} = \frac{\sqrt{2}}{\pi} I = 0.45I$$
 の関係にある。
$$(I = \frac{1}{0.45} Iav = 2.22 Iav)$$

2-10 抵抗計の原理

図2-23においてSWをONにした場合、回路に流れる電流を I_0 とすれば

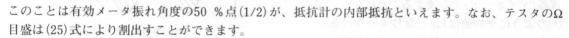
$$I_0 = \frac{E}{R_T} \quad \dots \qquad (23)$$

SWをOFFにした場合Rxが直列に入るので

$$I = \frac{E}{R_T + R_X} \quad \dots \qquad (24)$$

この電流の減少の割合からRxの値を求めるのが 」 テスタの抵抗計です。

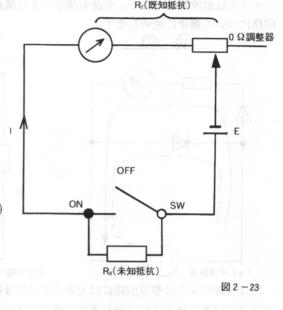
従って(23)(24)式より Ioに対する比Pを求めれば

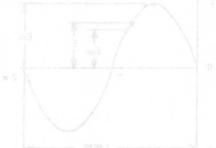

$$P = \frac{I}{I_0} = \frac{\frac{E}{R_T + R_X}}{\frac{E}{R_T}} = \frac{R_T}{R_T + R_X} \quad \cdots \quad (25)$$

(25)式より

$$R_X = R_T \cdot \left(\frac{1}{P} - 1\right)$$
 (26)

仮に $\frac{I}{I_0}$ の比Pを1/2とすると20式より

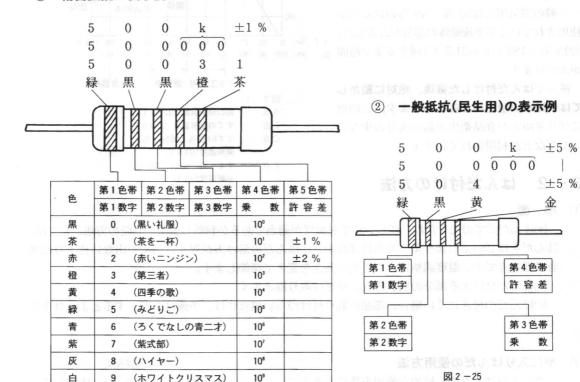

$$Rx = R_T \cdot \left(\frac{1}{1/2} - 1\right) = R_T \quad \text{(27)}$$



テスタの内部抵抗 (R_T) が $10.4 k\Omega$ とした場合、 $5 k\Omega$ 点は有効メータ振れ角度の何%か。

(答) 約式より
$$P = \frac{R_T}{R_T + R_X} \times 100 = \frac{10.4 \text{ k}\Omega}{10.4 \text{ k}\Omega + 5 \text{ k}\Omega} \times 100 = 67.5(\%)$$

。 正被源ぐ施網減1を半波整施したととに伴られる直流


國式上四式の築形により $I_{av} = - - \frac{2}{1 - 0.451} = 0.451$

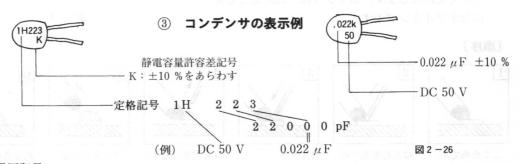
の場像にある。 1 = 1 lav = 2.22la

2-11 カラーコード・定格記号について カラーコード・定格記号について

抵抗やコンデンサの表示の方法には、一定の取り決めがあります。ここにカラーコードと記号を示します。カラーコードは主に抵抗器に、記号はコンデンサに使用されています。

① 精密抵抗の表示例

10-1


許容差記号

色と数字の覚え方← 図2-24

金

B: ±0.1 %	C: ±0.25 %	D: ±0.5 %	F: ±1 %
G:+2 %	J: ±5 %	K: +10 %	M: ±20 %

±5 % ±10 %

定格電圧記号

0 J : 6.3 V 1 C : 16 V	1 E : 25 V	1 H:50 V	2 A:100 V	2 D:200 V
------------------------	------------	----------	-----------	-----------

Ⅲ テスタの組立

3-1 はんだの特性について

すず一鉛の状態図より、C点付近が熱に弱い電子部品のはんだ付けに有利です。このC点を共昌点といい、すず62~63 %鉛37~38 %のはんだを共昌はんだと呼びます。

一般の電気用には60%/40%のはんだが使用されているが半流動体の部分があるため、 (215%-183.3%=31.7%) 固まるまで時間 $_{30}^{40}$ (Pb) $_{100}^{90}$ 80 70 60 がかかります。

従ってはんだ付けした直後、絶対に動かし てはいけない理由はここにあります。この他 にプリキ用とか食品衛生上鉛の成分の少ない はんだなどが利用されています。

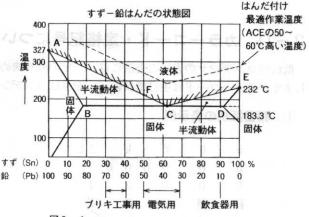


図3-1

A点 …… 鉛の溶解温度 327.4 ℃ E点 …… すずの溶解温度 231.9 ℃

C点 …… すず61.9 % 鉛38.1 % 溶解温度183.3 ℃

F点 …… すず・鉛 50 %/50 % 溶解温度215 ℃

3-2 はんだ付けの方法

① 準 備

(a)はんだごての先をきれいにし、こて先温度が適当であるか判断します。判断の方法としては、 はんだをはじいてしまうようであれば高過ぎ、はんだの溶け方が遅く、つやが出ない仕上りの場 合は低過ぎです。温度調整は、こて先の長さを変えて調節します。

(b)はんだ付けする部分の脂、汚れ、サビは取り除きます。

(c)はんだの付きにくい場合、部品が取り付けづらい場合には、予備はんだをするとよく付きます。

② やに入りはんだの使用方法

やに入りはんだの一般的な使用方法はきき手にはんだこてを持ち、他方の手にははんだを持ちます。図3-2の1~6のようにはんだ付けする部分をこてで予熱し、次にはんだをこてと予熱した部分の境付近に送り込みます。必要量のはんだが流れたらはんだをはなし、はんだの流れを見定めてこてをはなします。ポイントは、はんだごてをはなすタイミングです。

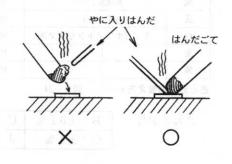


図3-1

[順序]

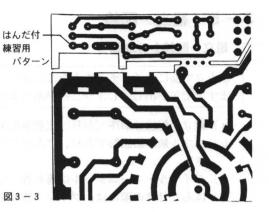
こてをあてる。

はんだをあてる。

はんだを 3~4 mmとかす。

はんだをはなす。

こてをはなす。



冷えるのを待つ。

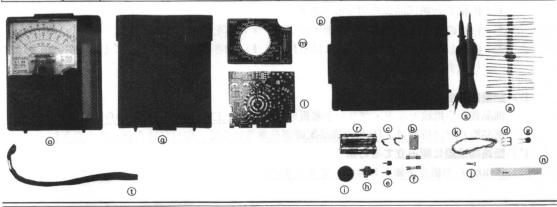
3-3 はんだ付けの練習

KIT-8Dには、はんだ練習用小基板がついています。 この基板のはんだ付け部分にはんだを流し込みはんだ 付けの練習を行ってください。はんだ付け練習後は、 この小基板を切り取ってください。

ブザーキットご使用の場合は、この部分は使用しないでください。(図の向き、右側穴のあいていない部分をご使用ください。)

3-4 組立準備

① 必要な工具


チェック	名 称	備考
21 Br - 1 12 G Z	はんだこて	$20 \sim 30 \text{ W}$
	ピンセット	どちらかあれ
	ラジオペンチ	ば良い(小型)
	ニッパ	(小型)

チェック	名 称	備考
1 12	+ねじ回し	(中型)
	平ヤスリ	こて先整備用
141	はさみ	必要に応じて 用意してくだ さい。

② 部品の確認

箱から部品を出し、部品表と照らし合わせて確認してください。

チェック	記号	品 名	数量	チェック	記号	品 名	数量
	a	抵抗・ダイオード一式	1		1	プリント基板	1
	b	電池端子	1		m	ダイヤルプレート	^A 1
	С	電池金具	2		n	ネームシール	1
	d	スイッチブラシ	1		0	パネル(メータ、レンジ切り) 換えつまみ取付済	1
	е	ヒューズ金具	2		p	ケース	1
	f	ミニヒューズ0.5 A/250 V	2	400	q	保護カバー	1
	g	コンデンサ 0.022 μF	1		r	単三乾電池(UM-3)	2
	h	0 Ω調整器 10 kΩ	1	1	S	テストリード(赤・黒)	1組
(B)*	i	0 Ω調整器用つまみ	1	Passe	t	ハンドストラップ	1
	j	ケース止めねじ	1			チェック用抵抗 100 Ω	1
=	k	はんだ	1	-		″ 22 kΩ	1

3-5 組立・配線

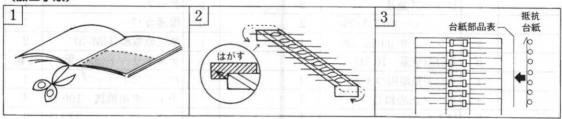
① 組立・配線上の注意

組み立て前にスイッチつまみをまわさないでください。中にボール、スプリングが入れてありますので飛び出してしまうことがあります。

- a)組立、配線は順序どおり、注意事項をよく読んで進めてください。
 - b) パネル類は樹脂製であり、はんだごてを直接触れると、溶けて変形しますので注意してください。
 - c) ダイヤル・ネームシールは落ち着いて位置をよく確認してはってください。
 - d) はんだ付けの際には、プリント基板を熱しすぎないよう、手早く行ってください。

② プリント基板の配線・組立

②-1 配線・組立方法


本器では、以下の方法にて組立を行うことが可能です。ご希望に応じて組立方法を選択 してください。

- A) 部品表順に組み立てる方法 早く組み立てたい場合に有利です。
 - B) 配置図を参考に組み立てる方法 抵抗器のカラーコードの読み取りなどの学習に役立ちます。
 - C) 回路構成順に組み立てる方法 テスタの回路を理解しながら組み立てられます。

A) 部品表順に組み立てる方法

抵抗台紙を加工します。加工手順は以下のとおりです。この加工が済みましたら工程②-2 へ進んでください。

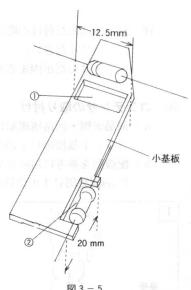
〈加工手順〉

- □ P.61の台紙部品表を切り取ります。
- 2 台紙の上下を折り曲げ、両面テープのフィルムをはがします。
- ③ はがした部分を台紙部品表にはり付けます。向きは抵抗側が上、ダイオード側が下になります。(抵抗台紙の完成。)

B) 配置図を参考に組み立てる方法

部品袋から抵抗セット・プリント基板を取り出し、<u>工程②-2の作業からはじめてください。</u> 部品取り付け位置は、P.39の部品配置図を参考にして、取り付けを行ってください。

C) 回路構成順に組み立てる方法


P.40からの組立手順を参考にしてください。

②-2 部品の足曲げ加工

部品をプリント基板に取り付ける際、小基板を使っ て足曲げ加工をすると大変便利です。図3-5のよ うに小基板の角穴に抵抗・ダイオードを入れ、上か ら親指で押さえ、片方の手で小基板の角にリードを 押し付けるようにして直角に曲げます。これでプリ ント基板に合った部品の加工ができます。また、ピ ンセットやラジオペンチなどで加工しても結構です。

- ① ····· 12.5 mm R1~R12, R14~R18, D1~D7
- (2) ····· 20 mm R13のみ

注) D1~D7は角穴が大きいので中心に置いて曲げてください。

②-3 **部品のはんだ付け**

足曲げ加工した部品をプリント基板に差し、はんだ付けを行います。

部品を取り付ける際は、一つ一つ、加工→取り付け、加工→取り付け ……… の順 序で行ってください。

※足を少し曲げるとはんだ付けが行いやすいです。

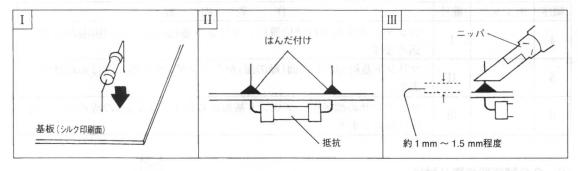
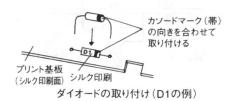



図 3 - 6

順序	チェック	番号	作 業 内 容
1	2.20	I	②-2の方法に従って加工した部分を、基板の裏側(シルク印刷面)から、 所定の位置に差し込みます。(図 3-6 参照)
2		II	プリント基板のはんだ面(緑色の面)にはんだ付けをして、部品を取り付けます。はんだのもりすぎに注意してください。
3		III	部品のリードのあまった部分をニッパで切り取ります。すべての部品が付け終わるまで I ~Ⅲの工程を繰り返し行ってください。

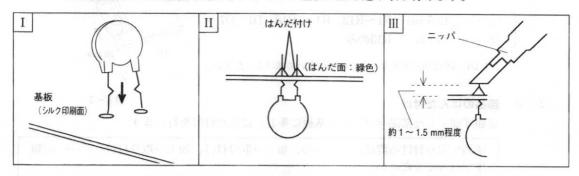
注意:ダイオードの極性

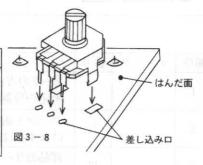
ダイオードには極性があります。プリント基板のシルク印刷 (白色の印刷)の向きに合わせて取り付けてください。

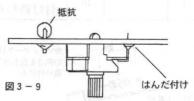
- 注 意 ・はんだ付けの際は、基板の熱しすぎ、はんだのもりすぎに注意してはんだ付けを行ってください。
 - はんだが固まるまで部品を動かさないでください。

③ コンデンサの取り付け

- a) 部品表順・回路構成順に組み立てる場合 プリント基板のC1の所へ部品を差し込み取り付けます。
- b) 配置図を参考に組み立てる場合 P.39配置図C1の位置を見つけ、プリント基板に差し込み取り付けます。

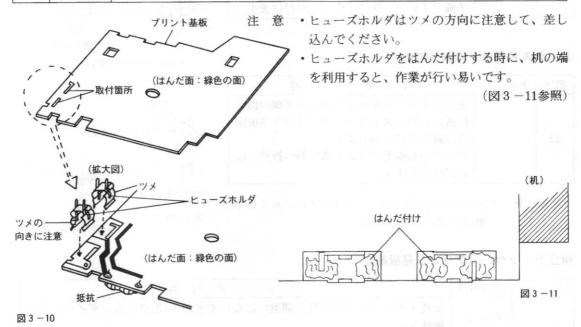



図3-7


順序	チェック	番号	作 業 内 容
4	2 . "	I	コンデンサを取り付け位置に、プリント基板のシルク印刷面から差し 込みます。
5	7	II	プリント基板のはんだ面(緑の面)からコンデンサの端子をはんだ付けします。
6	P	III	コンデンサの端子を、プリント基板から約 $1\sim1.5~{ m mm}$ の所をニッパで切り落とします。

④ 0Ω調整器の取り付け

順序	チェック		作	業	内	容	
7	pin had till to de		り差し	込んで		はんだ面(ご付けを行	
1-(-1	DAR SECRETARY	取り付け (抵抗等				5 になりま なる。)	す。


注 意 ・0 Ω調整器は傾かないように取り付けてください。 はんだ付けの前に1度確認してください。 傾いたままですと0 Ω調整器がパネルの穴にすれて、スムーズに回転しません。

⑤ ヒューズホルダの取り付け

順序	チェック	作 業 内 容
8		ヒューズホルダをプリント基板はんだ面(緑色の面)から差し込みはんだ付けを します。(図3-10参照)

⑥ 電池金具の取り付け

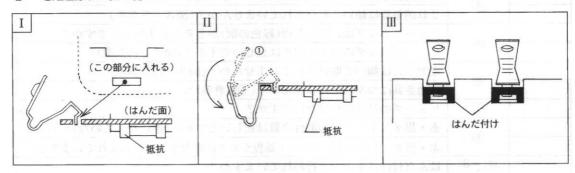
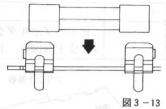


図 3-12

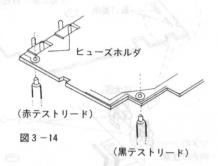

順序	チェック	番号	作 業 内 容 · · · · · · · · · · · · · · · · · ·
9	- Jirdi	I	プリント基板はんだ面(緑色の面)より、電池金具を差し込みます。取り付け位置は基板はんだ面より見て左上です。
10		II	①の位置(点線)から図のように、電池金具がプリント基板に対してまっすぐなるようにします。
11		III	図の位置でしっかりと、はんだ付けを行います。

注 意 ・電池端子を差し込む方向を間違えないように注意してください。

• 電池金具のひらいている部分がつぶれてしまった場合は、指で正しい形に直してください。つぶれたままですと電池を取り付けた際、うまく接触しない場合があります。

⑦ ヒューズの取り付け

順序	チェック	作業内容
3	HAMALIN	ヒューズを図のようにヒューズホルダへ取
12		り付けます。(2本のヒューズのうち1本は
	1.00	予備ですので、後の工程で取り付けます。)



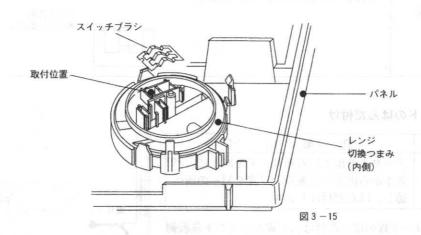
<ヒューズの取り付け>

⑧ テストリードの取り付け

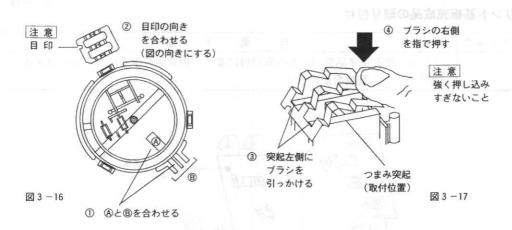
順序	チェック	作 業 内 容
13	J. 1. 6-1827	赤テストリードをヒューズホルダ側の図の 位置に、黒テストリードをプリント基板図 の位置の穴にとおします。
	flac)	リードの心線をプリント 基板側へ折 り、は んだ付けします。

注 意 ・テストリードはプリント基板裏面(シルク印刷 面)から差し込んでください。

組立チェック(I)プリント基板組立

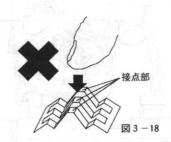

点検チェック	該当項目	チェック内容
	②-3	抵抗・ダイオード等の付け間違いはないですか?(取付位置、ダイオードの極性等)
	0	0 Ω調整器ははんだ面(緑色の面)から差し込まれていますか?
	4	0 Ω調整器は傾いて取付られていませんか?(図3-9参照)
	(5)	ヒューズホルダは、はんだ面(緑色の面)から差し込まれていますか?
6	0	ヒューズホルダのツメの向きは正しいですか?(図3-10参照)
/4	6	電池金具は傾いて取付られていませんか?(図3-12II参照)
	0	電池金具はつぶれていませんか?(⑥注意参照)
200.4	7	ヒューズの付け忘れはないですか?
	(A)	赤・黒テストリードの取付位置は正しいですか?(逆になっていないか)
	8	赤・黒テストリードはプリント基板シルク印刷面から差し込まれていますか?
	2 - 3	はんだ付けはキチンと行われていますか?
	6, 8	また付け忘れはないですか?

点検チェックにて不都合がある場合は、各項目の組立を参照して修正してください。チェックが済みましたら次工程へ進んでください。以後の工程・チェックについても同様にして進めてください。


電池金曳のひらいている部分がつぶれてしまった場合は、指て正しい形に適してくだ このたますです。報題を取り付けた際、クまく影響したい場合があります。

⑨ スイッチブラシの取り付け

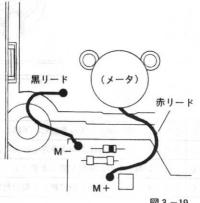
順序	チェック		作	業	内	容	LIBER 28 CHELL
14		パネルに取り付けられているレ	ンジり	リり換え	つまみり	こ、スイ	ッチブラシを取り付けます。



- ① まずレンジ切り換えつまみを回し、下図のようにAと®の位置が合うようにつまみを合わせます。
- ② スイッチブラシの目印の向きを左上に向くようにします。
- ③ レンジ切換つまみの突起左側へまずスイッチブラシを引っかけます。
- ④ スイッチブラシの右側を指で押して取り付けます。

注 意

スイッチブラシをはめるとき、 接点部の所を真上から押し込ま ないようにしてください。 スイッチブラシの変形の原因に なります。


組立チェック(II)スイッチブラシの取付

点検チェック	該当項目	チェック内容
1-3-1	HOW'S	スイッチプラシの目印の向きは正しいですか?(図3-16参照)
		スイッチプラシ接点部分の高さは揃っていますか?
		(つぶれていたりしていないこと。)
	9	この高さが

⑩ メータリードのはんだ付け

順序	チェック		作	業	内	容	
15		ネルカ	より出て いら出てい はんだん	る黒	ノード編		

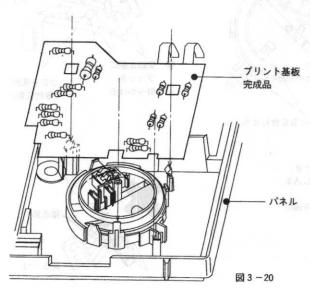
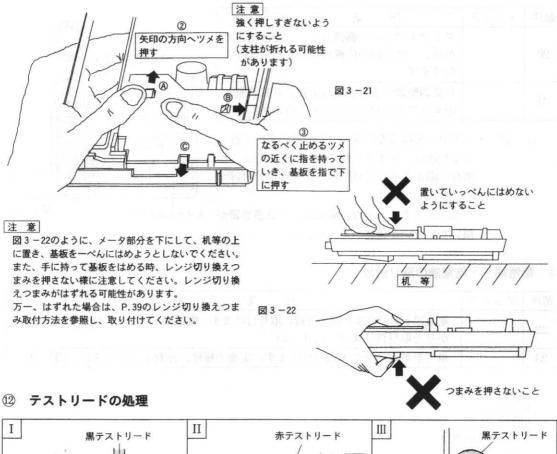

・リード線のはんだ付は、心線をプリント基板側 (はんだ面)に折り曲げてから、はんだ付けして ください。

図 3-19

プリント基板完成品の取り付け


順序	チェック	作 業 手 順
16	e di J	プリント基板完成品をパネルへ取り付けます。組立図を参考にパネルのツメ3ヶ 所でプリント基板を止めます。

- ① パネルを下図の様に手に持ち、プリント基板完成品をパネルへ大体の位置合わせをして、軽く乗せておきます。 注)パネルを必ず手に持って基板をはめること。
- ② 下図のAの部分から最初に、図の矢印の方へツメを指で押します。
- ③ ツメを押した状態のまま、もう片方の手で基板を押し込みます。

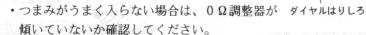
赤テストリード

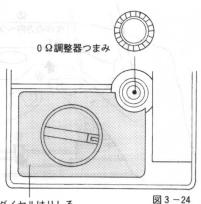
④ B、©と順番にそれぞれ図の矢印の方向ヘツメを指で押しながら④と同様に、一つずつツメをはめていきます。

黒テストリード ホテストリード 黒テストリード 黒テストリード ここからの長さ を同じにする。

図 3 -23

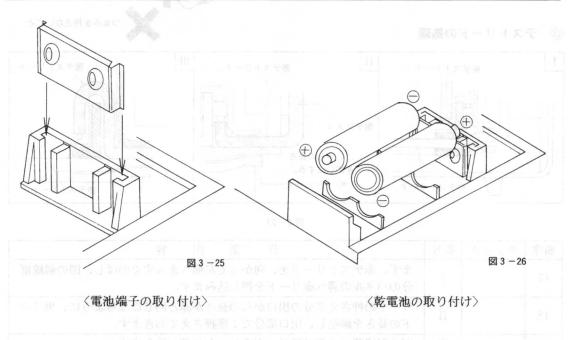
順序	チェック	番号	作 業 内 容
17	7 00	I	まず、赤テストリードを、向かって左側へまっすぐのばし、図の斜線部 分のパネルの溝へ赤リードを押し込みます。
18		II	リードの押さえ部分の出口からの長さが赤と同じになるように、黒リードの長さを調整し、出口部分で1度押さえておきます。
19		III	図の斜線部分の溝に黒リードをしっかり押し込みます。

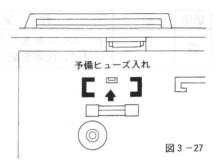

赤テストリード


- 注 意 ・リードの長さを調整するときは、リードの押さえ部分出口からの長さを、赤黒同じ長 さになるように調整してください。
 - ・リードを取り付けた後は、軽く引っ張って抜けないことを確認してください。

③ ダイヤルプレート・Ο Ω調整器つまみの取り付け

順序	チェック		作	業	手	順	[基 五] [群] 於
20		ダイヤル から、パ 付けます	ペネル図				
21		0 Ω調整 のシャフ					

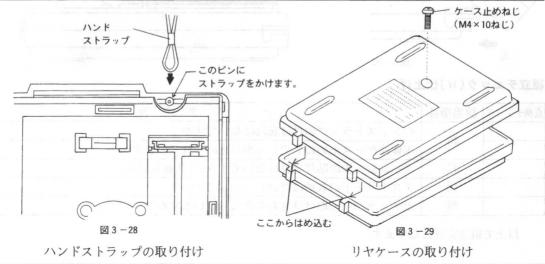

注 意 ・ダイヤルをはる際にはゆっくり落ち着いて行ってください。ダイヤルが位置づれしてしまった場合は隅からゆっくりはがし、再度はり付けてください。


④ 電池端子・乾電池の取り付け

順序	チェック	作 業 手 順					
22		電池端子をパネルの図の位置に取り付けます。電池端子の上下に注意して、しっかりと取り付けます。(図 $3-25$)					
23	1	単三形乾電池を2本取り付けます。電池の極性に注意してください。(図3-26)					

⑤ 予備ヒューズの取り付け

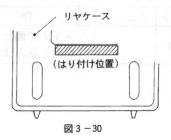
順序	チェック	14	作	業	内	容	131
24	ATRC -	morphological	の予備と		ズ入れに	こ、予備	青ヒュー



組立チェック(川)パネル組立

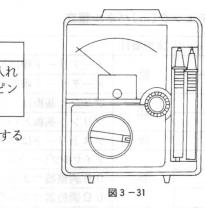
点検チェック	該当項目	チェック内容
27	(0)	メータリード線はM+に赤、M-に黒が接続されていますか?
1000	(0)	メータリード線を軽く引っぱって抜けるようなことがないですか?
	(1)	プリント基板はパネルのツメ3ヶ所できちんと止められていますか?
	(II)	プリント基板とパネルの間にテストリードが挟まれていませんか?
	12	テストリードはパネル取付位置にしっかりとはめ込まれていますか?
		ダイヤルプレートは、はりしろから大きくはみだして、はり付けられていませんか?
N =	(13)	0 Ω調整器つまみの付け忘れはないですか?
	18-11	0 Ω調整器つまみを回わし、スムーズに回転しますか?
	(4)	電池端子、電池の付け忘れはないですか?
	(14)	電池の極性は正しいですか?
	(15)	予備ヒューズの付け忘れはないですか?

⑯ ハンドストラップ、リヤケースの取り付け

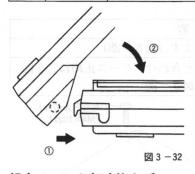

順序	チェック	作 業 内 容
25		ハンドストラップをパネル図の位置に取り付けます。(図3-28)
26		リヤケースをパネル下部からはめ込み、パネルと合わせ、ケース止めねじを図の位置に挿入し、プラスねじ回しでしめます。(図3-29)

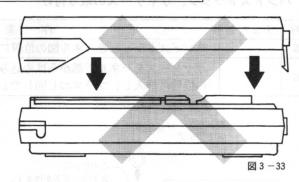
=37

① ネームシールのはり付け


順序	チェック		作	業	内	容	717
27		ネームシ	ールを	シリヤケ	rース、	図の位	置には
41	N A V-	り付け、	氏名を	を記入し	」ます。		

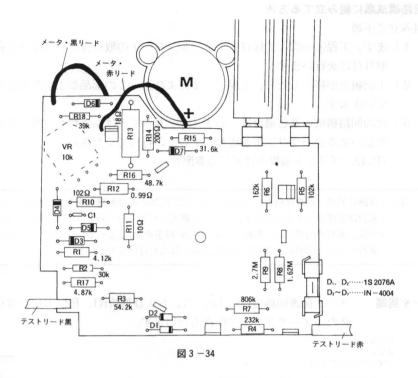
18 テストリードの収納


順序	チェック		作	業	内	容	
28	**************************************	テストリ ます。ま 側を先に	た、4	収納する		スペース は、テス	


注 意 ・テストリードは束ねてありますので、収納する ときは解いてください。

⑲ 保護カバーの取り付け

順序	チェック	作 業 内 容
29		図3-32のように、カバー内側の取り付けピンをミゾへ差し込み、矢印①の方向へスライドさせます。スライドさせた後
		矢印②の方向へとじます。また図3-33のように真上からは め込みますと破損の恐れがありますのでしないでください。

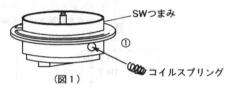


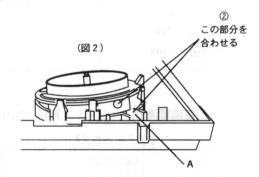
組立チェック(Ⅳ)仕上げ

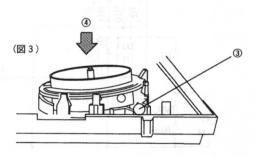
点検チェック	該当項目	チェック内容				
1	100	ハンドストラップの付け忘れはないですか?				
	(6)	本体はケース止めねじでしっかり止められていますか?				
の ネームシールの貼り忘れはないて		ネームシールの貼り忘れはないですか?(名前も記入)				
	18	テストリードの収納はだいじょうぶですか?				
	19	ボディカバーの取付はきちんとなっていますか?				

以上で組立完成になります。

部品配置図

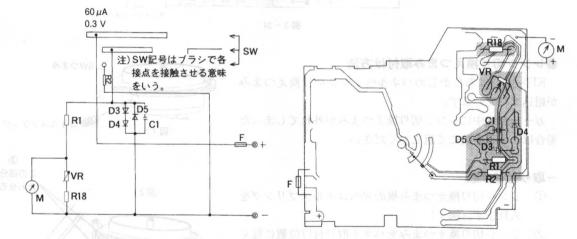

●レンジ切り換えつまみ取付け方法


KIT-8Dではあらかじめパネルヘレンジ切り換えつまみが組込まれています。

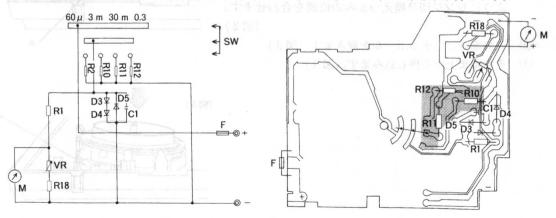

万一、組立中にレンジ切り換えつまみが外れてしまった 場合は、下記手順にて組立てください。

一取り付け手順ー

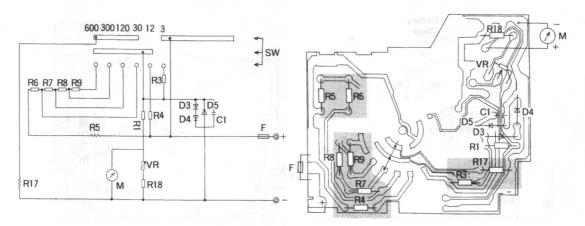
- ① レンジ切り換えつまみ横の穴へコイルスプリングを 入れます。(図1)
- ② レンジ切り換えつまみをパネル取り付け位置に軽く 乗せ、スプリングを入れた穴と図のAの部分が合う ようにレンジ切り換えつまみの位置を合わせます。 (図2)
- ③ Aの部分にスチルボールを置きます。(図3)
- ④ そのまま上から押し込みます。(図3)

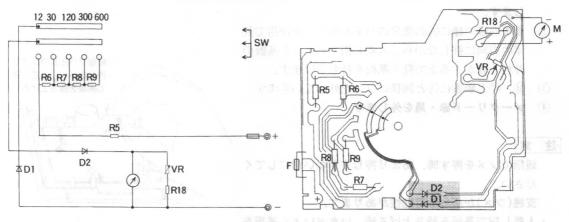


C) 回路構成順に組み立てる方法

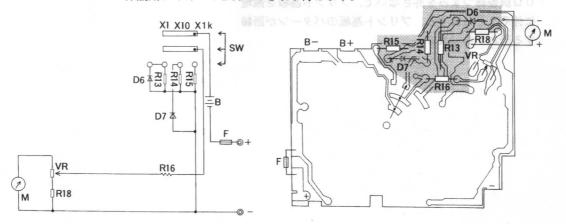

組み立て手順

- 1) まず、工程④~⑨と工程⑩・ダイヤルプレートの取り付け、および工程⑭電池端子の 取り付けを行います。
- 2) 上記組立が終了したら、工程②-2および②-3の部品加工を参考に部品を取り付けていきます。
- 3) 次の回路構成へ進む場合は、必ずメータリードのはんだ付を一度プリント基板からはずしパネルからプリント基板をはずして、行ってください。 (P.42、プリント基板のはずし方参照)
- 注)・回路部品は、台紙部品表にはるか、はらずにP.39の部品配置図を参考に配線しても結構です。
 - 基板は無理にはずそうとせず、一つ一つ確実にパネルのつめをはずして取ってください。
 - ・下図、基板の配線図は、基板のパターン側(緑色の面)になっていますが、部品の取り付けは、 基板のシルク印刷面から差して緑色の面ではんだ付けしてください。

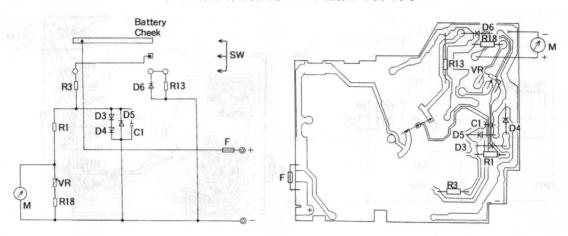

ロメータ回路 メータ保護回路のD3 \sim D5, C1、および抵抗R1, R2, R18を取り付けます。 また、メータリードの配線も行います。



□直流電流計 シャント抵抗 R10(3 mA)、R11(30 mA)、R12(0.3 A)を取り付けます。

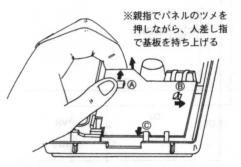


□直流電圧計 R3(3 V)、R4(12 V)、R17を取り付け、交流電圧計の倍率器の共用のR5 ~ R9 を取り付けます。



□抵 抗 計 直列抵抗R16と分流抵抗R13 (×1)、R14 (×10)、R15 (×1 k)を取り付け、回路 保護用ダイオードD6、D7を取り付けます。

ロバッテリチェック バッテリチェック回路は、メータ回路にR3、R13を取り付けた回路です。 すでに取り付け済ですから、配線は不要です。



●プリント基板の外し方ははは、対応は大の原準とどのは、影響をはたります。

- ① プリント基板を外す前にOΩ調整器つまみをまず外 しょり しょうしょ します。
- ② まず右図の様に④の部分のパネルのツメを親指で矢 印の方向に押しながら、人差し指でカチッと基板の 外れる音がするまで軽く基板を持ち上げます。
 - ③ B、Cと順番にAと同様にツメを外していきます。
 - ④ メータリード赤・黒を外します。

注 意

- 親指でツメを押す時、あまり押しすぎない様にしてく ださい。
 - 支柱(ツメ)が折れる可能性があります。
- ・人差し指で基板を持ち上げる時、いきおいよく基板を 持ち上げますと、メータリード線等が断線してしまい ますので注意してください。
- ・Ο Ω調整器つまみを外さないで、プリント基板を無理 に外そうとしますと、プリント基板のパターンが断線 する恐れがあります。

Ⅳ 動作試験と校正

- 本器の回路は調整の必要がありません。組み立て配線を行えば仕様のような許容差の範囲に仕上ります。したがって簡単な動作チェックだけで、正常なテスタとして使用できることになります。
- ・動作チェックに必要なものは抵抗100 Ω と22 $k\Omega$ 、商用電源(100 V)、乾電池(ない場合は本器の電池を1本はずして使用します。)です。(チェック用抵抗は部品袋の中に入っています。)
- ・下記の手順にしたがってチェックを行います。 内には測定値を記入してください。または、〈印チェックを記入しても結構です。

① 測定準備

メータの0位調整

回路計に電気を加えてないとき、メータの指針が正しく 0 (ゼロ)を指すように、ねじ回しでメータ 0 位調整器をまわして合わせます。

② **DCmAレンジのチェック**(計算式中の()内の抵抗値は、各レンジの内部抵抗値です。)

(a) DC 60 μ Aレンジ 乾電池とチェック用抵抗22 kΩで指示を調べる。(約59 μ A)

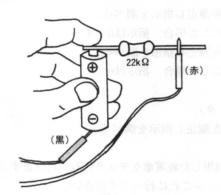
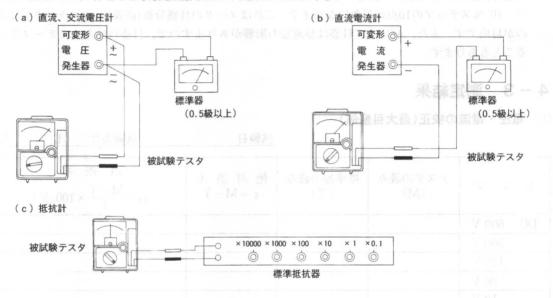


図 4 -

- ※チェックを行う際には電池ボックス、 ユニバーサル基板等を用いて、図4-1の回路をつくられますと、要易に測 定が行えます。
- $I = \frac{\cancel{\$}1.6 \text{ V}}{22 \text{ k}\Omega + (5 \text{ k}\Omega)} = 59 \,\mu A$
- (b) DC 3 mAレンジ 乾電池とチェック用抵抗22 k Ω で指示を調べる。(約0.07 mA) $I = \frac{約1.6 \text{ V}}{22 \text{ k}\Omega + (100.5 \Omega)} = 0.07 \text{ mA}$
- (c) DC 30 mAレンジ 乾電池とチェック用抵抗100 Ω で指示を調べる。 (約14.5 mA) $I = \frac{約1.6 \text{ V}}{100 \text{ k}\Omega + (10.5 \Omega)} = 14.5 \text{ mA}$
- (d) DC $0.3~{\rm A}$ レンジ 乾電池とチェック用抵抗 $100~{\rm \Omega}$ で指示を調べる。(約15.8 mA) $I = \frac{約1.6~{\rm V}}{100~{\rm k}{\rm \Omega} + (1.5~{\rm \Omega})} = 15.8~{\rm mA}$

3	DCVレンジのチェック(実	測値()の値はテスタ付属の電池電圧)	1 1-
		ジ 乾電池の電圧を測定し指示を調べる。	(約1.6 V)
	(f) DC 12 Vレンジ	。は、過鑑の必要がありません。組み近で間景を行てはは	(約1.6 V)
	(g) DC 30 Vレンジ	したがって制単な動作チェッスでは、北海なテスタと、	(約1.6 V)
	(h) DC 120 Vレンジ	ックに必要なものは抵利(100 以上(22 kΩ)。 #@財傷(刑(100)	(約1.6 V)
	(i) DC 300 Vレンジ	2 (指針が少	し右に動く)
4	交流電圧のチェック		
	- 企 警 告) 18 1E Nº C
	1. 商用電源(101±6 V)は必	でずブレーカーの入っている電源を使用してください。	4-80
		ピン側を持たないでください。	1. 器回
	(j) AC 120 Vレンジ	。 商用電源 (100 V) 測定し指示を調べる。	(約100 V)
	(k) AC 300 Vレンジ	ンジのチェック(計算大生に 、内の機械値は、各し:	(約100 V)
	(1) AC 600 Vレンジ	In (to n A レンジ 乾隆池 = **につり排載抗22 kΩで	(約100 V)
	(m) AC 30 Vレンジ	乾電池の電圧を測定し指示を調べる。	(約3.2 V)
	1 図 1 日本学術誌のサーバ	(注)極性を逆にした場合、指示は0です。	
	The state of the s	乾電池の電圧を測定し指示を調べる。	(約3.2 V)
	下走太下	(注)極性を逆にした場合、指示は0です。	
(5)	バッテリチェックレンジ(□1.5 V のチェック)	
	(o) [1.5 V] レンジ	乾電池の電圧を測定し指示を調べる。	(約1.5 V)
6	抵抗レンジのチェック(直流)
		0 Ω調整を各レンジごとに行ってください。	
	(p) <u>Ω×1 kレンジ</u>	チェック用抵抗22 k Ω を測定し指示を調べる。	$(22 \text{ k}\Omega)$
	(q)Ω×10レンジ	″ 100 Ω ″	(100Ω)
		DC 3 mAレンジ ※電池 チェ、/女用鉄航22 kΩで	(100Ω)
	(r) <u>Ω×1レンジ</u>		
	(r) <u>Ω×1レンジ</u>	$\Delta m = \frac{V c.174}{6.0 \pm 0.0 \pm 0.00}$	
Ţ		否の判定ができます。なお、DC 600 Vレンジのチェック	


4-2 テスタの校正

組上ったテスタが、仕様通りの精度を満足しているかどうか校正します。これに合格すれば、使用する際、信頼性の高い測定を得ることができます。また万一仕様どおり仕上ってない場合は、指定の位置に正しい抵抗が付いているか確認し、交換するなど修正する必要があります。

① 校正方法

測定器の校正の方法は、被試験器の指示を校正目盛に合わせ、標準器の値を読むのが普通でテスタもこれにもれません。従って、これを誤差率(43頁参照)で表す場合、Mがテスタの指示になり、 Tが標準器の読みになります。

なお、指示の合わせ方については、JIS-C-1102で定められていますが、テスタの場合、許容差が大きいので省略します。接続方法は下記のとおりです。

② テスタの許容差

テスタの許容差は指示値に対する値ではなく、最大目盛値に対する値であり注意が必要です。例 えば本器のDC 120 Vレンジでは最大目盛値の±3 %以内という許容差ですので

120 V (最大目盛値)×(±3 %)=±3.6 V

となり±3.6 Vが許容差範囲となります。

この許容差範囲は目盛各点においても適用します。

また、抵抗レンジの許容差の目盛長の ± 3 %については、 $V \cdot A$ 目盛($V \cdot A$ 日盛で $\pm 約1.8$ 日盛)に換算するとわかりやすくなります。なお、抵抗計のチェックは、普通50%点($V \cdot A$ 日盛)で行います。

③ 誤差について

誤差については、JIS-C-1002で「測定値、設定値または定格値と、測定または供給した量の真の値との違い。(誤差の大きさは、絶対誤差、誤差率または百分率誤差で表される。)」と規定されています。測定器には部品の精度など計器自体の誤差 ε (error)があり、測定値M(measuredvalue)と真の値 T (true value)には次の関係があります。

絶対誤差 $\varepsilon = M - T$

誤差率
$$\varepsilon_0 = \frac{\varepsilon}{T} \times 100 = \frac{M-T}{T} \times 100$$
 (%)

例えば、AC 300 Vレンジで交流の100 Vを測定した場合、指示が105 Vであったとします。 仮に真の値がちょうど100 Vとすれば、誤差は

誤差率
$$\epsilon_0 = \frac{105-100}{100} \times 100 = 5$$
%です。

④ 校正項目 全文元化M 合學主要等 例本項目)等等等 5 kg 2 g 2 g

テスタの校正は電圧・電流各レンジの最大目盛値と抵抗レンジの中心目盛値付近の値 (本器の場合 $20~\Omega$ 、 $200~\Omega$ 、 $20~k\Omega$)が校正点の対象です。この他に、目盛どおりに指示するかどうかを調べる 目盛特性試験があります。普通の場合、電流の最低レンジ (本器の場合 $60~\mu$ A)の $10~\%\sim100~\%$ まで、10~%ステップの10点が対象になります。これはメータの目盛分布 (直線性) のバラツキを見る のが目的です。また、AC 12 V目盛は整流器の影響がありますので、目盛特性としてデータをとることもあります。

4-3 測定結果

① 電圧・電流の校正(最大目盛値)

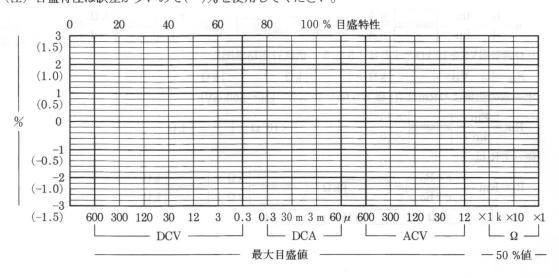
				試験日	試験条件 ℃ %
ν:	ンジ	テスタの読み (M)	標準器の読み (T)	絶 対 誤 差 ε=M-T	誤 差 率 $\varepsilon_0 = \frac{M-T}{T} \times 100(\%)$
DC	600 V		-		
	300 V	110	the fire oder of	W = 05001	
	120 V	-2		2 5	
	30 V		40 M JA 40		
	12 V				
	3 V				の計容差
M +	0.3 V	象出のある 風さつ	报与别题目主提	ラングとで過ぎ	· 数二国情况显显多著 1.70元 医壳
DC	0.3 A	D-102 4-24-4(3)44	1000时以28	生の創盤日主発性の主	そに下部の向には6人人を含む
	30 mA			V 83 - 18 V	1.10 以大日整館)×(主
	3 mA			1 起刊 3	となりとかり、これを発施限と
(6	0 μ Α)			ましけ原キアバ	第二次各点[[] 其例] 繁発在。二五
AC	600 V	「銀117.・7・38日	A · / LITTER	ゴルコトの見瀬	日の発表場のようの情報、元素
10	300 V	日本・70元 2000 000	別。まで シェモの	情熱調 ふき ギ	検索するとわかりやすくなりま
	120 V				
	30 V				選挙について
量の真	12 V	むめま宝師 (と)	価または定格能	C 1. 脚定桶、裁建	講覧については、用S=C-1002

46

② 抵抗計の校正(指示値)

レンジ	テスタの読み (M)	$M' = \frac{R_T}{R_T + M} \times 100 \%$	標準器の読み (T)	$T' = \frac{R_T}{R_T + T} \times 100 \%$	誤差率 ε ₀ =T'-M'(%)
$\Omega \times 1 \text{ k}$	20 kΩ	50 %		-0.02 - 0.01 nm	はコイトに傾向し
$\Omega \times 10$	200 Ω	50 %	a fi	「」」、「「後うり難」	治・薬を除機の2 日
$\Omega \times 1$	20 Ω	50 %	. V	2.8/11/11/10	拉尼南口(内部设计

(注) R₇:抵抗レンジの中央目盛値(内部抵抗)

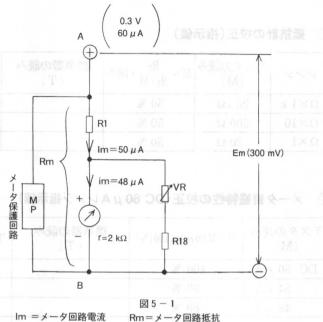

③ メータ目盛特性の校正(DC 60 μ Aレンジ指示値)

テスタの読み (M)	$M'=M60 \mu A \times 100 (\%)$	標準器の読み (T)	$T' = \frac{T}{T_{(100)}} \times 100 \%$	誤 差 率 ε ₀ =M'-T'(%)
DC 60 μA	100 %		75 At 2010 10 Es	5. 男才 上上口志言
54 μΑ	90 %	9	- A Math Tiple S. D.	NEV-X 0233
48 μ A	80 %	at atta an ca u	计标识 以下被对	1. 多化合的组合的
42 μ A	70 %	2000年後の1	- 大生((a) Y. ())	
$36 \mu A$	60 %	ini.	1 生活的 > 一种	骨羅回至一天
$30~\mu\mathrm{A}$	50 %	1-11-11	KATANI V	
$24~\mu\mathrm{A}$	40 %	mli Mala inc	Wile - Tilde Augr	
18 μΑ	30 %		-1 (#2.151k) + Ac	
$12~\mu\mathrm{A}$	20 %	King & Fil. d Limit	South H+SIV S SSE	BL5 - LOX - 9
$6 \mu A$	10 %	(1 4)	ALCO STRUCTURE SOLIS	前部のこって一道

(注) T(100): 100 %点のときの標準器の読み(T)

4-4 結果のまとめ

- 4-3の測定結果を標準器に対して⊕振れ過ぎ、⊙振れ不足としてグラフに記入します。
- (注) 目盛特性は誤差が少いので()%を使用してください。


∨ テスタの回路計算

5-1 メータ回路

テスタに使用しているメータは、先に 説明したように可動コイル型です。

この可動コイルには、0.02~0.04 mm の太さの銅線を数百回巻いてあり、一定 の抵抗値に (内部抵抗) に仕上げること

また、銅線の温度係数は+1℃で約 +0.4%ですから、回路的にこの誤差を 補償する必要があります。高級テスタで は、サーミスタ (銅線と逆の温度特性) を使って、温度変化の補償をしているも のもあります。本器では、無調整方式に するため、メータコイルと直列に抵抗を 入れ、変化分の割合が全体的にみて極め て少なくなるように設計してあります。

Im =メータ回路電流 im =メータ電流感度 Em=端子間電圧

メータ回路仕様 メータ電流感度 (im) ……… 48 μA ±1 % メータ内部抵抗 (r)2 kΩ ±8 % 直流電圧・電流の動作電流 (Im) …… 50 μA A · B間電圧 (Em) ············· 300 mA (0.3 V)

図5-1のメータ回路で $VR+R_{18}$ はimをImに拡大する分流器になっています。 従って、この抵抗をRoとすればP.22(18)式より

$$n = \frac{I_0}{I} \quad \exists \exists \exists \circlearrowleft$$

n=拡大率

I=拡大前の電流=im

I。=拡大後の電流=Im

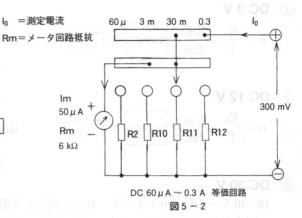
$$n = \frac{I_0}{I} = \frac{Im}{im} = \frac{\mu A}{\mu A}$$
 完 $R_0 = \frac{r}{n-1} = \frac{k\Omega}{-1}$ 完 $k\Omega$ の Ω 問整器 VR を 10 $k\Omega$ と τ れば($5-5$ 抵抗計回路 参照) $R_{18} = R_0 - VR$ $k\Omega$ $k\Omega$ $k\Omega$ $k\Omega$ $k\Omega$

オームの法則よりRmは (仕様よりIm=50 μA Em=300 mV)

$$Rm = \frac{Em}{Im} = \frac{\times 10^{-3} \text{ V}}{\times 10^{-6} \text{ A}} = \times 10^{3} \Omega = \text{k} \Omega$$

従ってRiは

$$\begin{array}{c} R_1 \! = \! Rm \! - \! \left(\frac{r \! \times \! R_0}{r \! + \! R_0} \right) \! = \! \begin{array}{c} \hspace{0.5cm} k \, \Omega \, - \! \left(\begin{array}{c} \hspace{0.5cm} k \, \Omega \, \times \\ \hspace{0.5cm} k \, \Omega \, + \\ \end{array} \right) \\ \stackrel{.}{=} \hspace{0.5cm} k \, \Omega \, - \hspace{0.5cm} k \, \Omega = \hspace{0.5cm} k \, \Omega \end{array}$$


5 - 2直流電流計(DCA)回路

直流電流計の計算は、分流器の計算式 (18)式で求めることができます。また、オー ムの法則からも計算できます。

① DC 60 uA 分流器の計算式(18)より

$$n = \frac{I_0}{I} = \frac{I_{(60\,\mu)}}{Im} = \frac{\mu A}{\mu A} = \frac{Rm}{n-1}$$

$$R_2 = \frac{Rm}{n-1} = \frac{k \Omega}{n-1} = \frac{k \Omega}{n-1}$$

② DC 3 mA

$$n=rac{I_0}{I}=rac{I_{(3)}}{Im}=rac{ imes 10^{-3}}{ imes \times 10^{-6}}=$$
 $imes 10^3=$ $imes R_{10}=rac{Rm}{n-1}=rac{k\Omega}{1-1}=rac{k\Omega}{1-1}=$ $imes \Omega$ $imes \Omega$ $imes \Omega$ $imes \Omega$ $imes \Omega$ 四捨五入して答えの単位に換算すること

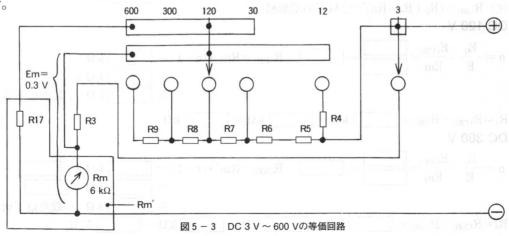
③ DC 30 mA

$$n = \frac{I_0}{I} = \frac{I_{(30)}}{Im} = \frac{\times 10^{-3}}{\times 10^{-6}} = \frac{Rm}{n-1} = \frac{k\Omega}{n-1} = \frac{1}{100}$$

$$R_{11} = \frac{Rm}{n-1} = \frac{k\Omega}{1-1} = \frac{\Omega}{1-1}$$

(4) DC 0.3 A

$$n = \frac{I_0}{I} = \frac{I_{(0.3)}}{I_m} = \frac{\times 10^{-3}}{\times 10^{-6}} = \frac{Rm}{R_{12}} = \frac{Rm}{n-1} = \frac{k\Omega}{10^{-1}} = \frac{1}{10^{-1}} = \frac{Rm}{10^{-1}} = \frac{1}{10^{-1}} =$$


$$R_{12}' = \frac{Rm}{n-1} = \frac{k\Omega}{1-1} = \frac{\Omega}{1-1}$$

なお、実際の回路ではプリント基板のパターンやスイッチの接触抵抗等の抵抗が約0.01 Ω程度あり、 計算上の値からこれを除く必要があります。(他のレンジでは分流器の値が大きいので無視できます。)

従って
$$R_{12}$$
= R_{12}' -0.01 Ω = Ω -0.01 Ω = Ω

直流電圧計(DCV)回路 5 - 3

直流電圧計回路の計算は、一般的に倍率器の計算式が用いられます。また、テスタでは、 Ω/V が 表示されており、これからも倍率器の抵抗値は計算できます。ここでは倍率器の計算式で計算してみ ます。

				(n 1) -		
	$n = \frac{E_0}{E} = \frac{E_{(3)}}{Em} = \frac{L}{L}$	- Contract	$R_3=Rm$	(n-1)-	k Ω × (1 (1)
				- F ,=\B .	kΩ×	こるの表の方と
				= 07	kΩ	
2	DC 12 V					
	$n = \frac{E_0}{E} = \frac{E_{(12)}}{Em} = \frac{E_{(12)}}{Em}$	A 11 80'	D - D	An L	11000	
	n = E = Em	Ten Per U	$R_4 = Rm \cdot$	(n-1) =	$k\Omega \times ([$	-1)
		201.0		=	$k\Omega \times$	Hero
					kΩ	
3)	DC 30 V					
	DC 30 V \sim DC 600 V				各に分流器R ₁₇	を入れ、ACV
	と同感度 (9 kΩ/V) l		Ω/Vの電流感	感度は、		
	$I_{(AC)} = \frac{1 \text{ V}}{9 \text{ kO}} = 111.1$	μΑ				
	O REE					
	DCV 20 kΩ/Vの電流					
	$I_{(DC)} = \frac{1 \text{ V}}{20 \text{ kO}} = 5$	$0 \mu A = Im$				
	20 K32					
	従って分流器の計算式	ETT?		101×		
	$n = \frac{I_0}{I} = \frac{I_{(AC)}}{Im} = \frac{I_{(AC)}}{Im}$	==== . [$R_{17} = \frac{Rm}{n-1} = \frac{\Gamma}{\Gamma}$	$k\Omega$	kΩ
	I Im			n-1		
					=	kΩ
	$DC.30 V \sim DC.600$	Vの倍率器はACV	と共田のため	ファでけ会老さ	・でに計算し:	(小数点第1位ま
	DC 30 V ~ DC 600 DC 30 V ~ DC 600 V	Vの倍率器はACV ORmは図5-3から				ます。
	DC 30 V ~ DC 600 V で、これをRm'とする	Vの倍率器はACV ORmは図5-3から と、	わかるように、	R ₁₇ が並列に入		ます。
	DC 30 V \sim DC 600 V で、これをRm'とする。 $Rm' = Rm \times R_{17} = [$	Vの倍率器はACV ORmは図5-3から と、	わかるように、	R ₁₇ が並列に入		ます。
	DC 30 V ~ DC 600 V で、これをRm'とする	Vの倍率器はACV ORmは図5-3から		R ₁₇ が並列に入		ます。
	DC 30 V ~ DC 600 V で、これを Rm' とする $Rm' = \frac{Rm \times R_{17}}{Rm + R_{17}} = \begin{bmatrix} & & & & & & & \\ & & & & & & \end{bmatrix}$	Vの倍率器はACV ORmは図5-3から と、	わかるように、 $\frac{\mathbf{k}\Omega}{\mathbf{k}\Omega}$ 는 \mathbf{m}	R ₁₇ が並列に入	った回路にな	ます。 : ります。そこ : ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	DC 30 V \sim DC 600 V で、これをRm'とする。 $Rm' = Rm \times R_{17} = [$	Vの倍率器はACV ORmは図5-3から と、	わかるように、	R ₁₇ が並列に入	.った回路にな kΩ×([ます。
	DC 30 V ~ DC 600 V で、これを Rm' とする $Rm' = \frac{Rm \times R_{17}}{Rm + R_{17}} = \begin{bmatrix} & & & & & & & \\ & & & & & & \end{bmatrix}$	Vの倍率器はACV ORmは図5-3から と、	わかるように、 $\frac{\mathbf{k}\Omega}{\mathbf{k}\Omega}$ 는 \mathbf{m}	R ₁₇ が並列に入	.った回路にな kΩ×([kΩ× [ます。: ります。そこ - 1)
	DC 30 V ~ DC 600 V で、これを Rm' とする $Rm' = \frac{Rm \times R_{17}}{Rm + R_{17}} = \begin{bmatrix} & & & & & & & \\ & & & & & & \end{bmatrix}$	Vの倍率器はACV ORmは図5-3から と、 kΩ× kΩ+	わかるように、 $rac{\mathbf{k}\Omega}{\mathbf{k}\Omega}$ $\stackrel{.}{=}$ $rac{\mathbf{k}\Omega}{\mathbf{R}_{(30)}}$ $=$ \mathbf{Rm}' •	R ₁₇ が並列に入 . □ kΩ (n-1) = □ = □ = □ = □	.った回路にな kΩ×([kΩ× [ます。: ります。そこ - 1)
	DC 30 V ~ DC 600 V で、これをRm'とする Rm' = $\frac{\text{Rm} \times \text{R}_{17}}{\text{Rm} + \text{R}_{17}} = \begin{bmatrix} E_{00} \\ E \end{bmatrix}$	Vの倍率器はACV ORmは図5-3から と、 kΩ× kΩ+	わかるように、 $rac{\mathbf{k}\Omega}{\mathbf{k}\Omega}$ $\stackrel{.}{=}$ $rac{\mathbf{k}\Omega}{\mathbf{R}_{(30)}}$ $=$ \mathbf{Rm}' •	R ₁₇ が並列に入	.った回路にな kΩ×([kΩ× [ます。 : ります。そこ - 1)
	DC 30 V ~ DC 600 V で、これをRm'とする Rm' = $\frac{Rm \times R_{17}}{Rm + R_{17}} = \begin{bmatrix} E_{(30)} \\ Em \end{bmatrix}$ 注) $R_{(30)} = (R_5 + R_6 + DC$ 120 V	Vの倍率器はACV ORmは図5-3から と、 kΩ× kΩ+	わかるように、 $rac{\mathbf{k}\Omega}{\mathbf{k}\Omega}$ 는 $rac{\mathbf{k}\Omega}{\mathbf{R}_{(30)}}$ = \mathbf{Rm}' ・	R ₁₇ が並列に入	.った回路にな kΩ×([kΩ× [ます。: ります。そこ - 1)
D	DC 30 V ~ DC 600 V で、これをRm'とする Rm' = $\frac{Rm \times R_{17}}{Rm + R_{17}} = \begin{bmatrix} E_{(30)} \\ Em \end{bmatrix}$ 注) $R_{(30)} = (R_5 + R_6 + DC$ 120 V	Vの倍率器はACV ORmは図5-3から と、 kΩ× kΩ+	わかるように、 $rac{\mathbf{k}\Omega}{\mathbf{k}\Omega}$ $\stackrel{.}{=}$ $rac{\mathbf{k}\Omega}{\mathbf{R}_{(30)}}$ $=$ \mathbf{Rm}' •	R ₁₇ が並列に入	.った回路にな kΩ×([kΩ× [ます。: ります。そこ - 1)
D	DC 30 V ~ DC 600 V で、これを Rm' とする。 $Rm' = \frac{Rm \times R_{17}}{Rm + R_{17}} = \begin{bmatrix} \\ \\ \end{bmatrix}$ $n = \frac{E_0}{E} = \frac{E_{(30)}}{Em} = \frac{\begin{bmatrix} \\ \\ \end{bmatrix}}{\begin{bmatrix} \\ \end{bmatrix}}$ 注) $R_{(30)} = (R_5 + R_6 +$	Vの倍率器はACV ORmは図5-3から と、 kΩ× kΩ+	わかるように、 $rac{\mathbf{k}\Omega}{\mathbf{k}\Omega}$ 는 $rac{\mathbf{k}\Omega}{\mathbf{R}_{(30)}}$ = \mathbf{Rm}' ・	R ₁₇ が並列に入	.った回路にな kΩ×(kΩ× kΩ(小数	ます。 : ります。そこ - 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 か
D	DC 30 V ~ DC 600 V で、これをRm'とする Rm' = $\frac{Rm \times R_{17}}{Rm + R_{17}} = \begin{bmatrix} E_{(30)} \\ Em \end{bmatrix}$ 注) $R_{(30)} = (R_5 + R_6 + DC$ 120 V	Vの倍率器はACV ORmは図5-3から と、 kΩ× kΩ+	わかるように、 $rac{\mathbf{k}\Omega}{\mathbf{k}\Omega}$ 는 $rac{\mathbf{k}\Omega}{\mathbf{R}_{(30)}}$ = \mathbf{Rm}' ・	R ₁₇ が並列に入	kΩ×([kΩ× [kΩ (小数 kΩ× [kΩ× [ます。 : ります。そこ - 一 1) : 点以下切り捨て
D	DC 30 V ~ DC 600 V で、これをRm'とする Rm' = $\frac{Rm \times R_{17}}{Rm + R_{17}} = \begin{bmatrix} E_{(30)} \\ Em \end{bmatrix}$ 注) $R_{(30)} = (R_5 + R_6 + DC 120 V)$ $R_{(30)} = \frac{E_{(120)}}{Em} = E_{$	Vの倍率器はACV ORmは図5-3から と、 kΩ× kΩ+ -Rm')でACVの項	わかるように、 $rac{k\Omega}{k\Omega}$ $ ightharpoonup R_{(30)}=Rm'$ ・参照 $R_{(120)}=Rm'$ ・	R ₁₇ が並列に入 ・	kΩ×([kΩ× [kΩ (小数 kΩ× [kΩ× [ます。 : ります。そこ - 一 1) : 点以下切り捨て
	DC 30 V ~ DC 600 V で、これをRm'とする Rm' = $\frac{Rm \times R_{17}}{Rm + R_{17}} = \begin{bmatrix} E_{(30)} \\ Em \end{bmatrix}$ には $R_{(30)} = (R_5 + R_6 + C_6)$ に $R_{(30)} = (R_5 + R_6)$ に $R_{(30)} = (R_5 + R_$	Vの倍率器はACV ORmは図5-3から と、 kΩ× kΩ+	わかるように、 $rac{\mathbf{k}\Omega}{\mathbf{k}\Omega}$ 는 $rac{\mathbf{k}\Omega}{\mathbf{R}_{(30)}}$ = \mathbf{Rm}' ・	R ₁₇ が並列に入	kΩ×([kΩ× [kΩ (小数 kΩ× [kΩ× [ます。 : ります。そこ - 一 1) : 点以下切り捨て
	DC 30 V ~ DC 600 V で、これをRm'とする Rm' = $\frac{Rm \times R_{17}}{Rm + R_{17}} = \begin{bmatrix} E_{00} \\ E \end{bmatrix}$ に $\frac{E_0}{E} = \frac{E_{(30)}}{Em} = \frac{E_{(30)}}{Em}$ に $\frac{E_0}{E} = \frac{E_{(120)}}{Em} = \frac{E_{(120)}}{$	Vの倍率器はACV ORmは図5-3から と、 kΩ× kΩ+ -Rm')でACVの項	わかるように、 $rac{k\Omega}{k\Omega}$ $ ightharpoonup R_{(30)}=Rm'$ ・参照 $R_{(120)}=Rm'$ ・	R ₁₇ が並列に入 ・	kΩ×([kΩ× [kΩ (小数 kΩ× [kΩ× [ます。 : ります。そこ - 一 1) : 点以下切り捨て
	DC 30 V ~ DC 600 V で、これをRm'とする Rm' = $\frac{Rm \times R_{17}}{Rm + R_{17}} = \begin{bmatrix} E_{00} \\ E \end{bmatrix}$ に $\frac{E_0}{E} = \frac{E_{(30)}}{Em} = \frac{E_{(30)}}{Em}$ に $\frac{E_0}{E} = \frac{E_{(120)}}{Em} = \frac{E_{(120)}}{$	Vの倍率器はACV ORmは図5-3から と、 kΩ× kΩ+ -Rm')でACVの項	わかるように、 $rac{k\Omega}{k\Omega}$ $ ightharpoonup R_{(30)}=Rm'$ ・参照 $R_{(120)}=Rm'$ ・	R ₁₇ が並列に入	kΩ×([kΩ× [kΩ (小数 kΩ× [kΩ× [ます。 : ります。そこ - 一 1) : 点以下切り捨て
	DC 30 V ~ DC 600 V で、これをRm'とする Rm' = $\frac{Rm \times R_{17}}{Rm + R_{17}} = \begin{bmatrix} E_{(30)} \\ Em \end{bmatrix}$ には $R_{(30)} = (R_5 + R_6 + C_6)$ に $R_{(30)} = (R_5 + R_6)$ に $R_{(30)} = (R_5 + R_$	Vの倍率器はACV ORmは図5-3から と、 kΩ× kΩ+ -Rm')でACVの項	わかるように、 $rac{k\Omega}{k\Omega}$ $\stackrel{.}{=}$ $rac{R}{(30)}$ $=$ Rm' ・ $R_{(120)}$ $=$ Rm' ・	R ₁₇ が並列に入	kΩ×([kΩ× (] kΩ × [kΩ × (] kΩ × (] kΩ × (]	ます。 * ります。そこ - 1) - 点以下切り捨て - 1) - 点以下切り捨て
	DC 30 V ~ DC 600 V で、これをRm'とする Rm' = $\frac{Rm \times R_{17}}{Rm + R_{17}} = \begin{bmatrix} E_{00} \\ E \end{bmatrix}$ に $\frac{E_0}{E} = \frac{E_{(30)}}{Em} = \frac{E_{(30)}}{Em}$ に $\frac{E_0}{E} = \frac{E_{(120)}}{Em} = \frac{E_{(120)}}{$	Vの倍率器はACV ORmは図5-3から と、 kΩ× kΩ+ -Rm')でACVの項	わかるように、 $rac{k\Omega}{k\Omega}$ $\stackrel{.}{=}$ $rac{R}{(30)}$ $=$ Rm' ・ $R_{(120)}$ $=$ Rm' ・	R_{17} が並列に入 $k\Omega$ (n-1) =	kΩ×([kΩ×(kΩ×(kΩ×(kΩ×(kΩ×(kΩ×(kΩ×(ます。 : ります。そこ - 1) :点以下切り捨て - 1) :点以下切り捨て
	DC 30 V ~ DC 600 V で、これをRm'とする Rm' = $\frac{Rm \times R_{17}}{Rm + R_{17}} = \begin{bmatrix} E_{00} \\ E \end{bmatrix}$ に $\frac{E_0}{E} = \frac{E_{(30)}}{Em} = \frac{E_{(30)}}{Em}$ に $\frac{E_0}{E} = \frac{E_{(120)}}{Em} = \frac{E_{(120)}}{$	Vの倍率器はACV ORmは図5-3から と、 kΩ× kΩ+ -Rm')でACVの項	わかるように、 $rac{k\Omega}{k\Omega}$ $\stackrel{.}{=}$ $rac{R}{(30)}$ $=$ Rm' ・ $R_{(120)}$ $=$ Rm' ・	R_{17} が並列に入 $k\Omega$ (n-1) =	kΩ×([kΩ×(kΩ×(kΩ×(kΩ×(kΩ×(kΩ×(kΩ×(ます。 * ります。そこ - 1) - 点以下切り捨て - 1) - 点以下切り捨て

① DC 3 V

⑥ DC 600 V

$$n = \frac{E_0}{E} = \frac{E_{(600)}}{Em} = \frac{\mathbb{E}_{(600)}}{\mathbb{E}_{m}} = \mathbb{E}_{(600)} = \mathbb{E}_{m}' \cdot (n-1) = \mathbb{E}_{k\Omega \times \mathbb{E}_{(600)}} \times \mathbb{E}_{n} \times \mathbb{E$$

5-4 交流電圧計(ACV)回路

テスタのメータは平均値を指示するの で(21)式より、

実効値=1.11·平均値

本器は、半波整流回路を使用しており、 図5-4のように⊕→⊝方向はD₁をと おりメータに電流が流れますが、○→⊕ 方向の電流はD2をとおってしまいメー タに流れません。

すなわちメータに流れる電流は1/2と いうことになります。そこで実効値(I) と平均値(Iav)は(21)式より

$$I \times \frac{1}{2} = 1.11 \times Iav$$

 \therefore I = 2.22 Iav

従って交流動作電流Ⅰは、

 $I = 2.22 \times 50 \ \mu A = 111.1 \ \mu A$ これをΩ/Vで表すとオームの法則から

$$\begin{split} A = & \frac{V}{\Omega} \to \Omega / V = \frac{1}{A} \\ \therefore & \frac{1}{I(A)} = \frac{1}{1.111 \times 10^{-6} \, A} = 9 \times 10^3 \, \Omega / V = 9 \, k\Omega / V \end{split}$$

直流電圧回路で倍率器の計算式を使用したので、ここではΩ/Vで計算してみます。

(1) AC 12 V (Ra=2 k Ω)

この計算は整流器の影響を除いてあります が、その分はAC 12 V専用スケールの目盛で 実験的に補正してあります。

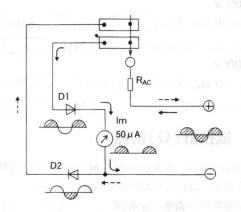


図5-4 交流電圧計原理図

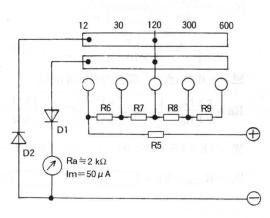


図 5 - 5 AC 12 V ~ 600 Vの等価回路

② AC 30 V	
$R_{(AC 30)} = 9 k\Omega / V \times V = k\Omega$	
$R_6 = R_{(AC \ 30)} - R_{(AC \ 12)} = k\Omega - k\Omega = k\Omega$ $3 AC \ 120 \ V$	
$R_{(AC\ 120)} = 9 \text{ k}\Omega/V \times \boxed{V} = \boxed{k}\Omega = \boxed{M}\Omega$	
$R_7 = R_{(AC\ 120)} - R_{(AC\ 30)} = \begin{bmatrix} k\Omega - k\Omega \end{bmatrix} k\Omega$	
4 AC 300 V 器面(VOA)指于激素法 1	
$R_{(AC\ 300)} = 9 \text{ k}\Omega/V \times$ $V = \text{k}\Omega = \text{M}\Omega$	
$R_8=R_{(AC\ 300)}-R_{(AC\ 120)}=M\Omega-M\Omega=M\Omega$	
5 AC 600 V	
$R_{(AC\ 600)} = 9 \text{ k}\Omega/V \times V = \text{k}\Omega = \text{M}\Omega$	
$R_9 = R_{(AC\ 600)} - R_{(AC\ 300)} = M\Omega - M\Omega = M\Omega$	
ml 2. 23. 2. 36.1 ± 1.1874 31.15 = -	
5-5 抵抗計(Ω)回路	
抵抗計回路の場合、電池の消耗を補うために 0 Ω 調整器を使用しており、これが回路計算上の ントになります。抵抗計回路の設計条件として、 電池電圧の調整可能範囲・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	カポイ
関盟記憶田野美全 $\Omega imes 1 \mathrm{k} \nu \nu \widetilde{\nu}$ 20 $\mathrm{k} \Omega$	
メータ中央目盛値(内部抵抗) $\Omega \times 10$ レンジ $200~\Omega$	
$\langle \Omega \times 1 \nu \nu \tilde{\nu} \rangle = 20 \Omega$	
① O Ω調整回路 and 222.25-1.2.	
電池電圧の調整可能範囲の下限	
2.5 Vについて調べると、電池が一 ※ 減小じたときでなるから 0 Q 調	
im=(48 μ A) b	(
整器 (VR) は、回路的にみて $(a.k.)$	
ら見た等価内部抵抗 $R_{(2.5)}$ は、オー $r=(2 k\Omega)$ $R_0=49 k\Omega$	Ω
ムの法則(2)式より	
Rio 大きをプリテン アンロコラここののとは財産を発展の基本品が経済に	
$R_{(2.5)}$ — μ A 図 5 - 6 0 Ω 調整回路図 $**$ P48でR18 i	
$=$ $rac{ m V}{ m imes 10^{-6}A}=$ $ m imes imes 10^3$ $ m \Omega=$ $ m imes k\Omega$ $ m imes cap the cap th$	回路抵
図5-6のa点と○間の内部抵抗Raは	
$r \times R_0$ $k \times k $	
$Ra = \frac{1}{r + R_0} = \frac{1}{k\Omega + \frac{1}{k\Omega}} \frac{k\Omega}{k\Omega} = \frac{1}{k\Omega} $	
従ってE=2.5 Vのときにメータをフルスケールさせるには、	
$R_{16}=R_{(2.5)}-Ra=$ $k\Omega k\Omega k\Omega$	

次に、	電池電圧の調整可能範囲	上限E(max)について調べてみると、	下限と逆で0Ω調整器は
10 kΩι	っぱいのc点になります。	このc点と⊖間の内部抵抗Rcは	

≒ kΩ (小数点第2位を四捨五入)

また、メータをフルスケールさせたときの c 点と⊖間の電圧は

Ec=I • R=im×(r+VR) =
$$\mu$$
 A×($k\Omega$ + $k\Omega$)
 \div $\times 10^{-3}$ V= mV

であり、R₁₈に流れる電流Icは、

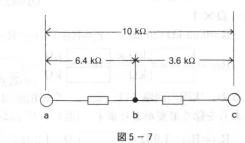
$$\mathrm{Ic} = \frac{\mathrm{Ec}}{\mathrm{R}_{18}} = \frac{\mathrm{X}10^{-3}\,\mathrm{V}}{\mathrm{X}10^{3}\,\Omega} \doteq \mathrm{X}10^{-6}\,\mathrm{A} = \mathrm{M}\,\mathrm{A}\,\mathrm{(小数点第 1\,位まで)}$$

電池から流れる電流 I (max)は、

$$I(max) = im + Ic =$$
 $\mu A +$ $\mu A =$ μA

0 Ω 調整器 c 点での電池電圧E(max)はオームの法則から

$$E(max) = I(max) \times (Rc + R_{16}) = \frac{\mu A \times (M_{16}) + M_{16}}{\mu A \times (M_{16})} = \frac{\mu A \times (M_{16})}{\mu A \times (M_{16})} = \frac{\mu A \times (M_{$$


従って設計条件3.5 Vを満足します。

では、電池の電圧 (初期電圧) 3.2 Vのとき、0 Ω 調整器のブラシはどのようなポジションになるか調べて見ます。かりに図5-6の b 点としますと (2.5 Vのとき0 Ω 、3.6 Vのとき10 $k\Omega$) の条件より

Rab=10 kΩ×
$$\frac{(3.2-2.5)V}{(3.6-2.5)V}$$
=6.4 kΩ

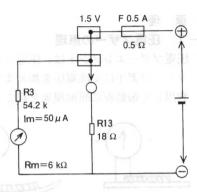
Rbc=10 k
$$\Omega \times \frac{(3.6-3.2)\text{V}}{(3.6-2.5)\text{V}} = 3.6 \text{ k}\Omega$$

となり0 Ω 調整器のブラシポジションは6.4 $k\Omega$ と3.6 $k\Omega$ に分けた位置になります。

5-6 バッテリチェック回路(1.5 V)

の種できまり

 $Rb = \frac{(r + Rab) \times (Rbc + R_{18})}{(Rbc + R_{18})}$ r+Rab+Rbc+R₁₈ $k\Omega + [k\Omega) \times ([$ $k\Omega +$ = kΩ (小数点第3位を四捨五入) 従って電池電圧3.2 Vの端子間の等価内部抵抗は $R_{(3,2)} = Rb + R_{16} = k\Omega +$ $k\Omega \doteq [$ kΩ(小数点以下切り捨て) ② Ω X 1 k 仕様の中央目盛値(内部抵抗) Rが 20 kΩであるから、分流抵抗R₁₅は (7)式より(P.20参照) $r_1 = \frac{r_2 \times R}{}$ 55 kΩ ただしR=20 kΩ □ R13 □ R14 □ R15 ヒューズ抵抗 $r_1 = R15$ $r_2 = R_{(3,2)} = 55 \text{ k}\Omega$ $R_{15} =$ ≒[kΩ (小数点第2位を四捨五入) ③ Ω × 10 $R=0.2 \text{ k}\Omega (200 \Omega)$ $r_1 = R_{14}$ $r_2 = R_{(3.2)} = 55 \text{ k}\Omega$ kΩ (小数点第1位まで ④ Ω × 1 $R=0.02 \text{ k}\Omega (20 \Omega)$ $r_1=R_{13}$ $r_2=R_{(3 2)}=55 \text{ k}\Omega$ $k\Omega \times$ $k\Omega =$ $k\Omega =$ $k\Omega =$ $k\Omega =$ $k\Omega =$ (小数点第2位まで) なお、実際の回路では、ヒューズや電池(2本分)などの抵抗が約1.9 Ω程度あり、計算上の値から これらを除く必要があります。(他レンジでは抵抗値が大きいので無視できます。) $R_{13}=R_{13}-1.9 \Omega = \Omega -1.9 \Omega = \Omega$

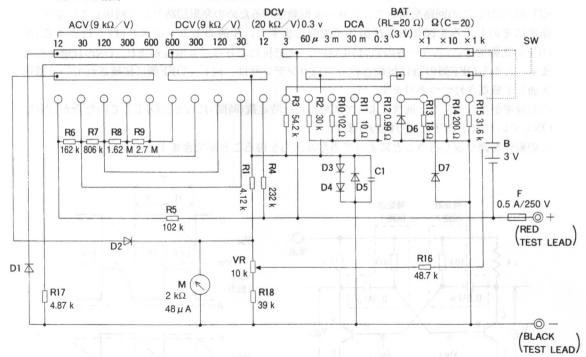

5-6 バッテリチェック回路(1.5 V)

バッテリチェック回路は、測ろうとする電池に負荷抵抗18 Ω を接続し、その端子電圧を、DC 3 V の電圧計で測定します。したがって、電池を使用状態に近い形で測定できるので、電池の良否が正確に判断できます。

●バッテリチェックの計算例 (1.6 Vの場合)

両端子間からみた合成抵抗R。は、

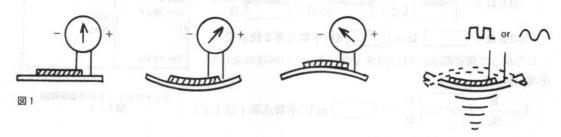
したがって測定電池の電圧が1.6 Vのとき、この回路の流れる 電流 Ioは


 $I_0 = \frac{E}{R_0} = \frac{V}{\Omega} = \frac{V}{\Omega}$ mA (小数点第1位まで)

バッテリチェックの等価回路図 図 5 - 9

よってメータ回路に流れる電流imは

このimがImの何%か計算し、各電圧ごとに目盛板上に目盛るわけです。

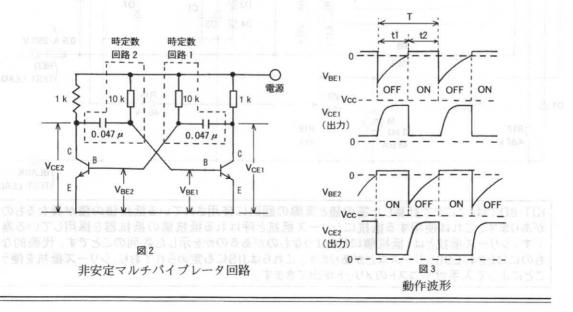

KIT-8Dでは、ここまで計算した答の値と実際の回路に使用されている抵抗値の値が異なるものがあります。これは使用する抵抗にシリーズ抵抗と呼ばれる抵抗値の抵抗器を採用している為です。シリーズ抵抗とは、抵抗値にどのようなものがあるのかを示した数列のことです。代表的なものにはE24、E96シリーズなどがあります。これらはJISにも定められており、シリーズ抵抗を使うことによって入手性やコストのメリットが出てきます。

Ⅵ 別売付属品ブザーキットの組立

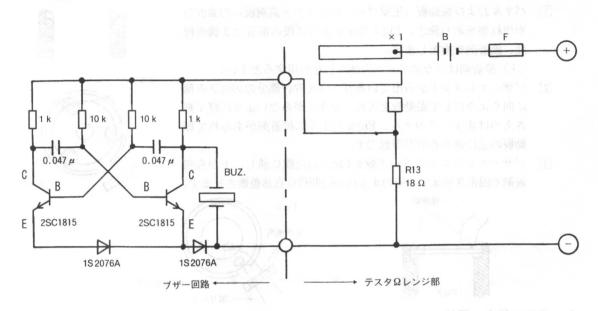
1. 原 理 Na.0 F Na.0

1-1 圧電ブザーの原理

圧電ブザーエレメントは、圧電セラミック素子と振動板を接着した簡単な構造です。その圧電セラミック素子に交流電圧を加えますと、素子が径方向に伸びたり、縮んだりします。この動きを利用して振動板に屈曲現象を起こし、音を発生させます。


1-2 発振回路の原理

P.57、2.の回路図にて、ブザー回路に使用されているのが、非安定マルチバイブレータと呼ばれる、発振回路です。

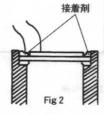

この回路は2個のトランジスタと抵抗・コンデンサなどを利用して、ある一定の周期でトランジスタがそれぞれ、ON、OFFを繰り返すことによって方形波(図3)を出力することができます。 KIT-8Dでは、この回路を用いて、ブザーを振動させるための発振回路として利用しています。 簡単にそのしくみを図2および図3で説明しますと、片側のトランジスタ(以下Trとする)が OFFの状態では、 もう一方のTrは10~k Ω ベース抵抗によりベース電流が流れ、ONの状態を保ちます。しかしOFF側のTrに接続されているコンデンサは、同じくOFF側に接続されている抵抗を通して放電されつつあります。

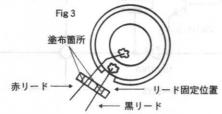
この放電がコンデンサと抵抗によって決められた時定数(時間)になるとOFFしていたTrがONに、ONしていたTrがOFFに切り換わります。

この動作を繰り返し行うことによって方形波出力を得ることができます。

2. 回路図

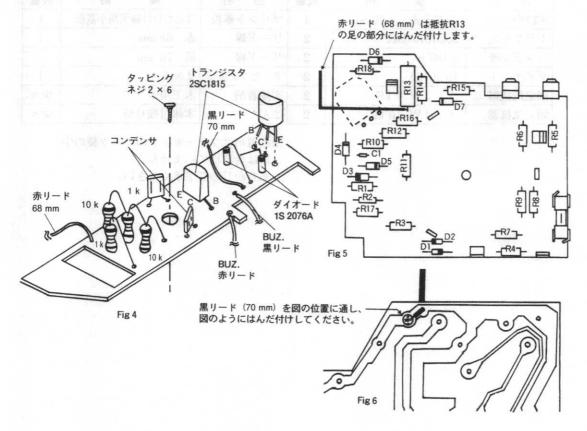
3. 部品表


品 名	規 格	数量	品 名	規 格	数量
圧電ブザーエレメント	2 端子式 φ 20 mm	1	プリント基板	はんだ付け練習用小基板	1
トランジスタ	2SC1815 GR	2	リード線	赤 68 mm	1
コンデンサ	0.047 μ	2	リード線	黒 70 mm	1
ダイオード	1S 2076A	2	タッピングネジ	2×6	1
固定抵抗器	1/4W 1 kF	2	※接着剤	木工用ボンド	少々
固定抵抗器	1/4W 10 kF	2	はんだ	本体組残り分	少々

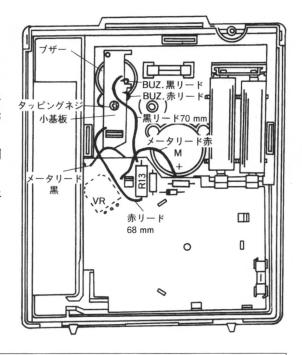

※接着剤はブザーキットのパーツ袋の中には含まれていません。 あらかじめご了承ください。

4. 圧電ブザーエレメントの接着方法

- パネルおよび振動板(圧電ブザーエレメント黄銅板)の油性分 や汚れ等を取り除き、Fig 1 で示すように段の部分に 3 箇所程 度、接着剤を塗布します。
 - (注)接着剤はプラスチックの油さしを利用するとよい。
- ② ブザーエレメントから出ているリードを取付部分の切れ込み側に向くようにして振動板を入れ、浮き上がらないように軽く押さえつけます。このとき、Fig 2 のように接着剤があふれて振動板の上に落ちる形が理想です。
- ③ ブザーエレメントのリード線をFig 3 の位置に通し、上から接着剤で固定させます。そのまま約16時間程度自然乾燥させます。



5. 基板の組立・配線


実体配線図を参考に各部品を取付けていきます。(Fig 4)また、小基板の黒リードおよび赤リードを本体大基板に配線します。(Fig 5, 6)

6. 基板の取付け

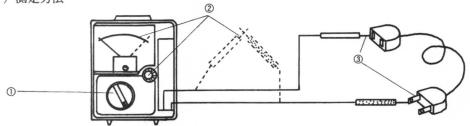
完成した小基板をパネルに取付けます。

- 大基板をパネルに付け、小基板をFig 7 の図の位置に取付けます。
 - このとき、基板の配線が他の所にはさみ こまれないように、配線そろえをしてお いてください。
- ② ダッピングネジにて小基板をパネルに固 定します。
- ③ 本体ケースとパネルにあわせ、ケース止めネジをしめて完成です。

7. 測定方法

- ▲ 警告

- 1 測定前には必ず「レンジ確認」を行ってください。
- 2 測定中は他のレンジに切換えないでください。
- 3 絶対に濡れた手では測定しないでください。
- 4 電圧が加わっている回路では測定できません。


1) 測定対象

配線の導通の確認等に使用します。

2) 測定レンジ

抵抗測定レンジの×1のレンジを使用します。

3) 測定方法

- \square レンジ切換えつまみを Ω レンジの×1に合わせます。
- ② テストピンの両端をショートさせて、0Ω調整を行います。 (このとき、テスタからはブザー音が鳴ります。)
- ③ テストピンを被測定回路にあてます。
- 4 ブザー音および目盛板で導通を確認します。
- ・約35 Ω以下で発音します。ただし、この値近辺では、音が聞き取りづらい場合もあります。

定	格値		カラーコード・記号
R1	4.12 kF	はりしろ	黄茶赤茶茶
R2	30 kJ		橙黒黒赤金
R3	54.2 kF		緑黄赤赤茶
R4	232 kF		赤橙赤橙茶
R5	102 kF		茶黒赤橙茶
R6	162 kF		茶青赤橙茶
R7	806 kF]	灰黒青橙茶
R8	1.62 MF		茶青赤黄茶
R9	2.7 MF		赤紫黒黄茶
R10	102 ΩF		茶黒赤黒茶
R11	10 ΩF		茶黒黒金茶
R12	0.99 ΩF		黒白白銀茶
R13	18 ΩF		茶灰黒金茶
R14	200 ΩG		赤黒黒黒赤
R15	31.6 kF		橙茶青赤茶
R16	48.7 kF		黄灰紫赤茶
R17	4.87 kF		黄灰紫茶茶
R18	39 kJ		橙白黒赤金
D1	1S 2076A		
D2	1S 2076A		
D3	IN-4004		- H-
D4	IN-4004		- H-
D5	IN-4004		
D6	IN-4004		- H-
D7	IN-4004	はりしろ	

63	
-	

+
V
 ,
,
 -

MEMO	
◎参考書のご案内	
	まで)をやさしく解説したテキストが発売されております。
・書名「テスタとディジタル・マルチメー	タの使い方」
	著者:金沢敏保·藤原章雄 出版社:CQ出版社株式会社
	価格:¥1,800+税(¥1,890) ISBN4-7898-3720-3
・書名「テスタ使いこなしテクニック」	著者: 丹羽一夫 出版社: 誠文堂新光社
	価格:¥1,200+税(¥1,260) ISBN4-416-10505-3
購入申し込みは最寄りの書店でお願い到	対します。

説明書の仕様や内容については予告なしに変更 中止することがございますのでご了承ください。

Sanwa®

三和電気計器株式会社

本社=東京都千代田区外神田2-4-4・電波ビル 郵便番号=101-0021・電話=東京 (03) 3253-4871代) 大阪営業所=大阪市浪速区恵美須西2-7-2 郵便番号=556-0003・電話=大阪 (06) 6631-7361代)

