軽量鉄骨下地間仕切り壁の改修時騒音低減とランナー接着工法の開発

DB16144 近藤 舞雪

1. はじめに

東日本大震災や熊本地震では構造材の損傷ではな く、天井や間仕切り壁など非構造体の損傷により建物 の取り壊しに至った事例が多く見られた 1)。そこで、 軽量鉄骨下地間仕切り壁(以下 LGS[Light Gauge Steel] 床ランナー ボード壁とする)の倒壊を防ぐためのランナー接着工 法について考える。現在のランナー接着は、天井・床 にアンカー等で機械的に固定しているが、本研究では ランナー接着を接着剤を用いて行い、その耐震性や耐 火性について検討する。また、間仕切り壁の倒壊問題 とともに、LGS ボード壁の改修を行う際の、解体時の 騒音の大きさや、改修時の施工の簡略化が問題となっ ている。そこで、ランナーの接着工法だけでなく改修 時の無騒音解体工法についても同時に考え、改修時の 対応も含めて、接着剤工法を併用することでさらに低 騒音で工事が行えるようになることを目指す。本研究 により、場所や日時を問わず工事を行えるようになる ことで改修工事の発展を見込むことができる。

2. 研究概要

2.1 研究の流れ

図1にLGSボード壁の構造、スタッド、振れ止めの 間隔について、表2に実験の要因と水準を示す。現場 調査として、LGS 工法における改修時の解体手順・使 用工具を調査し、騒音の発生源・騒音の大きさから LGS 工法の課題を検討する。また、LGS ボード壁について の既存の研究調査を行う。次に材料実験として、選定 した接着剤を使用して金属を張り合わせ、試験体を焼 成後に、接着剤の強さの試験をおこなう。その後、接 着剤の接着強さの試験結果をもとに選定した一つの 接着剤を使用し、接着条件を変え、LGSボード壁の構 造を模擬した試験体を作成し、耐火性、接着強さの試 験を行う。さらに、LGS ボード壁の構造を模擬した試 験体をもう一度作成し、接着剤での接着と従来のビス 打ちとの耐力の差を算出し、接着剤使用量の検討を行 う。最後に、実際の LGS ボード壁の構造で、ランナー の接着強度を調べるため、LGS工法実大部材を使用し た引張試験を行い、再度施工時の使用接着剤量の検討 を行う。

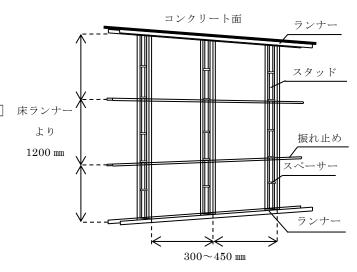


図1 軽量鉄骨下地間仕切り壁の構造

表 1 使用接着剂

	接着剤	主成分
A	急速硬セメント	アルミナ、セメント
В	2 液性無機質接着剤	アルミナ,シリカ
С	1 液性無機系接着剤	酸化アルミニウム 70-75% アルカリ金属珪酸塩 20-25%
D	粉液分離型接着剤	〈粉体〉Si0 ₂ 5-10, MgO 55-60%, Zr0 ₂ 10-20%,合成雲母10-15% 〈液体〉ほう酸ナトリウム 90-100%
Е	モルタル系接着剤	Al ₂ O ₃ 69%, SiO ₂ 21%, Fe ₂ O ₃ 1.6%

表 2 要因と水準

		HEA THE PART	ula mt	1 844	
項目		験要因	実験水準		
研究 1	文	献調査	軽量鉄骨下地間仕切り壁		
4万九 1	現場調査		に関する調査		
	焼成試験	試験体構成	コンクリートブロック		
TIT etc. o			金属板		
研究 2			接着剤(A, B, C, D, E)		
接着剤の 選定		焼成温度	20℃,300℃,600℃,900℃		
选定	引張試験		最大荷重(kN)		
	破断面形状分類		界面破断,凝集破壊		
	焼成試験	試験体 (試験体番号)	ビス	(1)	
			接着剤	多,少 (2,3)	
			金属板	(4, 3)	
			亜馬似 エッチング	大,中,小	
研究 3			加工	(4, 5, 6)	
接着条件			// 12		
検討			金属板	多,中,少	
			·	(7, 8, 9)	
				. , , ,	
		焼成温度	20℃, 300℃, 600℃, 900℃		
	引張試験		最大荷重(kN)		
	試験体構成		コンクリートブロック		
研究 4			ランナー		
接着剤量検討			接着剤、ビス		
(灰 計)	引	引張試験		最大荷重(kN)	
研究 5	試験体構成		ランナー		
実代部材			接着剤、ビス		
試験	引張試験		最大重量(kg)		

2.2 LGS 工法天井・壁の現場調査(研究 1)

2.2.1 スタッドとランナーの寸法

図1にLGSボード壁の構造、スタッド、振れ止めの間隔について示す。文献調査・現場調査により、スタッドや微数値の間隔など、「程度」という記述が多いことや、耐力についての明確な記述がないことから、LGSボード壁には明確な規定がないことがわかった。

2.2.2 LGS 工法の解体手順

現場調査を行い、実際にLGS工法の天井・壁の解体を行った。その際に、騒音の発生状況、騒音の大きさ、解体時の問題を検証した。

3. LGS 模擬部材を使用した接着剤の接着強さ試験 (研究 2)

3.1 使用接着剤

表1に使用する接着剤を示す。接着剤は施工時の状況を考慮し、耐火性・速乾性に優れたもの²⁾を使用する。耐火性に優れた接着剤として、主成分がアルミナの接着剤を主に選定し、さらに速乾性・現場での硬化性を考慮し、非過熱で硬化し、また、一定の強度が出る接着剤を選定し、使用する。

3.2 試験概要

表2に実験の要因と水準を示す。コンクリートブロックに6枚の鉄板を、各接着剤を使用して貼り付け試験体を作成する。作成した試験体を、電気炉を使用し、それぞれ、300℃・600℃・900℃で加熱する。温度設定は標準加熱曲線をもとに設定し、火災などによる過熱がおきても強度が出るかを検証する。焼成試験後、引張試験を行い接着剤の引張強さ、同時に破断面の形状から、破断面の分類を行う。焼成後接着剤状態、引張強さ、破断面分類から、一つの接着剤に選定を行う。

3.3 試験結果

表3に焼成試験後の試験体を、図2に引張試験の最大荷重値の平均を、図3に破断面の分類を、図4に破断面比率を示す。実験結果として、Aの接着剤では、高温になるにつれて接着剤自体が持たなかった。Bは焼成後接着剤自体に大きな変化はなかったが、引張試験で凝縮破壊が多く見られた。Cでは600,900℃の焼成で接着剤が収縮し、試験中にコンクリートブロックが爆裂した。Dでは、焼成後も接着剤の変化が特になく安定していた。また、引張試験では界面破壊が多く見られた。Eは焼成後の接着剤に変化は見られなかったが、引張り試験の際、凝集破壊が多く見られた。焼成後の接着剤の状態、引張試験の最大荷重、破断面の評価から、Dの接着剤を選定した。

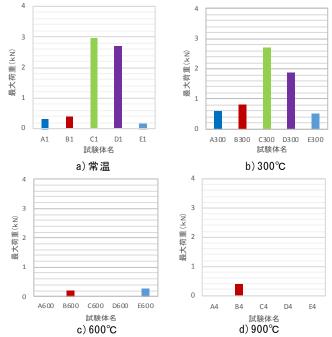


図 2 天井ランナーとコンクリート面の模擬試験体

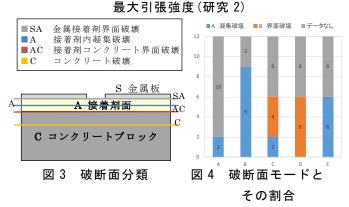


表 3 耐火試験後の引張破断面の破壊性状(研究 2)

4. 接合面処理の違いによる接着強さ評価(研究3)

4.1 試験概要

表2に実験の要因と水準、図5にランナー接合部の 表面処理方法を示す。上記で選定した接着剤Dを使用 し、金属板の形状(エッチング加工、穴開け)を変え て接着したもの、接着剤の添付量を変えたもの、従来 のビス打ちの試験体を作成し、再度焼成試験・剥離試 験を行い、ランナーの形状、接着剤量により、接着強 さや、破断面に起きる変化を検証する。

4.1 試験結果

図6に焼成後の試験体を、図7に引張試験の最大荷 重を示す。常温の接着剤 0.8mm 厚の最大荷重値: 3.47(kN)を基準に評価した。エッチング加工を行った 物は、板の曲がりによって施工不良が多く、引張試験 を行う前にプレートが外れてしまうものが多かった。 また、ランナーの形状から加工をする手間が掛かるた め、現場での実用性がないことがわかった。穴あけを 行ったものは、焼成後のプレートの外れが少なく、十 分に貼れるため施工性は良いが思うように強度が出 なかったため、改善が必要なことがわかった。しかし、 接着剤が満遍なく行き渡る点や、突起ができることに よるプレートはずれの抑制が見込むことができたた め、有効な方法であるということがわかった。

5. ランナー実部材を使用した接着強さ評価(研究4)

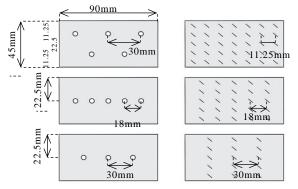

5.1 試験概要

図9に使用する試験体を示す。試験体は実際のラン ナーを使用し、ビスで打ったものと接着剤で貼り付け たものを作成した。ランナーに補強剤をつけ、中心を 引張試験機で引っ張ることで試験を行った。ビス打ち と接着剤の強度の差を算出し、接着剤量を検討する。

5.2 試験概要

図8に引張試験の最大荷重値を示す。それぞれ6本 の平均をとった結果、ビス打ちの最大荷重値が、 3.75kN 接着剤の最大荷重値が 1.56kN だった。そのた め、約2.4倍の接着剤を使用すれば、ビス打ちの強度 と同等の強度が出ることがわかった。今回使用した接 着剤量が 13.4mL だったため、2.4 倍の量である 32.16mLを使用すればビス打ちと同等の強度が出るこ とが見込める。

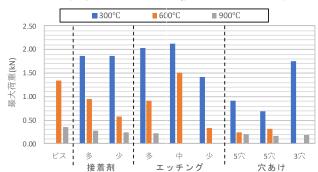
ビス打ちの試験体では、ビスがコンクリートブロッ クから抜けるのではなく、ランナーが避けることで外 れる試験体が多く、地震などの現場でもこのような現 象が多く見られることからランナーの強度としては LGSボード壁と近い数値が算出できているとみられる。

a) 穴あけ(7,8,9)

b) エッチング(4, 5, 6)

耐火試験後のランナー接合処理の表面処理方法 図 5

,接着剤ともに大きな変化なし a)300℃加熱後



*プレートはずれが見られるものがある

*金属プレートが亜鉛溶解し黒色化が多い c)900°C加熱後

図 6 耐火試験後のランナー接合面の性状(研究 3)

耐火試験後のランナ 一接合処理の違いによる 図 7 接着強さ (研究3)

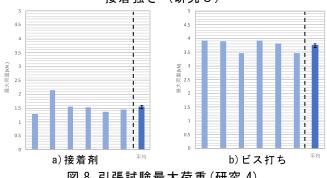


図 8 引張試験最大荷重(研究 4)

6. LGS 工法実大部材を使用した引張試験 (研究 4)

6.1 試験概要

図 10 に試験方法を示す。天井コンクリートにビス 打ちと接着剤によりランナーを施工する。ビス打ちは 90mm 内外に2本打ち込み、接着剤も同様の位置に2箇 所添付する。接着剤でのランナー接着は、ランナーに 穴あけを6箇所行う。また1つはランナー側に接着剤 をうけるビニールをつけたものを作成する。この際2 つの耐力の差を評価する。荷重をかける位置はランナ 一の中心部で行い、ランナーに取り付けた台座の上に、 25kg ずつ重りをのせランナーが耐える重量を評価す る。この結果から、研究4と同様程度のビス打ちと接 着剤の耐力の差が出るかを検討し、接着剤の使用量を 算出する。

6.2 試験結果

図 11 に試験の結果を示す。試験結果として、ビス 打ちでのランナー施工は、237.64kg、接着剤でのラン ナー接着は、108.84kg だった。この結果から、接着剤 量を左右とも実験時の、約2.18倍に増量すればビス 打ちと同様の強度が得られることが分かった。研究 4 では約 2.4 倍だったことから、実際の LGS ボード壁 の構造でも、ほぼ同等の結果が出ることが分かった。 これにより、接着剤量を増量することにより、ビス打 ちと同様の耐力を得ることを見込むことができた。ま た、施工の際に接着剤をうけるビニールをつけること で、ランナーに開けた穴から出た接着剤が氷柱状に残 り、さらに強度を得ることができると分かった。

7. まとめ

- 1) LGS ボード壁の現状の課題が分かり、明確な規定の 設定が必要なことがわかった。
- 2) 各種試験の結果、使用する接着剤を粉液分離型接着 剤(主成分液体:酸化マグネシウム,粉体:ほう酸ナ トリウム)に選定することができ、選定した接着剤 を条件を変えて実験を行い、接着条件を検討するこ とができた。
- 3) ランナーに穴あけを行い、接着剤受けをつけること で、より高い強度が得られることが分かった。
- 4) 従来のビス打ちと接着剤での強度の差を評価し、接 着剤量を2倍程度に変えることで同様の強度が得 られることが分かった。
- 5) 本試験では、引張試験での検討を主に行ったが、さ らに、実際の LGS ボード壁にかかる、せん断力や面 にかかる力も考慮して試験を行い、接着剤でのラン ナー接着工法をさらに検討していく必要がある。

a) 接着剤貼り

b) ビス打ち 図 9 試験体(研究 4)

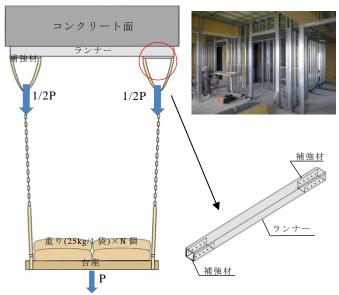


図 10 LGS 工法実大部材試験方法(研究 6)

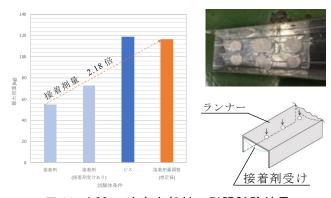


図 11 LGS 工法実大部材の引張試験結果

参考文献

- 1) 吉敷祥一ほか: 軽量鉄骨下地乾式間仕切り壁の地震時損傷抑 制に関する研究 その1 研究背景と目的,日本建築学会大 会学術講演梗概集(東北), pp. 1073-1074, 2018. 9
- 2) 日本工業規格 JISK6848:2019 接着剤-接着強さ試験

謝辞

本研究は丸高工業と工学院大学との共同研究で 2019 年度大学ブランディング研究及び ISDC(フジタ) の一部である。関係各位に謝意を表する。