量子物理学特論

第5回

シュレディンガー方程式

$$
i \hbar \frac{\partial \psi(\vec{r}, t)}{\partial t}=H \psi(\vec{r}, t)
$$

$$
H=-\frac{\hbar^{2}}{2 m} \Delta+V(\vec{r}) \quad \text { ハミルトニアン }
$$

系の全エネルギーに対応
波動関数 Ψ で表される状態において，時刻 t における電子の位置の測定を行う時，点 r を含む $d^{3} r$ 内に電子が見出される確率は

$$
\rho(\vec{r}, t) d^{3} r=\psi^{*}(\vec{r}, t) \psi(\vec{r}, t) d^{3} r=|\psi(\vec{r}, t)|^{2} d^{3} r
$$

に比例する。

シュレディンガー方程式

シュレディンガー方程式は「導出されるもの」ではない

運動方程式が導出されるものではなかったことを思い出そう

マクスウェル方程式（の元になった諸法則）も同様
シュレディンガー方程式の正しさは，この方程式から得 られる結果を実験と突き合わせることでのみ証明される \downarrow
波動関数の解釈（観測量とどう結びつけるか）が鍵

物理量の演算子

これまでの結果を一般化する。 ある物理量Aに対応する演算子Âがあって，物理量Aは その期待値が観測され，

$$
\langle A\rangle=\int \psi^{*}(\vec{r}, t) \hat{A} \psi(\vec{r}, t) d^{3} r
$$

となる。（この演算子Âは座標空間での演算子）
運動量表示では，

$$
\langle A\rangle=\int \tilde{\psi}(\vec{p}, t) \hat{\tilde{A}} \tilde{\psi}(\vec{p}, t) d^{3} p
$$

\hat{A} と $\hat{\tilde{A}}$ は演算子の形が異なることに注意。例：運動量の演算子 $\hat{\vec{p}}=-i \hbar \vec{\nabla} \quad \hat{\vec{p}}=\vec{p}$

量子力学の基本的な演算子

	物理量	演算子 $($ 座標表示）
座標	\vec{r}	\vec{r}
運動量	\vec{p}	$-i \hbar \vec{\nabla}$
運動エネルギー	$\frac{p^{2}}{2 m}$	$V(\vec{r})$
位置エネルギー	$-\frac{\hbar^{2}}{2 m} \Delta$	
非相対論近似の 全エネルギー	$E=\frac{p^{2}}{2 m}+V(\vec{r})$	$\hat{H}=-\frac{\hbar^{2}}{2 m} \Delta+V(\vec{r})$

交換関係

量子力学では，演算子同士の交換関係が重要な役割を果たす

$$
[\hat{A}, \hat{B}]=\hat{A} \hat{B}-\hat{B} \hat{A}
$$

2 つの演算子の積は，一般には，交換不可能。

$$
\begin{aligned}
& \text { 可換な場合には, } \quad[\hat{A}, \hat{B}] \psi=0 \\
& \text { 可換でない場合には, }[\hat{A}, \hat{B}] \psi=i \hat{C} \psi
\end{aligned}
$$

となる。
この関係を単に $[\hat{A}, \hat{B}]=0 \quad[\hat{A}, \hat{B}]=i \hat{C}$ と書くことが多い

交換関係の例

$\hat{\vec{r}}$ と $\hat{\vec{p}}$ の交換関係を調べる。

$$
\left[\hat{x}, \hat{p}_{x}\right] \psi(x, t)=-i \hbar x \frac{\partial}{\partial x} \psi(x, t)-\left(-i \hbar \frac{\partial}{\partial x}(x \psi(x, t))\right)=i \hbar \psi(x, t)
$$

$$
\left[\hat{y}, \hat{p}_{x}\right] \psi(x, t)=-i \hbar y \frac{\partial}{\partial x} \psi(x, t)-\left(-i \hbar \frac{\partial}{\partial x}(y \psi(x, t))\right)=0
$$

同様にして，

$$
\begin{array}{ll}
{\left[\hat{r}_{i}, \hat{r}_{j}\right]=\left[\hat{p}_{i}, \hat{p}_{j}\right]=0} & \hat{r}_{i}=(x, y, z) \\
{\left[\hat{r}_{i}, \hat{p}_{j}\right]=i \hbar \delta_{i j}} &
\end{array}
$$

交換関係は表示（座標表示か運動量表示か）によらない。

宿題

1S－323の前にあるレポート提出ボックスもしくは次回授業時に提出（5月23日締め切り） 1次元の場合を考える。フーリエ変換の関係を用いて，運動量空間での，位置ベクトルに対応する演算子を求め よ。すなわち，

$$
\begin{gathered}
\langle x\rangle=\int \psi^{*}(x, t) x \psi(x, t) d x=\int \tilde{\psi}^{*}(p, t) \hat{\tilde{x}} \tilde{\psi}(p, t) d p \\
\psi(x, t)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} \tilde{\psi}(p, t) e^{\frac{i}{\hbar} p x} d p
\end{gathered}
$$

の関係式を用いて，追 の具体的な形を求めよ。
また，$[\hat{\tilde{x}}, p] \tilde{\psi}(p, t)=i \hbar \tilde{\psi}(p, t)$ が成り立つことを示せ。

定常状態

ポテンシャルが時間に無関係な場合を考える

$$
\hat{H}=-\frac{\hbar^{2}}{2 m} \Delta+V(\vec{r})
$$

時間のパラメータtを陽には含まない変数分離が可能 $\psi(\vec{r}, t)=f(t) \phi(\vec{r})$

シュレディンガー方程式は

$$
\begin{gathered}
i \hbar \phi(\vec{r}) \frac{d f(t)}{d t}=f(t)\left[-\frac{\hbar^{2}}{2 m} \Delta \phi(\vec{r})+V(\vec{r}) \phi(\vec{r})\right] \\
\downarrow \\
\frac{i \hbar}{f(t)} \frac{d f(t)}{d t}=\frac{1}{\phi(\vec{r})}\left[-\frac{\hbar^{2}}{2 m} \Delta \phi(\vec{r})+V(\vec{r}) \phi(\vec{r})\right]
\end{gathered}
$$

定常状態

$$
\underset{\text { tだけの関数 }}{\frac{i \hbar}{\frac{f(t)}{d t}} \frac{d f(t)}{\text { rだけの関数 }}}=\frac{\frac{1}{\phi(\vec{r})}\left[-\frac{\hbar^{2}}{2 m} \Delta \phi(\vec{r})+V(\vec{r}) \phi(\vec{r})\right]}{\text { r定数 }}
$$ をEと置く。

$$
\begin{aligned}
& \frac{i \hbar}{f(t)} \frac{d f(t)}{d t}=E \quad-\frac{\hbar^{2}}{2 m} \Delta \phi(\vec{r})+V(\vec{r}) \phi(\vec{r})=E \phi(\vec{r}) \\
& f(t)=C \exp \left(-\frac{i E t}{\hbar}\right)
\end{aligned}
$$

時間を含まないシュレディンガー方程式

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m} \Delta \phi(\vec{r})+V(\vec{r}) \phi(\vec{r})=E \phi(\vec{r}) \\
A=-\frac{\hbar^{2}}{2 m} \Delta+V(\vec{r}) \text { が (無限次元の) 行列だと思うと } \\
A \phi(\vec{r})=E \phi(\vec{r}) \\
\mathrm{E} \text { はこの行列Aの固有値に対応する }
\end{gathered}
$$

Eは（Vの形に応じて）決まった値しかとることができない

定常状態

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m} \Delta \phi(\vec{r})+V(\vec{r}) \phi(\vec{r})=E \phi(\vec{r}) \longrightarrow E, \phi(\vec{r}) \\
\frac{i \hbar}{f(t)} \frac{d f(t)}{d t}=E \longrightarrow f(t)=C \exp \left(-\frac{i E t}{\hbar}\right) \\
\psi(\vec{r}, t)=C \exp \left(-\frac{i E t}{\hbar}\right) \phi(r) \\
|\psi(\vec{r}, t)|^{2}=|C|^{2}|\phi(\vec{r})|^{2}
\end{gathered}
$$

粒子存在確率が時間によらない（定常的）

このような状態を定常状態という

定常状態の性質

1．定常状態ではEは実数となる
2．定常状態では確率密度および確率の流れ密度は時間によ らない

3．定常状態では任意の物理量Aの期待値は，対応する演算子が時間に陽によらなければ，一定となる

4．定常状態では $\operatorname{div} \vec{j}=0$ である。

Eの実数性

$$
\psi(\vec{r}, t)=C \exp \left(-\frac{i E t}{\hbar}\right) \phi(r)
$$

Eが複素数と仮定する。
$\rho(\vec{r}, t)=\psi^{*}(\vec{r}, t) \psi(\vec{r}, t)=|C|^{2} \exp \left[-\frac{i}{\hbar}\left(E-E^{*}\right) t\right] \phi^{*}(\vec{r}) \phi(\vec{r})$
連続の方程式に代入して全空間で積分する

$$
\begin{aligned}
-|C|^{2} \frac{i}{\hbar}\left(E-E^{*}\right) \exp \left[-\frac{i}{\hbar}\left(E-E^{*}\right) t\right] \int \phi^{*}(\vec{r}) \phi(\vec{r}) d^{3} r & =-\int \vec{\nabla} \cdot \vec{j}(\vec{r}, t) d^{3} r \\
& =-\int \vec{j}_{n} d S
\end{aligned}
$$

0になるはず

$$
\text { よって } E=E^{*}
$$

定常状態の固有値と固有状態

$r \rightarrow \infty$ のときに $V(\vec{r}) \rightarrow 0$ とする

$$
-\frac{\hbar^{2}}{2 m} \Delta \phi(\vec{r})+V(\vec{r}) \phi(\vec{r})=E \phi(\vec{r})
$$

－ $\mathbf{E}<0$
Eのある特別な値に対してのみ解をもつ。すなわち，固有値が離散的になる。対応する定常状態には，系の空間の有限な範囲内での運動が対応する（束縛状態）。 この場合， $\int|\psi|^{2} d^{3} r=\int|\phi(\vec{r})|^{2} d^{3} r$ は有限となる。 どんな正の値Eに対しても解が存在する。この場合に は $\int|\psi|^{2} d^{3} r=\int|\phi(\vec{r})|^{2} d^{3} r$ が発散する。

波動方程式の一般解

$$
\begin{gathered}
i \hbar \frac{\partial \psi(\vec{r}, t)}{\partial t}=H \psi(\vec{r}, t) \\
\text { シュレディンガー方程式は線形方程式 }
\end{gathered}
$$

変数分離できる場合：$\psi(\vec{r}, t)=C \exp \left(-\frac{i E t}{\hbar}\right) \phi(r)$

一般解は，
Eが離散的な場合 $\quad \psi(\vec{r}, t)=\sum c_{n} \exp \left[-\frac{i E_{n} t}{\hbar}\right] \phi_{n}(\vec{r})$
Eが連続的な場合 $\quad \psi(\vec{r}, t)=\int c(E) \exp \left[-\frac{i E t}{\hbar}\right] \phi_{E}(\vec{r}) d^{3} r$
となる。

波動方程式の一般解

$\psi(\vec{r}, t)=\sum c_{n} \exp \left[-\frac{i E_{n} t}{\hbar}\right] \phi_{n}(\vec{r})$
$\psi(\vec{r}, t)=\int c(E) \exp \left[-\frac{i E t}{\hbar}\right] \phi_{E}(\vec{r}) d^{3} r$
これらは定まったエネルギーをもたない（定常解ではない）
これらの場合，エネルギーの期待値は時間によらない。例えば，

$$
\langle E\rangle=\int \psi^{*} \hat{H} \psi d^{3} r=\sum_{n}\left|c_{n}\right|^{2} E_{n}
$$

一方，確率密度は時間による。

$$
\rho(\vec{r}, t)=\psi^{*} \psi=\sum_{m, n} c_{m}^{*} c_{n} \exp \left[\frac{i\left(E_{m}-E_{n}\right)}{\hbar} t\right] \phi_{m}^{*}(\vec{r}) \phi_{n}(\vec{r})
$$

エーレンフェストの定理

前回の宿題で示してもらったように，$$
\begin{aligned}
\langle\vec{p}\rangle=m \frac{d}{d t}\langle\vec{r}\rangle \quad \frac{d}{d t}\langle p\rangle=- & \langle\vec{\nabla} V(\vec{r})\rangle \\
& =\vec{F}(\vec{r})\rangle \\
& \text { エーレンフェストの定理 }
\end{aligned}
$$

これは，古典論の運動方程式

$$
\vec{p}=m \vec{v}=m \frac{d}{d t} \vec{r} \quad \frac{d}{d t} \vec{p}=-\vec{\nabla} V(\vec{r})=\vec{F}(\vec{r})
$$

と形式的には類似している。
しかし，これらは本質的に異なるものである。
（前者は統計的な期待値に対する関係式，後者は1つの粒子
の運動を記述する方程式）

波動力学の古典極限

波動関数（確率波）が波束になっている状態を考える十分幅が狭い波束を考え，波束の中心が $\langle\vec{r}\rangle$ であるとする。

$$
\text { 一般に, }\langle\vec{\nabla} V(\vec{r})\rangle \neq \vec{\nabla} V(\langle\vec{r}\rangle)
$$

もし，$\langle\vec{\nabla} V(\vec{r})\rangle=\vec{\nabla} V(\langle\vec{r}\rangle)$ であれば，

$$
\frac{d}{d t}\langle p\rangle=-\langle\vec{\nabla} V(\vec{r})\rangle=\langle\vec{F}(\vec{r})\rangle
$$

が波束の中心に存在する粒子の運動方程式であるとみなせる。
このように思えるのはどんな場合か？

1次元の場合

1次元の波束を考える。

$$
F(x)=-\frac{d V(x)}{d x}=-V^{\prime}(x) \quad \text { とする。 }
$$

$V(x)=\lambda x^{n}$ である場合（ n は正の整数）

$$
\begin{aligned}
& \left\langle V^{\prime}(x)\right\rangle=\lambda n\left\langle x^{n-1}\right\rangle \\
& V^{\prime}(\langle x\rangle)=\lambda n\langle x\rangle^{n-1}
\end{aligned}
$$

一般に $\left\langle x^{n-1}\right\rangle \neq\langle x\rangle^{n-1}$（例えば，$\left\langle x^{2}\right\rangle \neq\langle x\rangle^{2}$ ）
ただし， $\mathrm{n}=0$（自由粒子）， $\mathrm{n}=1$（一様な場のもとでの力）， $n=2$（調和振動子）の場合には等号が成り立つ。

ポテンシャルVの変化が，十分ゆるやかな場合，波束の中心の運動は，ほぼ古典粒子の軌道と一致する。

$$
\langle\vec{\nabla} V(\vec{r})\rangle=\int \psi^{*}[\vec{\nabla} V(\vec{r})] \psi d^{3} r=\int|\psi|^{2}[\vec{\nabla} V(\vec{r})] d^{3} r
$$

Vの変化が十分ゆるやかであるとすると，波束が存在 している領域（狭い！）では，Vや $\nabla \mathrm{V}$ Vはぼ一定とみな せる。
$\langle\vec{\nabla} V(\vec{r})\rangle=\int|\psi|^{2}[\vec{\nabla} V(\vec{r})] d^{3} r=[\vec{\nabla} V(\langle\vec{r}\rangle)] \int|\psi|^{2} d^{3} r=\vec{\nabla} V(\langle\vec{r}\rangle)$

古典極限のまとめ

ポテンシャルの変化する距離に比べて，波束の幅が十分小さい場合，波束の中心に存在する粒子の運動 を記述するのに，古典力学の運動方程式が使える

