自然科学の歩き方

第3回目

☆ データには誤差がある

モデルによる予測にも(場合によって)誤差が入る

쓫 本当は誤差の評価をきちんとやった上でデータ分析

☆ 誤差を正確に評価するのは重要

Search for New Physics with b→sll decays @ LHCb

Simone Bifani

University of Birmingham (UK) On behalf of the LHCb Collaboration

CERN Seminar, 18th April 2017

Today ...

> Test of LFU with $B^{0} \rightarrow K^{*0}\mu\mu$ and $B^{0} \rightarrow K^{*0}ee$, $R_{K^{*0}}$

- > Measured relative to $B^0 \rightarrow K^{*0}J/\psi(II)$ in order to reduce systematics
- > K^{*o} reconstructed as $K^+\pi^-$ within 100MeV from the K^{*}(892)^o
- > Blind analysis to avoid experimental biases
- > Extremely challenging due to significant differences in the way μ and e "interact" with the detector
 - » Bremsstrahlung
 - »Trigger

Simone Bifani

Systematics – I

> R_{K*} determined as a double ratio

» Many experimental systematic effects cancel

» Statistically dominated (~15%)

	$low-q^2$			$central-q^2$		
Trigger category	L0E	L0H	L0I	L0E	L0H	LOI
Corrections to simulation	2.5	4.8	3.9	2.2	4.2	3.4
Trigger	0.1	1.2	0.1	0.2	0.8	0.2
PID	0.2	0.4	0.3	0.2	1.0	0.5
Kinematic selection	2.1	2.1	2.1	2.1	2.1	2.1
Residual background	_	_	_	5.0	5.0	5.0
Mass fits	1.4	2.1	2.5	2.0	0.9	1.0
Bin migration	1.0	1.0	1.0	1.6	1.6	1.6
$r_{J\!/\psi}~{ m flatness}$	1.6	1.4	1.7	0.7	2.1	0.7
Total	4.0	6.1	5.5	6.4	7.5	6.7

> Total systematic uncertainty of 4-6% and 6-8% in the low- and central-q²

Simone Bifani

Results – I

> The measured values of $R_{K^{*o}}$ are found to be in good agreement among the three trigger categories in both q^2 regions

Simone Bifani

CERN Seminar

> The compatibility of the result in the low-q² with respect to the SM prediction(s) is of 2.2-2.4 standard deviations

> The compatibility of the result in the central-q² with respect to the SM prediction(s) is of 2.4-2.5 standard deviations

CERN Seminar

The Branching Fraction BR[B->X_s+gamma].

At present very good agreement between theory and experiment!

SuperB Workshop Univ. of Hawaii, 21 April 2005

Figure 62.2: Compilation of recent published results for a_{μ} (in units of 10^{-11}), subtracted by the central value of the experimental average (62.3). The shaded band indicates the size of the experimental uncertainty. The SM predictions are taken from: JN 2009 [4], HLMNT 2011 [23], DHMZ 2011 [19], DHMZ 2017 [18], Note that the quoted errors in the figure do not include the uncertainty on the subtracted experimental value. To obtain for each theory calculation a result equivalent to Eq. (62.14), the errors from theory and experiment must be added in quadrature.

PDG2017

モデルパラメータの推定

쓫 モデルの再現性を評価する指標として,二乗誤差を導入

☆ 二乗誤差を利用することで、与えられたモデルに対し、 最良のパラメータを決定することができる

쓫 この手法を最小二乗法という

二乗誤差について

☆ 測定データの組(x₁,y₁),(x₂,y₂)…があるとする

☆ どの測定も互いに影響しあわないとする(独立)

☆ 同じx_iに対して何度も実験をした場合,測定値y_iのば らつき具合は正規分布に従うとする $P(y_i; \bar{y}_i, \sigma_i) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \bar{y}_i)^2}{2\sigma^2}}$ 分散: σ_i

分散の意味:測定値が68.3%の確率で $\bar{y}_i \pm \sigma$ の範囲内に現れる 95% $\bar{y}_i \pm 2\sigma$ 99% $\bar{y}_i \pm 3\sigma$

測定値の組を得る確率

- モデルy=f(x)が正しいとする→y_iの測定平均はf(x_i)になるはず 1個の観測値(x_i,y_i)を得る確率は $P[(x_i,y_i)] = \frac{1}{\sqrt{2\pi\sigma_i^2}} e^{-\frac{(y_i - f(x_i))^2}{2\sigma_i^2}}$
- N個の観測値の組{(x_i,y_i),i=1,...,N}が得られる確率は

$$P[(x_1, y_1), (x_2, y_2), \cdots, (x_N, y_N)] = P[(x_1, y_1)]P[(x_2, y_2)] \cdots P[(x_N, y_N)]$$
$$= \frac{1}{\sqrt{(2\pi)^N \prod \sigma_i^2}} e^{\left[-\frac{1}{2} \left[\sum \frac{(y_i - f(x_i))^2}{\sigma_i^2}\right]\right]}$$

仮定したモデルにおいて,実際測定されるような観測値の 組が与えられる確率が最大になるのは

の部分が最小になるときである

最小二乗法のアイデア $\chi^2 = \sum_{i} \frac{(y_i - f(x_i))^2}{\sigma_i^2}$

が最小になるようにモデルパラメータを決めればよい

簡単な場合として $\sigma_1 = \sigma_2 = \cdots = \sigma_N$ を考えると $\sigma^2 \chi^2 = \sum_i (y_i - f(x_i))^2$ 二乗誤差の和

が最小のときが,測定値の組を再現できる確率が最大

モデル自身の良し悪しは,Eの最小値で判別する (通常は確率が5%未満になるような場合には棄却される)

いくつかの例

Figure 1: "The blue-band plot" [68] shows the global fit of the Higgs mass based on precision electro-weak measurements at LEP, SLC and the Tevatron. Measurements at low energies have been included but play only a minor role. The blue band shows the theoretical uncertainty within the SM. The mass region excluded by the LHC (as of December 2011) is also shown.

☆ モデルを決める

二乗誤差の和E(正確にはχ²)を計算する

쓫 Eが最小になるようなモデルパラメータを見つける

☆ 簡単なモデルとして, *I=aV* を採用する

☆ 二乗誤差Eは,

$$E = \sum_{i=1}^{6} \left(aV_i - I_i \right)^2$$

☆ 様々なaの値を試して、Eが最小になる場合を見つけ出す

やってみよう

電流Iと電EVの間にI=aVという関係があるものと推定し、 今回の推定値を最もよく表すaの値を探すことを考える。

V [V]	1.50	3.00	4.50	6.00	7.50	9.00
I [A]	5.64×10^{-2}	1.12×10^{-1}	$1.86 imes 10^{-1}$	2.22×10^{-1}	3.25×10^{-1}	3.32×10^{-1}

1. *a*の値を0.02から0.01刻みで0.06まで変化させる。それぞ れの*a*の値について,二乗誤差Eを計算し,表に書き込め。

aの値	0.02	0.03	0.04	0.05	0.06
_E の値					

 今回調べたaの値の中で,最も良く測定データを表すもの は何か。そのaを用いたI=aVの直線を,グラフ中に実線で 書き込め。