現代宇宙論

第1回

往古來今謂之宙，四方上下謂之宇

Universe
Uni(一つの) + Verse (回転するもの)

Multiverse

Cosmos kó $\mu \mu 0 \sigma$（秩序ある系。カオスの対義語）
ピタゴラス（B．C．500頃）は確固たる秩序や法則があると考えた

科学的方法による宇宙研究

天動説

プトレマイオス以降，16世紀までの宇宙の描像を支配惑星の位置予測に誤差。周転円による修正。

天動説から地動説へ

コペルニクスの地動説
「天体の回転について」（1543）
コペルニクスの宇宙

あまり受け入れられなかった
－実は，宗教的理由よりも，惑星位置の予測精度の問題が大きかった
－年周視差の問題
http：／／spaceinfo．jaxa．jp

ガリレオ・ガリレイ

初めて望遠鏡を使って天体を観測
～金星の満ち欠け
木星の衛星
へガリレオ裁判

Justus Sustermans

当時の政治状況，ガリレオの人間関係，聖書解积権の問題な どなど，複雑な状況が絡んだ結果のよく分からない裁判。「科学対宗教」という単純なものではないらしい。

天動説から地動説へ

チコブラーエの観測に基づき，ケプラーが惑星運動の法則を見出す

- 惑星は太陽を焦点のひとつとする楕円軌道を描く
- 惑星と太陽とを結ぶ線分が単位時間に描く面積は一定
- 惑星の公転周期の 2 乗は軌道長半径の 3 乗に比例

ニュートンによる万有引力の法則発見

宇宙論

～宇宙がどのようになっているか？宇宙はどのように創成され，発展してきたか？
后 天文学（Astronomy），天体物理学（Astrophysics），宇宙論（Cosmology），素粒子論的宇宙論（Particle cosmology，Astroparticle physics）．．．
～物理学の諸法則を応用して宇宙を理解しようと試みる
～「宇宙論の基礎法則」がある訳ではない。総合芸術的分野。
～宇宙の研究から物理学の基礎理論へのフィードバックの可能性
\approx ケプラーの法則 \rightarrow 万有引力
～星内部の元素合成 \rightarrow トリプルアルファ反応にける ${ }^{12} \mathrm{C}$ 共鳴

宇宙の歴史概観

詳細はこれから1セメスターかけて学びます。

宇宙の組成

この授業の目標

ビッグバン宇宙論の基礎を理解する
～宇宙の熱史的理解と重要イベントの理解（宇宙の晴れ上がり，再電離等）
※ビッグバン宇宙論を支える観測的根拠は何か？
え 膨張宇宙におけるボルツマン方程式を扱えるようになる
～具体目標：暗黒物質の残存量を計算できるようになる
標準宇宙論における問題点の整理
「宇宙の誕生と進化」は科学的か？を考えて欲しい

膨張宇宙の観測

ハッブルの法則

ハッブル定数

－遠方銀河ほど後退速度が大きい $v=H r$
・これらの性質は観測している銀河の方向によらない

Velocity－Distance Relation among Extra－Galactic Nebulae．
Edwin Hubble，Proceedings of the National Academy of Sciences，15，168， 1929

Freedman，et al．，APJ 553，47（2001）

$$
H_{0}=72 \pm 8 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}
$$

パーセク

pc （パーセク）とは：

距離の単位。年周視差が1秒角になる距離を1pcという。

パーセク

pc （パーセク）とは：

距離の単位。年周視差が1秒角になる距離を1pcという。

パーセク

pc （パーセク）とは：

距離の単位。年周視差が1秒角になる距離を1pcという。

パーセク

pc （パーセク）とは：
距離の単位。年周視差が1秒角になる距離を1pcという。

光のドップラー効果

ドップラー効果の復習
波の速度速度 v で遠ざかる波源からの波

観測者 波源
観測される振動数 波源の振動数
光の場合，光速度が誰から見てもcであるから，上式に変更が加わる

$$
\nu^{\prime}=\nu \frac{\sqrt{1-(v / c)^{2}}}{1+(v / c) \cos \theta}
$$

観測者から見た光源の遠ざかる方向 （ 90° より大きい場合は近づいてくる）

赤方偏栘

$$
\nu^{\prime}=\nu \frac{\sqrt{1-(v / c)^{2}}}{1+(v / c) \cos \theta} \longrightarrow \lambda^{\prime}=\lambda \frac{1+(v / c) \cos \theta}{\sqrt{1-(v / c)^{2}}}
$$

遠ざかる光源 $(\theta=0)$ からの光は実際より赤く見える （波長が長くなる）
赤方偏移パラメータZを次で定義する $1+z=\frac{\lambda^{\prime}}{\lambda}$
光源の速度は z を使って $\frac{v}{c}=\frac{2 z+z^{2}}{2+2 z+z^{2}}$ となる。
なお，Zが1より十分小さければ，$\frac{v}{c} \simeq z$
銀河の後退速度は，星が出す光の暗線スペクトルなどの赤方偏移によって決定する。

ハッブルの法則の意味

静的な宇宙において，天の川銀河だけがある方向に動く場合 \rightarrow 赤方偏移に方向性が現れる
～他の銀河がランダムに動く場合でも同様
～静的な宇宙における銀河運動による場合
\rightarrow 天の川銀河が宇宙の中心 \＆かなり特殊な運動を要求
※ 天の川銀河が宇宙の1銀河に過ぎないという立場に立つと，別な銀河から見て もハッブルの法則は成り立つ
\rightarrow 宇宙空間自体が膨張していると考えるのが最も自然

自然単位系

いくつかの基本法則に付随する重要な定数に注目する
万 万有引力の法則 $\rightarrow G=6.67430 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
～電磁気学，相対論 $\rightarrow c=299792458 \mathrm{~m} / \mathrm{s}$
\sim 量子力学 $\rightarrow h=6.62607015 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
熱•統計物理学 $\rightarrow 1.380649 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
これらの定数を組み合わせて，長さ，質量，時間，温度の単位を持つ物理量を作ってみる。

自然単位系

$$
\begin{aligned}
& G=6.67430 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2} \\
& c=299792458 \mathrm{~m} / \mathrm{s} \\
& \hbar=\frac{h}{2 \pi}=1.05457 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \\
& k_{B}=1.380649 \times 10^{-23} \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

$$
\begin{aligned}
& t_{P}=\sqrt{\frac{G \hbar}{c^{5}}} \simeq 5.39 \times 10^{-44} \mathrm{~s} \\
& \ell_{P}=\sqrt{\frac{G \hbar}{c^{3}}} \simeq 1.62 \times 10^{-35} \mathrm{~m} \\
& M_{P}=\sqrt{\frac{c \hbar}{G}} \simeq 2.18 \times 10^{-8} \mathrm{~kg} \\
& T_{P}=\sqrt{\frac{\hbar c^{5}}{G k_{B}^{2}}} \simeq 1.42 \times 10^{32} \mathrm{~K}
\end{aligned}
$$

これらを時間，長さ，質量，温度の単位として単位系を作

自然単位系

$$
\text { り直すことができる。 } \quad G=c=\hbar=k_{B}=1
$$

自然単位系

$$
\begin{aligned}
& G=6.67430 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2} \\
& c=299792458 \mathrm{~m} / \mathrm{s} \\
& \hbar=\frac{h}{2 \pi}=1.05457 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \\
& k_{B}=1.380649 \times 10^{-23} \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

これらの定数を利用することで，例えば長さや時間をエネルギーの単位に換算可能例：時間 $\mathrm{t}[\mathrm{s}]$ に対し，時間を表す変数 t^{\prime} を $t^{\prime}=\frac{t}{\hbar}$ で定義すると，t^{\prime} の単位は J^{-1} になる。 $1 \mathrm{eV}=1.602176634 \times 10^{-19} \mathrm{~J}$ より， $1 \mathrm{~J} \simeq 6.242 \times 10^{18} \mathrm{eV}$ 。
よって，$t_{P}^{\prime} \simeq 5.39 \times 10^{-44} \mathrm{~s} / \hbar=3.19 \mathrm{GeV}^{-1}$
同様に，$\ell_{P}^{\prime}=\ell_{P} /(\hbar c) \simeq 1.62 \times 10^{-35} \mathrm{~m} /(\hbar \mathrm{c})=3.19 \mathrm{GeV}^{-1}$

単位換算の練習

プランク質量 M_{P} は何GeVになるか？

宇宙の歴史概観

