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ABSTRACT

Disk-planet interaction is one of the main ingredients of the theory of
planetary system formation, which is yet to be understood, although stan-
dard scenario of planet formation does not take into account. The timescale
of planet migration, which occurs as a result of disk-planet interaction, is
very likely to be shorter than disk lifetime. If planets migrate inward in a
short timescale, planetary systems, including our Solar System, are not able
to be formed. It is only recently that we are aware that the direction and
timescale of the planet migration can be very sensitive to the disk state.
Different disks can result in different planet migration, and therefore, planet
migration can be a clue to understand the diversity of the currently observed
extrasolar planet systems. In this thesis, in order to understand how disk
state can affect the properties of disk-planet interaction, we explore the ef-
fects of magnetic field and viscosity on disk-planet migration, using mainly
linear perturbation theory. Then, we also investigate how non-linear effects
come into play in disk-planet interaction.
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Chapter 1

Introduction

Ever since the discovery of 51 Peg b (Mayor and Quelotz 1995 [59]), more than
400 extrasolar planets have been found in our neighborhood (The Extrasolar
Planets Encyclopedia [22]). One of the most surprising facts may be that the
extrasolar planetary systems totally do not look like our Solar System. Some
“jupiters” orbit very close to the central star. Some “eccentric” planets have
very high eccentricity. We are now not very sure whether we are “typical”
in our universe. Figure 1.1 shows the relationship between the mass and the
semi-major axis of planets discovered, and Figure 1.2 shows the relationship
between the orbital semi-major axis and the eccentricity of the planet.

Most of the planets are found by so-called “indirect” method, which does
not observe the photons from the planets themselves. The most successful
methods to date is the radial velocity method, which observes the wobbling
motion of the central star due to the planet’s orbital motion using high-
resolution spectroscopy. Typically, radial velocity methods provide the in-
formation of the minimum mass of the planets, semi-major axis, and the
eccentricity of the planets. Another successful indirect method is transit,
which observes the eclipse of the central star by the planets. Although the
number of the planets discovered by transit is small compared to the radial
velocity methods since eclipse does not occur all the systems, this method
provides us much more information than the radial velocity methods such as
inclination, density of the planets and so forth.

“Direct” observations of the photons emitted by planets are far more
challenging than the indirect methods because (1) very high spacial resolution
is necessary, (2) the central star is very bright compared to the planet itself,
and (3) very high sensitivity is required. It is only recently that the possible
planetary-mass companions to main-sequence stars are discovered (Marois
et al. 2008 [29], Kalas et al. 2008 [30], Thalmann et al. 2009 [32] ). It is
promising that more discoveries are to come in the near future. Figure 1.3
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: The correlation diagram between the (minimum) mass and the
semi-major axis of the planets. The population with close orbit and high-
mass is called “hot jupiters”.

Figure 1.2: The correlation diagram between the semi-major axis and the
eccentricity of the planets. The population with high-eccentricity is called
“eccentric planets”.



3

Figure 1.3: The image of three low-mass companions (denoted by b, c, and
d) of A-type star HR8799. This image is taken from Marois et al. 2008 [29]

shows the image of three low-mass companions around HR8799.

Despite the great development of observational studies of extrasolar plan-
ets, theorists working on planet formation are now facing great challenges.
We need to understand how such diverse planets are formed, whilst the “stan-
dard formation scenario” of our solar system yet contains many serious dif-
ficulties.

It is considered that the planets are formed from a protoplanetary disk
that contains gas and dust particles surrounding young stars. There are
two scenarios of planet formation. One is disk instability model (Cameron,
1978 [11]), and the other is core-accretion model (Hayashi et al. 1985 [44]).
In the disk instability model, planets are formed through the gravitational
instability of the massive protoplanetary disk. It is possible to form planets
in a relatively short timescale in this model, although it is difficult to form
rocky planets such as Earth. In the core-accretion scenario, dust particles
coagulate each other to form massive objects. In this scenario, rocky planets
are formed naturally, although it also contains some difficulties such as mi-
gration of dust and planets, or timescale problems of the coagulation of dust
particles. It is considered that our solar system is formed by core accretion.
Moreover, metallicity-planet correlation shown in Figure 1.4 indicates that
the higher the metallicity of the central star, the more probable that the
planets are found. This supports the core-accretion scenario because the cir-
cumstellar disk around a metal-rich star most likely contains larger amount
of dust particles, from which planets are formed. In a gravitational insta-
bility scenario, planets are formed regardless of the stellar metallicity, since
planets are assumed to be formed via gravitational instability of gas disk.

However, we note that gravitational instability scenario may be more
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Figure 1.4: The number of planets as a function of host star metallicity.
This figure is created using the data provided by The Extrasolar Planets
Encyclopedia [22].

plausible in explaining recently discovered systems using direct imaging meth-
ods (Marois et al. 2008 [29], Kalas et al. 2008 [30]). These systems harbor
planets far from the central star, and as shown in the subsequent chapter,
planetary formation by core accretion simply takes too long time. It is not
yet confirmed whether such systems are abundant. Whether (most) plan-
etary systems are formed by core accretion or disk instability (or both) is
under serious discussion.

In this thesis, we consider core-accretion scenario. One important phys-
ical process which may affect the “standard” core accretion scenario is the
disk-planet interaction, which is the main focus of this thesis. Planets and
disk interact through gravitational force. As a result, density wave is ex-
cited on the disk, and the backreaction from the density wave causes the
change of the semi-major axis of the planets and they migrate in the disk.
The timescale of the radial migration is relatively short compared to the disk
dispersal timescale. Therefore, in order to construct “realistic” planet for-
mation model, it is necessary to consider this effect, although the standard
theory is based on the assumption of in-situ formation.

Probably the most serious problem on planetary migration is that the di-
rection of the migration is not well understood. It has long been believed that
the planets migrate inward (e.g., Ward 1997 [91], Tanaka et al. 2002 [83]).
This result is derived using the disk models of standard core accretion sce-
nario. However, inward migration may not be a very robust result. For exam-
ple, when radiative effects are taken into account, it is possible that planets
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migrate outward (Paardekooper and Mellema 2006 [67]). Such effects have
not been taken into account in the standard core accretion scenario. It is
now necessary to investigate how physical processes acting on the disk may
affect disk-planet interaction qualitatively and quantitatively.

We first review the framework of standard core-accretion scenario in
Chapter 2 and point out some theoretical problems involved in the model.
We then review some classic works on disk-planet interaction and planetary
migration in Chapter 3. We then consider how magnetic field exerted on
the disk can alter the physics of disk-planet interaction in Chapter 4. In
Chapter 5, we investigate the effects of viscosity on disk-planet interaction.
Main focus on these two chapters are linear analyses of disk-planet interac-
tion. In Chapter 6, we show results of numerical simulations on disk-planet
interaction. We summarize our work in Chapter 7.





Chapter 2

Theory of Planet Formation

In this chapter, we review in detail the core accretion scenario of planetary
formation. We show that core accretion scenario successfully explains some
of the properties of the solar system. We also show that this scenario itself
contains many theoretical difficulties.

2.1 Minimum Mass Solar Nebula

The very first step of the theory of planet formation is to provide its initial
condition. In principle, the properties of protoplanetary disk are determined
as a consequence of star formation. However, it is not possible to follow the
collapse of the molecular cloud (∼ 1pc scale) all the way down to proto-
planetary disk resolving central star (∼ 105km scale). The highest resolution
numerical study at present is done using nested-grid technique (e.g., Machida
et al. 2005 [28]) and it is possible to resolve ∼ 10AU scale (first core) while
the simulation box is approximately 10pc scale. It is yet required to resolve
another five orders of magnitude in order to determine the initial condition
of planetary system formation.

It is, however, natural to consider that the protostar is accompanied by
protostellar disk. Theoretically, if the initial molecular cloud is rotating, it
is a natural consequence of the conservation of angular momentum that disk
is formed around the star. Observationally, the existence of disk is indicated
by the infrared excess of spectral energy distribution (e.g., Lada 1987 [50]),
and more recently, it is possible to image the disk-like structure around a
star (e.g., Fukagawa et al. 2004 [25], Fujiwara et al. 2006 [24]).

In the original model of core accretion scenario, it is assumed that there
is a protoplanetary disk associated with a protostar, and the disk property
is reconstructed using the distribution of solid materials of Solar System

7



8 CHAPTER 2. THEORY OF PLANET FORMATION

(e.g., Kusaka et al. 1970 [49], Hayashi et al. 1981 [43]). This disk is called
Minimum Mass Solar Nebula (MMSN), because it contains the minimum
amount of solid particles to make the solar system. The surface density of
solid particles Σd in MMSN model is given by

Σd =

{
7.1 ×

(
r

1AU

)− 3
2 g cm−2 0.35AU < r < 2.7AU

30 ×
(

r
1AU

)− 3
2 g cm−2 2.7AU < r < 36AU

(2.1)

The jump of Σd at r = 2.7AU comes from the speculation that beyond this
radius, the temperature of the disk is below the condensation temperature of
ice, and the ice is added to the solid particle component. This line is called
“snow line”. The surface density of gas, Σg, is given by multiplying gas-dust
ratio to Σd,

Σg = 1.7 × 103
( r

1AU

)− 3
2
g cm−3. (2.2)

We note that MMSN model is constructed using the distribution of solid
materials in Solar System, recent observations of protoplanetary disks indi-
cate that the mass of extrasolar planetary disks are close to that of MMSN
model [3]. It is a coincidence, but it is possible to use the MMSN model as
a reference model in considering the formation of extrasolar systems. How-
ever, different models of protoplanetary disks are also discussed (e.g., Desch
2007 [21]).

The temperature of the disk is given by assuming thermal equilibrium.
The dust particles are heated by the irradiation from the central star, and
cool by thermal radiation. Assuming the temperature of gas and dust are
identical, we have

T = 2.8 × 102
( r

1AU

)− 1
2

(
L

L¯

) 1
4

K. (2.3)

Snow line is determined from this equation from the condition T = 170K.
From this temperature distribution, the isothermal sound speed is given by

c =

(
kT

µmH

) 1
2

= 9.9 × 104

(
2.34

µ

) 1
2 ( r

1AU

)− 1
4

(
L

L¯

) 1
8

cm s−1. (2.4)

In the original MMSN model, temperature distribution of the disk relies
on the assumptions of optically thin disk. However, since protoplanetary
disk’s density is very thick, more careful treatment of the radiation transfer
may be necessary. Chiang and Goldreich (1997) [15] proposed the model that
takes into account two-dimensional radiation transfer. The location of snow
line is sensitive to the temperature structure of the disk.
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2.2 Structure of Minimum Mass Solar Neb-

ula

In this section, we investigate the structure of the “classical” protoplanetary
disk. In the original model of a protoplanetary disk, the assumptions are the
following:

• Molecular viscosity is neglected

• The flow is laminar

• Magnetic field does not affect the dynamics

• Cooling timescale is shorter than the disk evolution timescale

• The disk is geometrically thin

• The mean flow of the disk is axisymmetric and azimuthal

• The physical quantities vary slowly in the radial direction compared to
the vertical direction

We first present the dynamical structure of the disk, and then investigate to
what extent these assumptions are valid.

2.2.1 Dynamical Structure of the Protoplanetary Disk

We first calculate the mean flow of the disk. The equations that govern the
dynamics of the gas are fluid equations:

∂ρg

∂t
+ ∇ · (ρgv) = 0, (2.5)

ρ
dv

dt
= −∇p − ρg∇Ψ, (2.6)

where d/dt denotes the Lagrangian time derivative, ρg is the gas density, v
is the flow velocity. We denote the potential of the central star by Ψ, which
is

Ψ =
GM∗√
r2 + z2

(2.7)

in the cylindrical coordinate (r, φ, z).
We derive the stationary solution ∂/∂t = 0 of the fluid equations. Ne-

glecting higher order terms in z/r, radial component of Equation (2.6) is

Ω(r)2 =
c2

r2

d ln p

d ln r
+

GM∗

r3
, (2.8)
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where Ω(r) denotes the angular velocity,

vφ = rΩ, (2.9)

and c denotes the sound speed. We note that the gas flow velocity is slightly
deviated from Keplerian rotation Ω2

K = GM∗/r
3 because of the gas pressure

effect. In MMSN, the gas pressure gradient is assumed to be negative and
therefore the gas rotates at sub-Keplerian velocity.

The vertical component of the equation of motion is

c2

p

∂p

∂z
= −GM∗

r2

z

r
. (2.10)

If we assume that the sound speed is constant in the vertical direction, we
have

p(z) =
c2

√
2π

Σg

H
e−

1
2

z2

H2 , (2.11)

where Σg is the surface density defined by

Σg =

∫ +∞

−∞
dzρ(r, z) (2.12)

and we have defined vertical scale height H by

H =
c

ΩK

. (2.13)

For MMSN, disk scale height is

H = 5.0 × 1011

(
2.34

µ

) 1
2
(

M∗

M¯

) 1
2 ( r

1AU

) 5
4
cm. (2.14)

It is clear that the disk scale height is much smaller than the disk’s radial
extent, 1AU = 1.5 × 1013cm.

We note that the difference of the gas rotational velocity with respect to
the Keplerian velocity is the order of the square of the disk aspect ratio H/r.
We write the angular velocity of the gas by

Ω ' ΩK(1 − η), (2.15)

where

η = −1

2

H2

r2

d ln p

d ln r
. (2.16)
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2.2.2 Effects of Viscosity

We first investigate how viscosity affects the structure of the disk. We show
that the molecular viscosity is safely neglected. The gas density at the equa-
torial plane of the disk is

ρg ∼
Σg

H
∼ 3 × 10−9gcm−3. (2.17)

Assuming that the collisional cross section between gas particles (Hydrogen
molecules are the dominant component) is σ ∼ 10−20cm2, mean free path of
gas particles is lmfp

lmfp ∼ 1cm (2.18)

and the mean free time τ at T ∼ 300K is

τ ∼ 10−5sec. (2.19)

Therefore, the order of magnitude of kinetic viscosity ν arising from molecular
viscosity is

ν ∼
l2mfp

τ
∼ 105cm2 s−1. (2.20)

The characteristic scale of the flow may be L ∼ 1AU and the velocity may
be Kepler velocity V ∼ rΩ. Therefore, Reynolds number Re of the flow is
estimated to be

Re =
LV

ν
∼ 1014. (2.21)

Such high Reynolds number shows that the molecular viscosity can be ne-
glected.

However, it is possible that the disk turbulence may act as an effective
viscosity (Shakura and Sunyaev 1973 [79], Balbus and Papaloizou 1999 [8] ).
Turbulent viscosity is usually parameterized by α,

ν = αcH. (2.22)

It is indicated that disk turbulence can be of the order of α . 10−1 as
a consequence of magneto-rotational instability (MRI, Balbus and Hawley
1991 [6], Sano et al. 2004 [74]). Magnetic effects can be very important in
considering the evolution of protoplanetary disks and we shall come back to
this in Section 2.2.4. Although it is very difficult to measure the values of α,
it is indicated that the turbulence with α ∼ 10−2 on scales r ∼ 10 − 100AU
may exist (Hartmann et al. 1998 [42]).
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If viscosity is exerted on a disk, the mass accretion onto the central star
occurs. The radial velocity vr is estimated by

vr ∼
ν

r
= α

H2

r2
rΩ, (2.23)

and therefore mass accretion timescale is

tacc =
r

vr

∼ 2.6 × 105
( α

10−2

)−1
(

H/r

0.1

)−2 ( r

30AU

)3/2

[yr]. (2.24)

It is noted that the lifetime of the protoplanetary disks is of the order of 106yr
(e.g., Haisch et al. 2001 [41]). If the dissipation of the disk occurs by accretion
onto the central star, the values of α may be 10−3 or less. The strength of
turbulence in a protoplanetary disks is very uncertain observationally.

2.2.3 Thermal Structure of Protoplanetary Disks

In protoplanetary disks, it is assumed that thermal timescale is shorter than
disk evolution timescale so the disk is in thermally stationary state in con-
sidering the long-term evolution. The most important cooling process in a
protoplanetary disk is the dust thermal radiation. Rosseland mean opacity
κ of dust grains is of the order of κ ∼ 1cm2g−1 (Pollack et al. 1985 [72]).
If the disk is optically thin in vertical direction, the thermal radiation from
dust particles radiates away from disk surface. 1 Thermal energy flux in the
z-direction is estimated to be

F = −16σSBT 3

3κρ

∂T

∂z
∼ σSBT 4

κΣ
, (2.25)

where σSB is the Stefan-Boltzmann constant. Thermal energy per unit area
may be estimated by

E ∼ ΣkBT

µmH

. (2.26)

Therefore, cooling timescale is

tcool ∼
E

F
∼ 103

(
Σ

103gcm−2

)2 (
κ

1cm2g−1

)(
T

300K

)−3

yr. (2.27)

We have shown that the timescale of the global evolution of the disk is of the
order of 105−6 years, which is longer than cooling timescale.

1Disk midplane is actually optically thick and therefore, thermal structure of the disk
should be analyzed more carefully. However, since the density rapidly decreases as a
function of height, the disk becomes optically thin somewhere around the disk scale height.
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2.2.4 Effects of Magnetic Field

The most important role of magnetic field is that, as pointed out in Section
2.2.2, it can cause the angular momentum transport as a result of magneto-
rotational instability (MRI, Balbus and Hawley 1991 [6]). We first derive
the critical value of ionization degree at which the disk gas can couple with
magnetic field. For flow with characteristic scale L and characteristic velocity
V , if magnetic Reynolds number,

ReM =
LV

η
, (2.28)

exceeds unity, the flow couples with magnetic field well. Here, η denotes
resistivity. Since magneto-rotational instability drives a turbulence with scale
H as a result of the growth of slow wave (or Alfvén wave), the characterestic
velocity may be of the order of Alfvén velocity vA and the characteristic scale
may be of the order of the scale height H. Therefore, magnetorotational
instability may be suppressed if

ReM =
HvA

η
¿ 1. (2.29)

This result is more quantitatively shown by linear perturbation analysis in-
cluding Ohmic dissipation (Sano and Miyama 1999 [75]).

If electrons are the main career of the electric current, the resistivity η
may be determined by the collision between electrons and neutral molecular
Hydrogen and is given by (Hayashi 1981 [43])

η = 6.5 × 103x−1cm2s−1, (2.30)

where x is the ionization degree. Therefore, magnetic Reynolds number is
estimated as

ReM = 7.6 × 1012x
1

β
1
2

(
2.34

µ

)(
M∗

M¯

) 1
2 ( r

1AU

)
, (2.31)

where β = c2/v2
A is the plasma β parameter. Therefore, if ionization degree

exceeds 10−13, the effects of magnetic field cannot be neglected.
Ionization degree is determined by assuming ionazation equilibrium. Quan-

titative analyses are found in Umebayashi (1983) [88] or Sano et al. (2001) [76]
and that the useful analytic formula for ionization degree is recently derived
by Okuzumi(2009) [66].

Ionization occurs by collisions between molecules, cosmic rays, or decay
of radioactive nuclei. Collisional ionization is important if disk temperature



14 CHAPTER 2. THEORY OF PLANET FORMATION

exceeds 103K when ionization of pottasium occurs, and the ionization de-
gree may reach 10−11. Therefore, at the inner part of the disk, collisional
ionization is important. At the locations distant away from the central star,
cosmic ray ionization is the dominant process of ionization. However, cosmic
ray can penetrate the gas with surface density of the order of ∼ 100g/cm2

(Umebayashi and Nakano 1981 [89]). At the midplane of the protoplanetary
disk at r . 1AU, decay of radioactive nuclei is the only process of ionization.
Typical values of ionization rate by radioactive nuclei is ∼ 10−23s−1, which is
six orders of magnitude smaller than typical interstellar cosmic ray ionization
rate, ∼ 10−17s−1.

The most important recombination process in a protoplanetary disk is
the recombination on dust particles. This greatly reduces the number of
ionized gas particles and keeps the ionization degree of the protoplanetary
disk low. If dust-free disk is considered, recombination occurs in gas phase
by dissociative recombination. Equating the cosmic ray ionization and dis-
sociative recombination, we obtain the upper limit of ionization degree in
protoplanetary disks,

x = 1.6 × 10−12

(
T

500K

) 1
4
(

ζ

10−17s−1

) 1
2 ( nH

1013cm−3

)− 1
2
. (2.32)

Therefore, it is actually possible that protoplanetary disks can couple well
with magnetic field if small dust particles are depleted probably by the for-
mation of plants. It is also noted that surfaces of the protoplanetary disks
can couple with magnetic field, since cosmic rays can ionize gas particles
effectively.

Following the qualitative estimate of ionization degree in protoplanetary
disks, Gammie (1996) [35] proposed two-layered accretion disk model for
protoplanetary disks (Figure 2.1). He proposed that the disk is magnetically
active at the surfaces and at inner radii, although it is magnetically “dead”
at the midplane. The region where the disk does not couple with magnetic
field is called “dead zone”.

It is not yet confirmed whether dead zone actually exists. Analyses in-
cluding stellar X-rays ( Glassgold et al. (1997) [36] ) support the layered
accretion model, while Inutsuka and Sano (2005) [45] suggested that dead
zone may vanish if three percent of turbulent energy is used to reionize the
gas. The disk model including realistic ionization state is yet to be con-
structed. Fromang et al. (2002) [33] used α-model to construct such models
and more recently, Terquem (2008) [87] suggested a composite disk model.

In the subsequent Sections, we review the “standard” scenario of core
accretion model without including magnetic or turbulent effects and discuss
the problems in the models.



2.3. PLANETESIMAL FORMATION 15

Figure 2.1: The ionization structure proposed by Gammie (1996) [35]. This
figure is taken from Figure 1 of Gammie (1996).

2.3 Planetesimal Formation

In this section, we briefly review how dust particles (∼ µm in size) coagulate
each other to form planetesimals (∼ km size bodies).

There are two possible ways to form planetesimals. One is the mutual
sticking between dust particles. The other is gravitational instability of gas
disk. In MMSN model, Toomre’s Q-parameter is

Q =
κc

πGΣ

∼ 56

(
2.34

µ

) 1
2 ( r

1AU

)− 1
4

(2.33)

Therefore, it is more likely that mutual coagulation of dust particles plays
important roles in the first stages of the growth of dust particles.

2.3.1 Gas Drag on Dust Particles

A protoplanetary disk contains gas and dust particles, and the dynamics of
dust particles is important since planets are made from them. In considering
the dynamics of dust particles in protoplanetary disks, it is important to
consider the effects of gas, which exerts the drag force onto the dust particles.

Drag force exerted on dust particles depends on dust size. If dust size
is smaller than the mean free path of gas, the drag force may be estimated
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using kinetic argument. Let the velocity of dust particles v. The velocity
dispersion of gas particles may be of the order of the sound velocity c. Let
us consider the dust motion relative to the gas is small compared to the
sound speed of the gas, c À v. For head-on collisions between gas and dust
particles, momentum transfer is ∼ mg(c + v), and the collision frequency
is ∼ (ρg/mg)D

2(c + v), where ρg, mg, and D are gas density, mass of gas
particle, and size of dust particle, respectively. Rear-on collision may be
estimated in the same way. Therefore, the friction force, FE, exerted on dust
particles is

FE ∼ −ρgD
2vthv (2.34)

Thorough analyses are given by Epstein (1924) [23], and this drag law is
called Epstein law.

If the size of dust particles exceeds the mean free path of gas, drag
force may be estimated using fluid dynamics argument (Landau and Lifs-
chitz 1959 [51]). The drag force exerted on dust particles is given by

FS = 6πDηv, (2.35)

where η denotes the viscosity. This drag law is called Stokes law. It is to be
noted that the order of magnitude of Stokes drag and Epstein drag are the
same for particles with size comparable to the mean free path of gas.

The drag force is usually written, using parameter A, as

F = −MAρg∆v, (2.36)

where ∆v is the relative velocity between gas and dust. The value

tstop =
1

Aρg

(2.37)

is called stopping time. This is the timescale which dust particle’s velocity
becomes the same as the gas velocity. Stoping time relative to Kepler time
for several gas densities is shown in Figure 2.2.

2.3.2 Dust Motion in Protoplanetary Disks

We now investigate the dust motion in a protoplanetary disk. For brevity, we
treat the dust component as pressureless fluid and consider two-fluid model.

We write gas and dust velocity relative to Kepler motion by vg and vd,
and Keplerian angular velocity and velocity are denoted by ΩK and vK .

Equations of motion of gas is

∂vg,r

∂t
+ vg,r

∂vg,r

∂r
+ vg,z

∂vg,r

∂z
−

v2
g,φ

r
= −ρdA(vg,r − vd,r) + 2ΩKvg,φ + 2ηΩKvK ,

(2.38)
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Figure 2.2: Stopping time normalized by Kepler time for gas density with
10−8gcm−3, 10−10gcm−3, and 10−12gcm−3. Order of magnitude estimate used
in Muto and Inutsuka (2009) [63] is plotted (Equation (6) of their paper).

∂vg,φ

∂t
+vg,r

∂vg,φ

∂r
+vg,z

∂vg,φ

∂z
+

vg,rvg,φ

r
= −ρdA(vg,φ−vd,φ)−

1

2
ΩKvg,r, (2.39)

∂vg,z

∂t
+ vg,r

∂vg,z

∂r
+ vg,z

∂vg,z

∂z
= −ρdA(vg,z − vd,z) − Ω2

Kz − 1

ρg

∂p

∂z
, (2.40)

where η is the parameter of radial pressure gradiant introduced in Equation
(2.15).

Equations of dust component is given by

∂vd,r

∂t
+ vd,r

∂vd,r

∂r
+ vd,z

∂vd,r

∂z
−

v2
d,φ

r
= −ρgA(vd,r − vg,r) + 2ΩKvd,φ, (2.41)

∂vd,φ

∂t
+vd,r

∂vd,φ

∂r
+vd,z

∂vd,φ

∂z
+

vd,rvd,φ

r
= −ρgA(vd,φ−vg,φ)− 1

2
ΩKvg,r, (2.42)

∂vd,z

∂t
+ vd,r

∂vd,z

∂r
+ vd,z

∂vd,z

∂z
= −ρgA(vd,z − vg,z) − Ω2

Kz. (2.43)

We consider stationary state ∂/∂t = 0. We also assume that the deviation
from Kepler velosity is small, vK À vg, vd. At the lowest order, equations of
motion become

0 = −ρdA(vg,r − vd,r) + 2ΩKvg,φ + 2ηΩKvK , (2.44)

0 = −ρdA(vg,φ − vd,φ) −
1

2
ΩKvg,r, (2.45)
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0 = −ρdA(vg,z − vd,z) − Ω2
Kz − 1

ρg

∂p

∂z
, (2.46)

0 = −ρgA(vd,r − vg,r) + 2ΩKvd,φ + 2ηΩKvK , (2.47)

0 = −ρgA(vd,φ − vg,φ) −
1

2
ΩKvd,r, (2.48)

0 = −ρgA(vd,z − vg,z) − Ω2
Kz. (2.49)

Therefore, radial and vertical velocity of dust particles are

vd,r = − Γ

1 + (ξ + 1)2Γ2
2ηvK , (2.50)

vg,z − vd,z =
1

Γ

z

r
vK , (2.51)

where Γ denotes the ratio between Kepler time and stopping time

Γ =
ρgA

ΩK

, (2.52)

and ξ is dust-to-gas ratio,

ξ =
ρd

ρg

. (2.53)

Equation (2.50) shows that dust particles gradually fall onto the central
star. This is because rotation velocity of gas is slightly slower than dust
velocity owing to pressure gradient effect, and thereby dust particles feel
negative torque due to gas drag.

2.3.3 Dust Growth and Infall

In the previous section, we have seen that dust particles fall onto the central
star due to gas drag. We now question whether dust particles can grow
before they fall onto the central star. In order to answer this question, it is
necessary to estimate the timescale of dust growth.

The dust particles grow by mutual sticking. The growth of dust particles
may be modeled by the following equation,

dM

dt
= fsρdπD2∆v, (2.54)

where M is the dust mass, fs is the probability of sticking between dust
particles, ρd is dust density, D is dust size, and ∆v is the relative velocity of
dust particles.
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There are several ways to estimate the relative velocity. Small dust parti-
cles tend to move at the velocity of gas, while larger dust particles decouple
from gas motion. Therefore, if we consider the collision between dust parti-
cles with different size, ∆v may be estimated by the relative velocity between
gas and the dust that does not couple with gas. If the disk is in turbulent
state, relative velocity may be estimated by the root mean square of tur-
bulent velocity. If the disk flow is laminar, the relative velocity may be
estimated by sedimentation velocity of dust particles, equation (2.51). (We
consider the model where dust particles grow as they sediment towards the
disk midplane.)

If sedimentation velocity is used to estimate the relative velocity, the
growth timescale of dust particles is

tgrow ∼ Σfq

fsρd

r

H

1

vK

, (2.55)

where q is defined by

Γ =
Σg

ρmatD
q, (2.56)

and the order of magnitude of q is

q ∼

{
1 Epstein
lmfp

D
Stokes.

(2.57)

In order for the dust to grow, tgrow must be smaller than infall time tinfall.
From Equation (2.50), dust infall time is estimated as

tinfall ∼
r

vd,r

∼ 1 + Γ2

Γ

1

η

r

vK

. (2.58)

Therefore,

tinfall

tgrow

∼ 1 × 1 + Γ2

Γ

(
fs

0.1

)(
ξ

10−2

) ( η

10−3

)−1 (q

1

)−1

. (2.59)

This indicates that if Γ ∼ 1, dust infall timescale is comparable to growth
timescale. If Γ À 1, dust and gas couple well and dust particles’ velocity is
the same as gas velocity, preventing the infall, while if Γ ¿ 1, dust particles
do not feel drag force, and they do not fall onto the central star either.

For Γ ∼ 1, dust size is given by

D ∼ 103

(
Σg

103g cm−2

)(
ρmat

1g cm−3

)−1 (q

1

)
cm. (2.60)
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Therefore, it is now concluded that dust particles fall onto the central star if
they grow to meter-size. More detailed analyses (Weidenschilling 1977 [92],
Adachi et al. 1976 [2]) also support this order-of-magnitude estimate. This
problem in core accretion scenario is usually referred as “meter-size barrier”.

2.3.4 Planetesimal Formation by Gravitational Insta-
bility of Dust Layer

We have seen that simple dust coagulation suffers meter-size barrier. One
possibility to overcome this dissiculty is the gravitational instability of dust
layer. Since timescale of gravitational instability is the order of Kepler
timescale, it may be possible to form planetesimals before dust particles
fall onto the central star.

We have already seen that the minimum mass solar nebula is stable
against gravitational collapse. However, as seen in equation (2.51), dust
particles sediment towards the disk midplane, and therefore, it may be pos-
sible to form a thin dust layer, which is unstable against self-gravity. Let
the velocity dispersion of dust particles vs. The thickness of dust layer Hd is
given by Hd ∼ vs/Ω. Therefore, in order for the gravitational instability to
occur, the thickness must be

Hd <
πGΣg

Ω2
∼ 3.7 × 107

(
Σg

7.1g cm−2

)(
Ω

2π/1yr

)−2

cm. (2.61)

This scale is 10−3 times smaller than gas scale height.
We investigate to what size dust particles grow if gravitational instability

occurs. The most unstable wave number of gravitational instability is

k ∼ GΣd

v2
s

∼ GΣd

H2
dΩ2

. (2.62)

When Toomre’s Q-parameter is the order of unity, k ∼ 1/Hd. If dust layer
fragments to this size, the mass of planetesimal formed by gravitational in-
stability is estimated as

m ∼ ΣdH
2 ∼ 1016

(
Σd

7.1g cm−2

)(
H

3.7 × 107cm

)
g. (2.63)

Since the characteristic density of dust grain is 1gcm−3, the size of this boul-
der is of the order of ∼ km size, which is large enough to overcome the
meter-size barrier.
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2.3.5 Instability of Thin Dust Layer

We have seen that gravitational instability may be one of the possible way to
overcome the meter-size barrier. However, this model itself suffers another
difficulty. The key physics is again the difference in velocity of dust particles
and gas. Dust particles tend to rotate at Kepler velocity, while gas rotation
velocity is slightly sub-Kepler because of pressure gradient effects.

As dust particles sediment towards the midplane to form a dust layer,
velocity shear develops between the dust layer and gas. This shear causes
Kelvin-Helmholtz instability. The condition for Kelvin-Helmholtz instability
is given by Richardson number (Chandrasekhar 1981 [14]), which is defined
by

J = −g

ρ

∂ρ
∂z(
δv
δz

)2 , (2.64)

where g is the gravitational acceleration. The stability condition is

J <
1

4
. (2.65)

This condition may be derived by considering energy release when fluid ele-
ments in gas and dust layer is exchanged.

When dust layer becomes so thin that it is prone to gravitational in-
stability, the thickness of dust layer is δz ∼ 107cm and the dust density is
ρd ∼ Σd/δz ∼ 10−6gcm−3. The density of gas is ρg ∼ 10−9g cm−3 so ρg ¿ ρd.
Therefore, in the definition of Richardson number, δρ ∼ δρd. The relative
velocity is δv ∼ ηvK and the gravitational acceleration may be estimated as
g ∼ δzΩ2

K . Therefore, Richardson number of dust-layer and gas system is

J ∼ δz2

δv2
Ω2

K ∼
(

δz

r

1

η

)2

∼ 10−8

(
δz/r

10−7

10−3

η

)2

, (2.66)

which is much smaller than 1/4. This indicates that the dust layer becomes
unstable before the onset of gravitational instability, and the thickness of
dust layer cannot be thin enough to become gravitationally unstable. Sekiya
(1998) [78] modeled the fully saturated state of Kelvin-Helmholtz instability
by calculating the quasi-stationary state with J = 1/4, and obtained that
the dust layer is gravitationally stable.

2.3.6 Possible Scenario of Planetesimal Formation

We have seen that planetesimal formation by gravitational instability of dust
layer suffers another difficulty. There have been many scenarios suggested for
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planetesimal formation. For example, disk turbulence induced by magneto-
rotational instability and streaming instability can concentrate meter-size
dust effectively to cause the gravitational instability of dust particles (Jo-
hansen et al. 2007 [26]). Anti-cyclonic vorticies may be a preferred site of
planetesimal formation (Klahr and Bodenheimer 2006 [46]). If there is a
giant planet already formed in the disk, it can help solid materials to accu-
mulate (Lyra et al. 2009 [55]). Although many mechanisms for planetesimal
formation are suggested, this process is yet one of the main research topics
in planet formation theory to date.

2.4 Formation of Protoplanets

We have seen that planetesimal formation process is a serious problem in
planet formation theory. The process following the planetesimal formation -
protoplanet formation - is a rather well-investigated process. In this section,
we review this process. The key physics in this stage is the gravitational
interaction between planetesimals.

2.4.1 Preliminaries

We first summarize some fundamental facts in considering planetesimal growth.

Collision Cross Section between Planetesimals

Collision cross section between two planetesimals with mass (m,m′) and
radius (r, r′) is given by (Safronov 1969 [73])

σ = π(r + r′)2Θ, (2.67)

where Θ is a gravitational focusing parameter defined by

Θ = 1 +
v2

esc

v2
, (2.68)

where

v2
esc =

2G(m + m′)

r + r′
. (2.69)

The cross section becomes larger than non-gravitating case, π(r+r′), because
gravitational force tends to attract the bodies.
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Two-body Relaxation Timescale

In considering the multi-body system interacting with gravitational force,
an important timescale is the two-body relaxation timescale (e.g., Chan-
drasekhar 1960 [13]). This is the timescale of the energy equipartition is
realized through the gravitational interaction between bodies and given by

t2body ∼ G2m2n

v3
ln Λ, (2.70)

where m is the mass of the particles, n is the number density, and v is the
velocity dispersion of the particles, and Λ is the Coulomb logarithm.

Timescale of Protoplanet Formation

The simplest picture of protoplanet formation by coagulation of planetesimals
is orderly growth. Let us consider the situation where one planetesimal with
mass M and radius R is embedded in a bunch of smaller planetesimals with
number density n. We write the mass of small planetesimals by m ¿ M and
the radius by r ¿ R Let us assume that the random velocity of planetesimals
is vr. Assuming perfect accretion, the growth of the large planetesimal is
given by

dM

dt
= mnπR2Θvr. (2.71)

and the growth timescale is then

tgrow ∼
(

1

M

dM

dt

)−1

(2.72)

Naive estimate of random velocity is vr ∼ vesc, which gives Θ ∼ 2 and

tgrow ∼
(

1

M

dM

dt

)−1

(2.73)

∼

4 × 107
(

Σd

ΣMMSN
d

)−1 (
ρmat

3gcm−3

) 2
3
(

M
M⊕

) 1
3 (

r
1AU

)3 (
Θ
2

)−1
(

M∗
M¯

)− 1
2
yr

1 × 109
(

Σd

ΣMMSN
d

)−1 (
ρmat

1gcm−3

) 2
3
(

M
10M⊕

) 1
3 (

r
5AU

)3 (
Θ
2

)−1
(

M∗
M¯

)− 1
2
yr

(2.74)

where upper lines is for inside the snow line and the lower line is for outside
and ΣMMSN

d is the surface density of dust particles of the Minimum Mass
Solar Nebula.

Outside the snow line, the formation timescale of protoplanets is very
long. It is longer than the age of the solar system at Neptune or Uranus lo-
cations. This is known as one of the difficulties of the standard core accretion
scenario.
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2.4.2 Runaway Growth of Planetesimals

Careful analyses of the gravitational interactions between planetesimals lead
to more sophisticated picture of planetesimal growth: runaway and oligarchic
growth. Detailed discussions of such processes are found in a number of arti-
cles such as Greenberg et al. (1978) [40], Weatherill and Stewart (1989) [93],
or Kokubo and Ida (1998) [47]. Here, we briefly summarize the picture of
planetesimal accumulation.

We first consider the evolution of the mass ratio between two planetesi-
mals m1 and m2. This is given by

d

dt

(
m1

m2

)
=

m1

m2

(
1

m1

dm1

dt
− 1

m2

dm2

dt

)
. (2.75)

Therefore, if 1/m(dm/dt) is the increasing function of m, the mass ratio
m1/m2 increases, and the initially heavy planetesimals gain more and more
weight. This is called runaway growth. On the other hand, if 1/m(dm/dt)
decreases with m, all planetesimals grow in the same way. This is called
orderly growth.

From Equation (2.71),

1

M

dM

dt
=

[
1 +

v2
esc,M

v2
r,m

]
Σdπ

ρ
2
3
matM

1
3

ΩK (2.76)

where the mass of planetesimal in question (slightly heavier than ambient
planetesimals) is denoted by M , the field planetesimals’ mass is denoted
by m, and ρmat is the density of the matter of the planetesimals, which is
assumed to be independent of the planetesimal mass.

We now discuss the condition of runaway growth. If vr,m & vesc,M , it is
straightforward to show that

1

M

dM

dt
∝ M− 1

3 , (2.77)

and therefore, the growth is orderly. If vr,m . vesc,M , on the other hand,

1 +
v2

esc,M

v2
r,m

∼
v2

esc,M

v2
r,m

(2.78)

and therefore,
1

M

dM

dt
∝ v−2

r,mM
1
3 . (2.79)

If vr,m is independent of the mass of the larger body M , the runaway growth
occurs. In the early stage of the growth of larger bodies, random velocity of
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the smaller bodies is determined by the balance between two-body scattering
between small bodies (which increases the random velocity) and gas drag
(which decreases the random velocity). Therefore, it is likely that the random
velocity vr,m does not depend on the mass of larger bodies.

There is yet another condition for runaway growth to happen, which is
vr,m > vr,M . If it is not the case, the random velocity in equation (2.76)
must be the random velocity of the larger bodies, and the growth becomes
always orderly. In the early stage of planetesimal growth, it is possible for
the condition vr,m > vr,M to be satisfied since dynamical friction of smaller
bodies tend to suppress the random velocity of the larger bodies.

2.4.3 Oligarchic Growth and Mass of Protoplanets

During the stage of runaway growth, small number of large bodies grow
very rapidly. This stage ends when the gravitational interaction between
the grown bodies becomes important. We call the grown bodies which have
experienced the runaway growth “protoplanet” hereafter.

The runaway stage ends when two-body relaxation time between proto-
planets becomes shorter than that of planetesimals. This condition may be
written

t2body,m

t2body,M

∼ M2nS,M

m2nS,m

(2.80)

where nS is the surface number density. Since mass density of protoplanets
is MnS,M and that of planetesimals is mnS,m, the gravitational interaction
between protoplanets become important before they dominate the mass.

We now estimate the mass of protoplanets. Protoplanets grow by accu-
mulating mass of small planetesimals within their Hill radii, while they repel
each other by mutual gravitational scattering. Therfore, the orbital separa-
tion between protoplanets is of the order of their Hill’s radius and the mass
of protoplanets is given by

M ∼ Σd2πafrH , (2.81)

where f is the quantity of the order of unity. Numerical simulation of plan-
etesimal growth shows that f ∼ 10 (Kokubo and Ida 1998 [47]). Note that
Hill radius rH also contains the mass of protoplanet M . Solving for the mass,
we obtain

M ∼

0.05
(

Σd

ΣMMSN
d

) 3
2 (

a
1AU

) 3
4
(

f
10

) 3
2 M⊕

2
(

Σd

ΣMMSN
d

) 3
2 (

a
10AU

) 3
4
(

f
10

) 3
2 M⊕

(2.82)
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where the upper line is for inside the ice line and the lower for outside. The
orbital separation of protoplanets is given by

∆a ∼

0.04
(

Σd

ΣMMSN
d

) 1
2 (

a
1AU

) 5
4
(

f
10

) 3
2 AU

1.3
(

Σd

ΣMMSN
d

) 1
2 (

a
10AU

) 5
4
(

f
10

) 3
2 AU.

(2.83)

Therefore, at 1AU of Minimum-Mass Solar Nebula, several tens of protoplan-
ets with mass of the order of one tenth of Earth are formed.

It is worth noted that at the onset of the oligarchic growth, the mass ratio
of small bodies and large protoplanets may be given by

M

m
∼ mnS,m

MnS,M

∼ Σd

MnS,M

(2.84)

∼

10
(

M
1025g

)− 2
3 (

a
1AU

) 1
2

(
Σd

ΣMMSN
d

) (
f
10

)
30

(
M

1026g

)− 2
3 (

a
10AU

) 1
2

(
Σd

ΣMMSN
d

) (
f
10

) (2.85)

where we have used the fact that the most of the mass is carried by planetes-
imals so mnS,m ∼ Σd. The mass of protoplanets is larger than that of plan-
etesimals by approximately one order of magnitude. Therefore, gravitational
enhancement factor Θ for collisions between protoplanets and planetesimals
may be of the order of ten, which indicates that the timescale of protoplanet
formation becomes smaller by one order of magnitude.

2.5 Gas Capture

Massive protoplanets capture gas to form Jupiter-like planets. If Bondi radius
of the protoplanets rB = GM/c2 is larger than their physical radius, they
can potentially have atmosphere. This condition may be written

Mp > 0.01M⊕

( µ

2.34

)− 3
2

(
T

300K

) 3
2
(

ρmat

1g cm−3

)− 1
2

. (2.86)

Protoplanets satisfy this condition. However, this is not a sufficient condition
for the formation of gas giant.

We investigate the equilibrium structure of atmosphere (Mizuno et al.
1978 [62]). We consider spherically symmetric structure. Density of the
atmosphere is denoted by ρ, temperature T , and pressure p. Hydrostatic
equilibrium is given by

dp

dr
= −GM(r)

r2
ρ(r), (2.87)
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where M(r) denotes the mass contained within the radius r. We also assume
radiative equilibrium

16σSBT (r)3

3κρ(r)

dT

dr
= −L(r)

4πr2
, (2.88)

where κ is the opacity, L(r) is the luminosity at radius r. If we consider
the stage when the planets are bombarded by planetesimals, the heat source
is the gravitational energy release of planetesimals. Assuming planetesimals
always reach the core radius, L(r) is independent of r and

L =
GMcoreṀcore

rcore

, (2.89)

where Mcore denotes core mass, rcore is core radius, and Ṁcore is the mass
accretion rate onto the core. Assuming ideal gas, the equation of state is

p(r) =
ρkBT

µmH

(2.90)

We now look at the qualitative behavior of the atmosphere. From hydro-
static equilibrium and equation of state,

T (r) ∼ µmH

kB

GM

r
. (2.91)

Using radiative equilibrium, the density is given by

ρ(r) ∼ σSB

κL

(
µmH

kB

GM

)4
1

r3
. (2.92)

Therefore, the mass of the atmosphere Matm is

Matm =

∫
rcore

rHdr4πr2ρ(r) (2.93)

∼ σSB

κL

(
µmH

kB

GM

)
ln

rH

rcore

, (2.94)

where we have assumed M = Matm + Mcore ∼ Mcore and M is taken outside
the integral. Since L ∼ GṀcoreρ

1/3
matM

2/3
core, we have

Matm ∼ β(Matm + Mcore)
4M

− 2
3

atm, (2.95)

where

β =
σSB

κṀcoreρ
1
3
mat

(
µmH

kB

)4

G3 ln
rH

rcore

. (2.96)
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We now calculate how much mass is added to the atmosphere as core
grows. From Equation (2.95),

dMatm

dMcore

=

2
3
β(Matm + Mcore)

3M
− 2

3
core

(
5 − Matm

Mcore

)
1 − 4β(Matm + Mcore)3M

− 2
3

core

(2.97)

The right hand side of this equation diverges when core mass becomes larger
than the critical value,

Mcore,cr ∼ β− 3
7 ∼ 20M⊕

(
tacc

106yr

)− 3
7
(

κ

1cm2g−1

) 3
7

. (2.98)

Physically, equilibrium configuration is no longer possible because of the
self-gravity of the atmosphere. If the core mass becomes larger than this
critical core mass, the atmosphere starts to contract to form a compact gas
atmosphere, leading to the formation of gas giant.

Very rough estimate of the mass of the gas giant may be given by esti-
mating the mass of the planet when it swallows all of the gas within the ring
whose width is given by its Hill radius. Such estimate gives the mass

M ∼ 2 × 10−4M¯

(
Σg

ΣMMSN
g

) ( a

5AU

) 3
4
. (2.99)

This mass is one order of magnitude smaller than the Jupiter mass. However,
it is still possible for the planets to accrete the gas since when the gas is
depleted inside the ring, the gas outside the ring can flow into the depleted
ring due to the pressure effects or viscous diffusion. It is possible to form
Jupiter within the timescale of the age of the solar system.



Chapter 3

Type I Planetary Migration:
Review

We have summarized the overview of the core accretion scenario of planet
formation in Chapter 2. One of the fundamental assumption in the scenario
is that the planets are formed in-situ: they do not move in the disk in
radial direction. This assumption is questioned if we consider the effects
of gas disk, which is very likely to exist when protoplanets are formed. The
gravitational interaction between the gas disk and the planets causes the
change of the orbital semi-major axis of the planets. The change in the orbital
semi-major axis of the planets are called planetary migration, and it causes
the potentially very serious problems in the formation of planetary system.
In this chapter, we review the fundamentals of disk-planet interaction and
migration.

Planetary migration has several “types” depending on the mass of the
planets and gas disk. The mode of disk-planet interaction that occurs when
small mass planets are considered is called “type I”. If the planet mass be-
comes large, the mode of planetary migration is called “type II”. There is yet
another mode called “type III”, which occurs when intermediate mass planet
and massive disk is considered. In this thesis, we mainly focus on Type I
planetary migration.

3.1 Linear Calculation: Formulation

In order to investigate the gravitational interaction between the gas disk
and planets, Goldreich and Tremaine (1978) [38] performed two-dimensional
linear calculations. By two-dimensional, we mean we consider the values
integrated over the disk-thickness. We call calculations “three-dimensional”

29
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when we consider the full calculations including the vertical mode.
We consider cylindrical coordinate (r, φ, z), and integrate all the physical

quantities in the z-direction. The basic equations that govern the dynamics
of disk gas are given by the equation of continuity and the equation of motion

∂Σ

∂t
+ ∇ · (Σv) = 0 (3.1)

∂v

∂t
+ v · ∇v = −∇η −∇ψ + Fext, (3.2)

where Σ is the surface density of the gas, v is the velocity field of gas disk, η
is enthalpy, and ψp is the gravitational potential of the protoplanet, which is
treated as perturbation in the subsequent discussion. We denote other forces
such as the gravitational force by the central star by Fext, which determines
the profile of angular velocity Ω(r) of the gas disk.

We now consider linear perturbation. All the perturbed variables are
denoted by δ, and the background quantities are written with subscript “0”.
The perturbation equations are

∂δΣ

∂t
+ ∇ · (Σ0δv) + ∇ · (δΣv0) = 0 (3.3)

∂δv

∂t
+ (v0 · ∇)δv + (δv · ∇)v0 = −∇(δη + ψ). (3.4)

We consider isothermal disk for simplicity. The equation of state is then

δη = c2 δΣ

Σ0

. (3.5)

We Fourier transform the perturbation in time and azimuthal directions,
e.g.,

δΣ(t, r, φ) = <
[∑

δΣ(r)e−i(ωt−mφ)
]

(3.6)

For brevity, we use the same notation for Fourier component and real space
quantities from now on unless otherwise noted. We choose the phase of
Fourier transform in such a way that Fourier component of ψ is real. As
we shall see, the type I migration is a very slow process compared to Kepler
timescale, so we assume that the perturbed pattern is stationary with respect
to the planet. Therefore, we assume that the frequency of the perturbation
is given by

ω = mΩp. (3.7)

The equation of motion (3.4) is now

i(mΩ − ω)δvr − 2Ωδvφ = − d

dr
(ψ + δη), (3.8)
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2Bδvr + i(mΩ − ω)δvφ = −im

r
(ψ + δη), (3.9)

where B denotes Oort B parameter,

B = Ω − A = Ω +
r

2

dΩ

dr
(3.10)

and A is Oort A parameter

A = −r

2

dΩ

dr
. (3.11)

Solving Equations (3.8) and (3.9) for δv,

δvr = − i

D

[
(mΩ − ω)

d

dr
+

2mΩ

r

]
(ψ + δη), (3.12)

δvφ =
1

D

[
2B

d

dr
+

m

r
(mΩ − ω)

]
(ψ + δη), (3.13)

where D is
D = κ2 − (mΩ − ω)2, (3.14)

and κ is the epicyclic frequency

κ2 = 4BΩ. (3.15)

Substituting equations (3.12) and (3.13) into the equation of continuity (3.3),
we derive the second order ordinary differential equation for perturbed en-
thalpy,[

d2

dr2
+

(
d

dr
ln

(
rΣ

D

))
d

dr

+
2mΩ

r(mΩ − ω)

(
d

dr
ln

(
ΩΣ

D

))
− m2

r2

]
(ψ + δη) =

D

c2
δη. (3.16)

From this equation, we have density perturbation. Once density fluctuation
is obtained the torque exerted on the disk by the gravitational force of the
planet is given by

T = −πm

∫
drrψ(r)=[δΣ(r)]. (3.17)

The torque exerted onto the planet by disk gravity is the backreaction of this
torque.

The apparent singularities of equation (3.16) are at r = rL where D(rL) =
0 and r = rc where ω = mΩ(rc). The former is called Lindblad resonance
and the latter is called corotation resonance. Two Lindblad resonances exist
for each mode m, one in interior of the planet’s orbit and the other resides
exterior to the planet’s orbit.
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3.2 Torque on Lindblad and Corotation Res-

onances

We now calculate the torque exerted around Lindblad and corotation reso-
nances. We see later that the torque is most effectively exerted in the vicinity
of these resonances.

3.2.1 Lindblad Resonances

In order to calculate the torque exerted in the vicinity of Lindblad reso-
nances, we first make a local approximation in the vicinity of the corotation
point. This approximation is to assume d/dr,m/r À 1/r and that the all the
background values which change on the scale of the disk radius are constant
except for shear flow, whose variation is taken into account upto the first
order of (r − rp)/rp. This approximation is also known as “shearing-sheet”
approximation. Note that if we make this approximation, the interior and
exterior part of the disk with respect to the planet become exactly symmet-
ric, and the torque obtained for inner disk and the outer disk is the same
except for the overall sign. Therefore, there is no net torque on the planet in
this approximation. We later discuss how the difference between the outer
and inner parts are incorporated.

We further make tight-winding (WKB) approximation, and thin-disk ap-
proximation. Tight-winding approximation is

d

dr
À m

r
(3.18)

and thin-disk approximation is

c

rΩ
¿ 1. (3.19)

Tight-winding approximation limits the mode m to be

m
c

rΩ
¿ 1. (3.20)

We later describe how to treat high-m modes.
We expand equation (3.16) around the Lindblad resonances, r = rL.

Changing the radial coordinate r to x = (r − rL)/rL and using the above
described approximations, it is possible to derive[

d2

dx2
− 1

x

d

dx
− βx

]
δη =

1

x
Ψ (3.21)



3.2. TORQUE ON LINDBLAD AND COROTATION RESONANCES 33

where

β = Dr2
L

c2
, (3.22)

and

D =

(
r
dD

dr

)
r=rL

, (3.23)

Ψ =

[
r
dψ

dr
− 2mΩ

ω − mΩ
ψ

]
r=rL

. (3.24)

The appropriate boundary condition in solving equation (3.21) is that
there is no reflection at the boundary. This leads to the solution

δη = πsgnβ
Ψ

|β| 13
[Gi′(z) ∓ iAi′(z)] (3.25)

where the upper sign is for the disk inside the planet orbit and the lower sign
is for the outside the planet orbit. The new radial coordinate z is defined by

x = ±|β|−
1
3 z. (3.26)

We denote Airy function by Ai(z), which satisfies

d2

dz2
Ai(z) − zAi(z) = 0 (3.27)

and Gi(z) satisfies the equation

d2

dz2
Gi(z) − zGi(z) = − 1

π
. (3.28)

Using Equation (3.17), we obtain the torque exerted on Lindblad resonance,

T = −π2Σm
1

D
Ψ2. (3.29)

3.2.2 Corotation Resonance

We next consider corotation resonances. We write the radial coordinate in
the vicinity of the corotation resonance x = (r − rc)/rc and expand the
equations around x = 0. Using tight-winding approximation, we obtain[

d2

dx2
+

p

x
− q2

]
δη = −p

x
ψ(rc), (3.30)
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where

p =

[
2Ω

dΩ/dr

d

dr
ln

ΣΩ

D

]
r=rc

(3.31)

and

q =
(κr

c

)
r=rc

. (3.32)

The order of magnitude of p and q is p ∼ m ¿ q ∼ rΩ/c and therefore,
second term on the right hand side is smaller than third term in the range
q−1 ¿ x ¿ 1.

The appropriate boundary condition is that δη does not diverge on the
either end of the resonance. Therefore,

δη =
p

2q
ψ(rc)

[
eqx

∫ ∞

x

dt

t + iε
e−qt + e−qx

∫ x

−∞

dt

t + iε
eqt

]
(3.33)

where ε ¿ 1 is the small positive number. The positivity of ε is physically
required, considering the causality or the effects of small dissipation. It is
possible to derive the waveform for qx À 1 by calculating equation (3.33).
This gives

δη =
p

q2x
ψ(rc) − iπ

p

2q
e−|qx| (3.34)

Torque exerted on the corotation resonance is now

T =
π2m

2

[
ψ2

dΩ/dr

d

dr

Σ

B

]
rc

. (3.35)

Comparing Equation (3.29) and (3.35), the torque on Lindblad resonance
TL and Tc may be

TL

Tc

∼ m2. (3.36)

Therefore, for high-m mode, Lindblad torque seems more important. Ko-
rycansky and Pollack (1993) [48] solved the linearized equations numerically.
They have found that total torque including the effects of both corotation
and Lindblad torque is differ by a factor of two from that calculated us-
ing only Lindblad torque. Therefore, the timescale of planetary migration
can be estimated using only the contribution from Lindblad torque, but the
corotation torque has non-negligible contribution to the total torque.

Recently, it has been pointed out that the corotation torque can have a
significant effects on type I migration rate if non-isothermal effects are con-
sidered (e.g., Baruteau and Masset 2008 [10] Paardekooper and Papaloizou
2009 [69]).



3.3. WAVES ON THE DISK 35

-1

-0.5

 0

 0.5

 1

-0.1 -0.05  0  0.05  0.1

D
/Ω

2

(r-rp)/rp

D(x) for m=10

Figure 3.1: The functional form of D(x) for m = 10 mode. Horizontal axis
shows x = (r−rp)/rp where rp is the corotation radius. If Keplerian rotation
is assumed, D(x) = 1 − (9/4)m2x2 in the local approximation.

3.3 Waves on the Disk

We have calculated the torque exerted on the disk by the planet’s gravita-
tional force. In this section, we look at how this torque is related to the wave
on the disk.

We use tight-winding approximation and thin-disk approximation. The
equation that governs the wave propagation in the disk is Equation (3.16)
without planet’s forcing term[

d2

dr2
− D

c2

]
δη = 0. (3.37)

This equation is of the form of Schrödinger equation, and in the region where
D < 0, wave propagates (propagation region) while in the region where
D > 0, wave does not propagate (evanescent region). The form of D is
shown in Figure 3.1. Evanescent region resides in the immediate vicinity of
the planet’s location.

We now investigate the relationship between the angular momentum flux
carried by the wave and the torque exerted on the disk. The angular mo-
mentum flux carried by the wave is

FA = r2Σ

∫
dφvr(t, r, φ)vφ(t, r, φ), (3.38)
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where vr and vφ are the variables in real space. The angular momentum flux
carried by the wave with mode m is, using equations (3.12) and (3.13),

FA =
πmrΣ

D

[
=(δη)< d

dr
(ψ + δη) −<(ψ + δη)= d

dr
(δη)

]
(3.39)

We note that in the absence of the source of perturbation (such as planet
potential), angular momentum conserves

dFA

dr
= 0. (3.40)

In the region distant away from the planet, the wave angular momentum
conserves in the linear perturbation theory.

The angular momentum flux carried by the wave excited at the Lindblad
resonance is calculated using Equation (3.25). At the edge of the disk, z →
−∞ the angular momentum flux is

FA ∼ π2mΣ

|D|
Ψ2, (3.41)

which is in complete agreement with the value of the torque excited at Lind-
blad resonance given by equation (3.29). Therefore, linear calculation states
that the torque exerted at Lindblad resonance is carried away to infinity as
a form of density wave. It is to be noted that as the density wave propagates
in the disk, it damps either by dissipative mechanism or shock damping (e.g.,
Goodman and Rafikov 2001 [39]).

We have looked at that the torque exerted at Lindblad resonances is
equal to the angular momentum flux carried by the density wave. We now
investigate the corotation resonance. Since the region near the corotation
point is evanescent region, there is no angular momentum flux carried to
the disk edge. This can be seen by substituting equation (3.39) in equation
(3.34),

FA ∼ −sgn(x)
π2m

4

1

dΩ/dr

(
d

dr

Σ

B

)
ψ2(rc)e

−|qx| (3.42)

and therefore there is no angular momentum flux carried to |x| → ∞. How-
ever, there is angular momentum flux jump at the corotation,

FA(−0) − FA(+0) =
π2m

2

1

dΩ/dr

(
d

dr

Σ

B

)
ψ2(rc), (3.43)

which is equal to the torque exerted at the corotation resonance given by
equation (3.35). It is noted that at the corotation, small viscous effect de-
noted by ε plays an essential roll.
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planet planet 

Figure 3.2: Schematic diagram of type I migration. The planet excites the
wave in the disk, which carries angular momentum. The planet is exerted
torque as a backreaction of this wave excitation. The background figure is
taken from the simulation performed by Masset [56].
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3.4 Torque cutoff for high-m modes

The analyses by Goldreich and Tremaine use tight-winding approximation
and therefore, they can be used for modes 1 ¿ m ¿ rΩ/c. Artymowicz
(1993) [4] performed the calculations valid for high-m modes using only local
approximation

d

dr
,
m

r
À 1

r
. (3.44)

In this section, we outline the analysis performed by Artymowicz. We note
that using the Goldreich and Tremaine formula (3.29), contribution from
high-m modes diverges to give the total torque infinity. The analysis of
Artymowicz shows that the modes that give the most dominant contribution
to the torque is actually m ∼ r/H.

For simplicity, the background disk is rotating at Kepler velocity. The
perturbation equations are

−i(ω − mΩ)
δΣ

Σ
+

d

dr
δvr +

im

r
δvφ = 0 (3.45)

−i(ω − mΩ)δvr − 2Ωδvφ +
d

dr
δη = − d

dr
ψ (3.46)

1

2
Ωδvr − i(ω − mΩ)δvφ +

im

r
η = − im

r
ψ (3.47)

and equation of state is

δη = c2 δΣ

Σ
. (3.48)

From above equations, we obtain

d

dr
δvφ − im

r
δvr −

1

2
Ω

δΣ

Σ
= 0, (3.49)

which corresponds to the conservation of specific vorticity.
We then obtain the equations to write δvr and δη in terms of δvφ

δvr = −
(

m2

r2
+

Ω2

c2

)−1 [
im

r

d

dr
δvφ − Ω

2c2
i(ω − mΩ)δvφ +

Ω

2c2

im

r
ψ

]
(3.50)

δη = −
(

m2

r2
+

Ω2

c2

)−1 [
−1

2
Ω

d

dr
δvφ − m

r
(ω − mΩ)δvφ +

m2

r2
ψ

]
(3.51)

Substituting these equations into equation (3.46), we obtain a single ordinary
differential equation for δvφ,

d2

dz2
δvφ −

(
Dz +

γ2

4

)
δvφ = Rz (3.52)
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The symbols in equation (3.52) have the following meaning. We first
define D by

D = Ω2 − (ω − mΩ)2 (3.53)

We call Lindblad resonances defined by D(rL) = 0 the “nominal” Lindblad
resonances. We consider the inner resonances for simplicity (outer resonances
can be investigated exactly in the same manner.) We take the radial coordi-
nate centered at the nominal Lindblad resonance locations

x =
r − rL

rL

(3.54)

and expand D,

D ∼ 3mΩ2
Lx

(
1 − 3

4
mx + O(mx2)

)
. (3.55)

Let

β = +3m
Ω2

Lr2
L

c2
(3.56)

and change the radial coordinate

z = β
1
3 x. (3.57)

Then,

D =

(
3mΩ2

L

c

rL

) 2
3

z

(
1 − 3

8
γz

)
=

(
3mΩ2

L

c

rL

) 2
3

Dz, (3.58)

where the right hand side defines Dz and γ is defined by

γ =
2m

|β| 13
. (3.59)

The source term of equation (3.52), Rz, is

Rz = − rLΩL

2c2|β| 13

(
d

dz
+ γf

)
ψ, (3.60)

where

f =
m(Ω(r) − Ωp)

Ω(r)
∼ 1 − 3

2
mx. (3.61)

For later convenience, we define

ξ = m
c

rLΩL

, (3.62)
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which is related to γ by

ξ2 =
3

8
γ3. (3.63)

We now solve equation (3.52) to find the angular momentum flux carried
away by the density wave, which is equal to the torque exerted on the planet.
Changing the radial coordinate again to X defined by

X = λ

(
z − 4

3γ

)
, (3.64)

where

λ =

(
3γ

2

) 1
4

. (3.65)

Note that X = 0 corresponds to the corotation point. The homogeneous
equation for equation (3.52) is now

d2v

dX2
+

(
1

4
X2 − C

)
v = 0, (3.66)

where

C =
1 + ξ2

3ξ
. (3.67)

The solution of the homogeneous equation may be given by parabolic cylinder
function (Abramowitz and Stegun 1956 [1])

vA(z) =
( τ

2λ

) 1
2
E(C,X) (3.68)

vB(z) =
( τ

2λ

) 1
2
E∗(C,−X) (3.69)

where
τ = e−πC . (3.70)

Before calculating the solution for equation (3.52), we briefly comment
on the wave propagation property described by equation (3.66). The region
near the corotation X = 0 is evanescent region and the region away from the
planet is propagation region. The boundary is given by

X = ∓2
√

C. (3.71)

This location is called “effective” Lindblad resonance and we denote this with
subscript “eff”. The distance between the effective Lindblad resonances and
the corotation point is

|reff − rp| =
2

3
H

√
1 + ξ2

ξ
(3.72)
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Figure 3.3: Effective and nominal Lindblad resonances. Horizontal axis
shows ξ and the vertical axis shows (r − rp)/H. This figure is taken from
Artymowicz (1993) [4]

where H is the scale height

H =
c

Ω
. (3.73)

For low-m modes, effective Lindblad resonance and the nominal Lindblad
resonances coincide, but for high-m modes, ξ → ∞,

|reff − rc| →
2

3
H. (3.74)

Figure 3.3 shows the locations of these resonances.
The solution for equation (3.52) is then

δvφ = −vA(z)

∫ z

−∞
vB(s)Rz(s)ds + vB(z)

∫ z

∞
vA(s)Rz(s)ds. (3.75)

Angular momentum flux carried by the wave to infinity is then calculated as

F =
π2mΣ

|D|
Ψ2, (3.76)

where Ψ is given by

Ψ =

(
τ

2π(1 + 4ξ2)

) 1
2

|β|
1
3

∫ ∞

−∞
dzvA(z)

(
d

dz
+ γf

)
ψ. (3.77)
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In case where two effective Lindblad resonances are well separated, equation
(3.77) takes a simple form

T =
π2mΣ

|D|
1

(1 + 4ξ2)(1 + ξ2)
1
2

[
dψ

dx
+ 2mfψ

]2

eff

. (3.78)

We compare the torque formula by Goldreich and Tremaine (3.29) and
Artymowicz formula (3.78) to investigate the most dominant mode for torque.
The Fourier transform of the gravitational potential can be well approximated
by modified Bessel function

ψ ∝ K0(m|x|) (3.79)

where x = (r − rp)/rp. Goldreich and Tremaine formula states that the
torque is proportional to the strength of the potential at nominal Lindblad
resonances. The location of nominal Lindblad resonances is |rL − rp| ∝ 1/m
for high-m modes, the value of the potential at the resonance is independent
of the mode number m, and we end up with T ∝ m2 (note that there
is another m contribution from D). Therefore, contribution from high-m
modes diverges. On the other hand, Artymowicz formula states that the
torque is determined by the values at effective Lindblad resonances, whose
distance from the corotation point is ∼ H for high-m modes. Therefore,
the gravitational potential for such modes are ψ ∝ K0(mH), which strongly
damps as m gets larger. This cutoff at high-m modes is called “torque
cutoff”. This keeps the torque from diverging, and the most dominant modes
for torque is found to be m ∼ r/H.

3.5 Differential Torque

Torque formula (3.29) and (3.78) are the torque exerted one side of the
torque. If we use local approximation, the torque exerted on the inner disk
and the outer disk is the same except for the overall sign. In reality, there is
difference between inside and outside the planet’s orbit, which makes overall
torque non-zero. The sum of the torque contribution from both sides of the
disk is called differential torque. In this section, we briefly discuss the cause
of the difference and see that the planet tends to migrate inward. Detailed
calculations may be found in Ward (1986, 1997) [90] [91].

There are three contribution to the differential torque. The first contribu-
tion is the asymmetry of the position of Lindblad resonances. For example,
if the disk rotation is Keplerian, the position of the Lindblad resonances is
given by

Ω(rL) =
m

m ∓ 1
Ωp, (3.80)
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where upper sign is for the disk interior to the planet orbit, and the lower
sign is for the exterior disk. For the same mode m, outer Lindblad resonances
always reside closer to the planet. The second contribution is the asymmetry
of the magnitude of D. For Keplerian disk,

|D| =

∣∣∣∣rdD

dr

∣∣∣∣ = 3Ω2
p

1

m ∓ 1
. (3.81)

Therefore, the magnitude of D is always larger for interior disk. The third
contribution is the asymmetry of the gravitational potential Ψ. The value
of Ψ for outer disk is larger than for the inner disk (Ward 1997 [91]). These
three contributions makes the outer torque stronger than the inner torque.
Therefore, planets tend to migrate inward if isothermal disk is considered.

We also note the effect called pressure buffer. Torque formula (3.29)
shows that the torque is proportional to the disk surface density and there-
fore, one may consider that the planets can migrate outward if the surface
density is the decreasing function of the radius. However, there is yet an-
other competing mechanism in this case. If surface density is a decreasing
function of radius, pressure is also likely to decrease as a function of radius.
Therefore, the disk rotates at slightly sub-Keplerian velocity. In this case,
Lindblad resonances are moved slightly inward compared to the Kepler ro-
tation case, which makes the outer Lindblad resonances closer to the planet.
This effect compensates the gradient of the surface density. This is called
pressure buffer, and the planet is still likely to migrate inward.

Finally, we note that since the most dominant mode contributing to the
torque is m ∼ r/H, the differential torque is of the order H/r smaller than
the one-sided torque.

3.6 Timescale of Type I migration

In this section, we estimate the timescale of type I migration by summing up
the contributions from all the modes m. We first consider one-sided torque,
which is the torque exerted one side of the disk with respect to the planet’s
orbit.

For the sake of order-of-magnitude estimate, we only consider Lindblad
torque. Torque from low-m modes can be estimated by the Goldreich-
Tremaine formula (3.29), while the contribution from high-m modes are neg-
ligible because of the torque cutoff. The maximum mode to be considered,
mmax is ∼ r/H. The contribution to the torque from each mode is given by

Tm ∼ 4

3

Σ

Ω2
L

(
GMp

rp

)2

m2

(
2K0

(
2

3

)
+ K1

(
2

3

))2

(3.82)
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where the Fourier transform of the gravitational potential is approximated
by modified Bessel function. Summing up this from m = 1 to mmax ∼ r/H,
we have

T ∼ 4

9

Σ

Ω2
L

(
GMp

rP

)2 (
rΩ

c

)3 (
2K0

(
2

3

)
+ K1

(
2

3

))2

(3.83)

for one-sided torque. Since differential torque is smaller than the one-sided
torque by a factor of H/r, the total torque is

T ∼ Σ

Ω2
L

(
GMp

rp

)2 (
rΩ

c

)2

(3.84)

We estimate the timescale of the planetary migration τmig using equation
(3.84). Since

τ−1
mig =

1

rp

drp

dt
=

2

Lp

dLp

dt
=

2T

Lp

, (3.85)

where Lp is the orbital angular momentum of the planet, the migration
timescale is given by

τ−1
mig ∼ 2

Σr2
p

Mc

Mp

Mc

(
rΩ

c

)2

ΩK (3.86)

where ΩK is the Keplerian angular frequency. Substituting typical parame-
ters, we have

τmig ∼ 2 × 105yr

(
Σr2

p/M¯

4 × 10−4

)−1 (
Mp/M¯

3 × 10−6

)−1 (
c/rΩ

0.05

)2

, (3.87)

which is shorter than the observed disk dispersal timescale (e.g., Haisch et al
2001 [41]). Since the direction of migration tends to inward, the planet would
fall onto the central star even if they are formed, which causes a serious prob-
lem in the theory of planetary system formation. Detailed three-dimensional
linear calculations (Tanaka et al. 2002 [83]) and numerical simulations (e.g.,
D’Angelo et al. 2003 [19]) also supports this conclusion.

Our calculation upto now considered isothermal, non-magnetized, lam-
inar disk. If we break these assumptions, the very direction of migration
becomes under question. It has been pointed out recently that there may be
a way to halt type I migration by ordered magnetic field (Terquem 2003 [86]),
non-isothermal effects (Paardekooper et al. 2009 [68]), turbulence (Nelson
and Papaloizou 2004 [65]), or so on. The timescale given by equation (3.84)
gives a good estimate, but the direction can be both outward and inward.
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One of the main research topic in planet formation theory is to calculate
migration rate under various circumstances, to find a “good” disk for planet
formation. Planetary migration was totally neglected in the original core-
accretion scenario. It is now necessary to construct more realistic formation
theory which takes into account the effects of inward or outward planetary
migration.





Chapter 4

Effects of Magnetic Field

The properties of planetary migration may be totally different if magnetic
field is considered. Nelson and Papaloizou (2004) [65] performed numerical
calculations of type I migration in a magnetized disk and indicated that
the turbulence due to MRI would result in stochastic torque on the planet.
A simple model for the random torque was presented by Laughlin et al.
(2004) [52]. Terquem (2003) [86] performed the linear analysis of the torque
for two-dimensional laminar disk with toroidal magnetic field and indicated
that when stronger magnetic field was exerted on the disk inside the planet’s
orbit than the outside, inward migration might be halted. Fromang et al.
(2005) [34] further investigated this situation by numerical calculation and
the numerical results showed good agreement with linear analysis.

In this chapter, we review how the properties of disk-planet interaction
and type I migration are altered by the effects of toroidal magnetic field
in Section 4.1. We then extend the investigations to poloidal magnetic field
case in Section 4.2 using shearing-sheet analysis. We note that shearing-sheet
approximation assumes symmetric structure inside and outside the planet’s
orbit, and calculate the torque exerted on one side of the disk. However, most
of the important physical aspects of disk-planet interaction can be captured
by this analysis. We also note that we restrict ourselves to a laminar disk, the
case without MRI, and derive analytic formulae of torque exerted on some
important resonances. We perform a three-dimensional calculation and our
formalism is a natural extension of previous studies of unmagnetized cases
that is developed by Goldreich and Tremaine (1979) [38] and Artymowicz
(1993) [4]. Type I migration in a disk with strong poloidal magnetic field
may be also important in the formation of planets around neutron stars (e.g.,
Bailes et al. 1991[5]).

47
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4.1 The Effects of Toroidal Magnetic Field

Terquem (2003) [86] performed linear analysis of disk-planet interaction in-
cluding the effects of toroidal magnetic field. There is a large uncertainty
in the configuration of magnetic field in protoplanetary disks. However, it
may be possible that toroidal field dominates as a result of MRI. Moreover,
the analyses with toroidal field is slightly simpler than poloidal case, since
calculations restricted only modes without vertical variation is necessary. In
this section, we briefly summarize the analyses by Terquem (2003) [86].

4.1.1 Basic Equations

Basic equations are the equation of continuity,

∂ρ

∂t
+ ∇ · (ρv) = 0 (4.1)

equation of motion,

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇p +

1

4π
(∇× B) × B − ρ∇ψ (4.2)

and induction equation,

∂B

∂t
= ∇× (v × B). (4.3)

We consider thin disk and average the physical quantities in the z-direction.
Equation of continuity is

∂Σ

∂t
+ ∇ · (Σv) = 0, (4.4)

where Σ is the surface density of the disk. Other equations takes similar
form. We assume the equation of state with

c2 =
d〈p〉
dΣ

, (4.5)

where 〈〉 denotes the averaging over the z-direction.
We use cylindrical coordinate (r, φ, z), and the unit vectors are denoted

by e, e.g., er. We assume the background rotation profile by Ω(r) and the
magnetic field configuration (0, B(r, z), 0). The Lorentz force is given by,

1

4π
〈(∇× B) × B〉 = − 1

8π

1

r2

d

dr
(r2〈B2〉)er = Frer. (4.6)
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We now consider the perturbation. From hereon we omit 〈〉 that denotes
z-average. We denote all the perturbed variables by δ, and Fourier transform
in the time and azimuthal direction.

δX(r, φ, t) =
∞∑

m=0

δX(r)ei(mφ−ωt) (4.7)

We then assume the stationary state in a frame co-rotating with the planet,

ω = mΩp. (4.8)

Let
σ = ω − mΩ = m(Ωp − Ω) (4.9)

and define Lagrangian displacement ξ by

δvr(r) = −iσδξr(r) (4.10)

δvφ = −iσξφ − ξrr
dΩ

dr
. (4.11)

Using Lagrangian displacement, it is possible to integrate the induction equa-
tion. It is convenient to use δW , ξr, and δvφ as independent variables, where
δW is the enthalpy perturbation

δW = c2 δΣ

Σ
. (4.12)

The perturbed Lorentz force δFrer + δFφeφ is given by

δFr =
B2

4πr

(
r
d2ξr

dr2
+

(
3

2
b1 − 1

)
dξ

dr
+

(
1

2
b1 − m2

)
ξr

r

)
(4.13)

δFφ =
imb1

8π

B2

r2
ξr, (4.14)

where

b1 =
d ln(r2B2)

d ln r
(4.15)

and

b2 =
1

B2

d

dr

(
r2dB2

dr

)
. (4.16)

Perturbation for the equation of continuity is

σ

c2
δW = − 1

rΣ

d

dr
(rσΣξr) −

δvφ

r
(4.17)
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and the equation of motion is

−m2σ2ξr − 2Ωδvφ = − d

dr
(δW + ψ) +

1

Σ

(
−δW

c2
Fr + δFr

)
(4.18)

σδvφ +
σκ2

2Ω
ξr = −1

r
(δW + ψ) − i

mΣ
δFφ, (4.19)

where κ is epicyclic frequency. From equations (4.17) and (4.19),

δvφ =
1

r2σ2 − c2

[
r2σ2

(
b1v

2
A

2r2
− σκ2

2Ω

)
ξr − rσψ +

c2

Σ

d

dr
(rσξr)

]
(4.20)

and

δW =
1

r2σ2 − c2

[
−rc2

(
b1v

2
A

2r2
− σκ2

2Ω

)
ξr + c2ψ − c2rσ

Σ

d

dr
(rσξr)

]
, (4.21)

where vA is Alfvén velocity

v2
A =

B2

4πΣ
. (4.22)

Substituting these into equation (4.18), we obtain a single ordinary differen-
tial equation for ξr,

A2
d2ξr

dr2
+

A1

r

dξr

dr
+ A0

ξr

r2
=

1

c2

dψ

dr
− S0ψ, (4.23)

where we have defined

A2 = 1 +
1

β

(
1 − c2

r2σ2

)
(4.24)

A1 =
2c2

r2σ2

(
−1 − κ2

2Ωσ
+

2Ω

σ
+

r2σ2

c2
c1

)
+ 1 + d1 +

b1 − 1

β

(
1 − c2

r2σ2

)
(4.25)

A0 =
r2σ2

c2

(
m2 − κ2

σ2

)
− d2

1 + d2 + 1 − m2 + 2c1d1 +
2Ω

σ
d1

+
2r2σ2

r2σ2 − c2

(
− κ2

2Ωσ
+

2Ω

σ
− 1 + c1

)
+

1

β

[
b1

(
2Ω

σ
− 1

2
− d1

2

(
1 +

c2

r2σ2

)
+

c2

r2σ2 − c2

(
− κ2

2Ωσ
+

2Ω

σ
− 1 + c1

))
+

b1

2
− m2 +

c2

r2σ2
(m2 − 1) − b2

1c
2

4βr2σ2

]
(4.26)
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S0 =
1

r2σ2

[
2r2σ2

r2σ2 − c2

(
κ2

2Ωσ
− 2Ω

σ
+ 1 − c1

)
− 2r2Ωσ

c2
+

b1

2β

]
(4.27)

and the parameters are

d1 =
d ln Σ

d ln r
(4.28)

d2 =
r2

Σ

d2Σ

dr2
(4.29)

c1 =
d ln c

d ln r
. (4.30)

Solving the equation (4.23) with outgoing boundary condition, we have ξr,
which can be used to derive density perturbation through equation (4.21).

We note that we have not used local approximation in this formulation.

4.1.2 Wave on the Disk

We now investigate the wave propagation property on the gas disk. We define
x = (r − rp)/rp and y by

y = ξr exp

[
1

2

∫
A1

A2

dx

]
. (4.31)

We now obtain, from equation (4.23)

d2y

dx2
+ Ky = 0, (4.32)

where

K =
A0

A2

− 1

4

(
A1

A2

)2

− 1

2

d

dx

(
A1

A2

)
(4.33)

The region where K > 0 is propagation region and K < 0 is evanescent
region. We also note that A2 = 0 is singularity. At this singularity,

m2(Ω − Ωp)
2 =

m2c2v2
A

r2(v2
A + c2)

. (4.34)

In other words, perturbation frequency by the planet is equal to the frequency
of slow wave propagating along the background magnetic field. This point is
called magnetic resonance. One magnetic resonance exists in the disk interior
to the planet’s orbit and another one in the exterior disk.

Figure 4.1 shows the sign of K and the location of magnetic resonances for
each m mode. We note that the wave propagation property is very different
from unmagnetized case. Especially, there are two propagation regions in
one side of the disk, which corresponds to the two wave modes.
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Figure 4.1: Wave propagation property of the disk with toroidal magnetic
field. Horizontal axis shows the mode number m and the vertical axis shows
the radius normalized by scale height H = c/Ω. In this figure, scale height
is fixed at H/r = 0.03. Top panel shows the case with β = 0.1, middle
panel shows β = 1, and the bottom panel shows β = 10. Lines with R1,
R2, and R3 are lines with K = 0, and the thick line denotes the location of
magnetic resonance. The shaded regions are wave evanescent region. Dotted
line shows the locations of effective Lindblad resonances without magnetic
field for comparison. This figure is taken from Terquem (2003) [86].
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4.1.3 Divergence of density perturbation at magnetic
resonances

We denote the location of magnetic resonance by r = rM . This point is the
singularity of equation (4.23). We look at how the solution behaves in the
vicinity of this point. We use radial coordinate centered at the resonance,
x = (r − rM)/rM , and take the most dominant terms at x ∼ 0. Equation
(4.23) now becomes

x
d2ξr

dx2
+

dξr

dx
+ Aξ = rMS, (4.35)

where

A = ∓ βM

3(1 + β
3
2
MhM)

(
m2h2

M

1 + βM

+ 5 +
6

βM

)
(4.36)

S =
1

3(1 + βM)hM

[
∓βM

(1 + βM)
1
2

(
1

r2Ω2

dψ

dx

)
x=0

+
3 + βM

hM

(
ψ

r2Ω2

)
x=0

]
.

(4.37)
The upper sign denotes the interior disk, and the lower sign denotes the
exterior disk. We use the subscript “M” for values evaluated at the resonance
locations. The general solution of equation (4.35) is

ξr

rM

=
S
A

+
π

2
CY0(2

√
Ax) + C ′J0(2

√
Ax), (4.38)

where C and C ′ are constant. The singularity may be regularized by x →
x + iγ, where γ ¿ 1 is the small positive number. The solution near the
magnetic resonance is

ξr

rM

∼ C ln [4A(x + iγ)] ∼ C
(
ln |4Aγ| + iarctan

γ

x

)
(4.39)

Using equations (4.20) and (4.21) to derive δvφ and enthalpy perturbation,
we have

δW

r2
MΩ2

∼ C
h2

M

β2
M(x + iγ)

(4.40)

δvφ ∼ ∓C
(1 + βM)

1
2 hM

βM(x + iγ)
(4.41)

which indicates that there is a divergence of the density profile like 1/x. For
γ → 0,

1

x + iγ
→ P 1

x
− iπδ(x), (4.42)

and therefore, strong torque may be exerted at the magnetic resonance.
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b1 T̃m(rin, rILR) T̃m(rILR, rp) T̃m(rp, rOLR) T̃m(rOLR, rout) Total torque T̃m

8 -172 -110 624 194 536
7 -171 -153 553 186 415
3 -165 -305 408 208 146
2 -163 -344 377 209 79
1 -160 -385 333 211 -1
0 -158 -423 298 217 -66
-1 -154 -463 263 217 -137
-3 -155 -570 184 217 -324
-5 -145 -641 129 225 -432
-8 -105 -645 69 225 -456

-126 -333 310 170 21

Table 4.1: Torque exerted on the disk with toroidal magnetic field. The
magnitude of the torque is normalized by Σpr

4
pΩ

2
p, and the parameters are

d1 = 0, c is constant, c/rpΩp = 0.03, and β(rp) = 1. Results with different
magnetic field configuration parameter b1 are shown for m = 10 mode. The
bottom line shows the unmagnetized result. This table is taken from Terquem
(2003) [86].

4.1.4 Planetary migration in a disk with toroidal mag-
netic field

Terquem (2003) [86] solved equation (4.23) with outgoing boundary condi-
tions. Figure 4.2 shows the enthalpy perturbation for m = 10. As noted in
the previous section, there is a strong divergence of enthalpy in the vicinity
of magnetic resonances. Figure 4.3 shows the torque exerted at each radius
of the disk. It is clearly shown that strong torque is exerted in the vicinity
of magnetic resonance.

Table 4.1 shows the torque on the disk exerted by m = 10 mode for
different magnetic field profile parameter b1. Contributions to the torque
from four regions: from inner edge to the inner Lindblad resonance rILR, from
inner Lindblad resonance to the planet position rp, from planet position to
the outer Lindblad resonance rOLR, and from the outer Lindblad resonance to
the outer edge are shown. It is to be noted that if the background magnetic
field profile decreases faster than B ∝ r−1, the net total torque exerted on
the disk becomes negative to make the planet migrate outward.

Figure 4.4 shows the total torque exerted by each mode for different values
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Figure 4.2: Enthalpy perturbation for m = 10 mode. Parameters are such
that Σ, B2, and c are constant,c/(rpΩp) = 0.03, and β = 1. Solid line shows
the real part, and the dashed line shows the imaginary part. Bottom two
panels show the close-up in the vicinity of the magnetic resonances. This
figure is taken from Terquem (2003) [86].
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Figure 4.3: Torque exerted on the disk with toroidal magnetic field. Param-
eters are the same as Figure 4.2. Top panel shows the torque integrated from
the inner edge to the outer edge. Bottom panel shows the torque integrated
from the corotation point to outer (solid line) or to inner (dashed line) edge.
The asymmetry between the inner and outer parts give the total differential
torque. This figure is taken from Terquem (2003) [86].
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Figure 4.4: Torque exerted on the disk from each mode m with fixed b1 = −1,
d1 = 0, c/(rpΩp) = 0.03, and c is constant. The values of β(rP ) are varied.
This figure is taken from Terquem (2003) [86].

of magnetic field β for fixed b1 = −1. If magnetic field is strong, the torque
tends to become negative. If β < 10, the total torque summed up for all the
m-modes become negative, and the planet would migrate outward.

4.2 The Effects of Poloidal Magnetic Field

We have seen that toroidal magnetic field can alter the properties of disk-
planet interaction and migration greatly. It would be a natural question
what happens if different configuration of magnetic field is considered. In
this section, we investigate how poloidal magnetic field alters the disk-planet
interaction using linear analyses in the shearing-sheet. The results of linear
analyses are then compared with simulation and show good agreement.

For poloidal configuration, it is necessary to perform three-dimensional
analyses. For two-dimensional modes, we derive an analytic formula which
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generalizes that of Artymowicz (1993). For three-dimensional modes, we em-
ploy WKB approximation and derive an analytic torque formula in a strong
field limit. We show, for three-dimensional modes, that there is a divergence
in perturbed density at certain resonances and the torque is localized at this
point. We also show that two-dimensional modes are suppressed by poloidal
magnetic field and three-dimensional modes will dominate the total torque
if very strong magnetic field is exerted.

4.2.1 Linear Calculation of Torque

Basic Equations

We consider only a local region around the planet using shearing sheet model
[64]. Although it gives the same magnitude but the opposite sign of the
torque between the inner and outer regions of the planet so the net torque
becomes zero, we focus on one side of the disk in this setup and simplify
the problem to understand the effect of magnetic field. We assume that the
temperature is constant and the self-gravity of the disk is negligible in this
local region. The orbit of the protoplanet is assumed to be circular on the
equatorial plane of the disk. We set up local Cartesian coordinates with origin
at the protoplanet’s position and the x-, y-, and z-axes are radial, azimuthal,
and vertical direction of the disk, respectively. We use ideal MHD equations:

∂ρ

∂t
+ ∇ · (ρv) = 0 (4.43)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P −∇ψeff − 2Ωp(ez × v)− 1

4πρ
B × (∇×B) (4.44)

∂B

∂t
= ∇× (v × B) (4.45)

where ρ, v, P , ψeff , Ωp, ez, and B are the gas density, velocity, gas pressure,
effective potential including tidal force and the planet’s gravitational poten-
tial, Keplerian angular velocity of the protoplanet, a unit vector directed to
the z-axis, and the magnetic flux density, respectively. We adopt an isother-
mal equation of state, P = c2ρ, where c is sound speed. The Keplerian
angular velocity of the protoplanet is given by

Ωp =

(
GMc

r3
p

)1/2

, (4.46)

where G, Mc, and rp are the gravitational constant, mass of the central star,
and the distance between the protoplanet and the central star, respectively.
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Our calculations are normalized by unit time, Ω−1
p , unit velocity, c, and unit

length, h ≡ c/ΩP. The effective potential ψeff in our normalization is given
by, assuming a Keplerian disk,

ψ̃eff = −3

2
x̃2 − 3r̃3

H

r̃
, (4.47)

where all the quantities with tilde indicate the normalized value. The first
term of the right hand side of equation (4.47) is composed of the gravita-
tional potential of the central star and the centrifugal potential, and higher
orders in x, y, and z are neglected. We also neglect the z-dependence of the
gravitational potential of the central star for simplicity, and consider later
the constant background density. This greatly simplifies the calculation, and
we have found that it does not seriously affect the results. The second term
of the right hand side of equation (4.47) is the gravitational potential of
the protoplanet, where r̃H and r̃ are normalized Hill radius and the distance
from the center of the protoplanet respectively. The Hill radius is defined by
rH = (Mp/3Mc)

1/3rp, where Mp is the mass of the protoplanet.
The background disk is assumed to have no planet. The background gas

flow has a Keplerian shear, v0 = −(3x/2)ey, background density is assumed
to be constant, ρ0, and the background magnetic field is assumed to be
constant and poloidal, B0 = B0ez. We denote all the background quantities
with subscript zero.

We treat the planet as a perturber on this background disk and derive
the stationary pattern excited by the planet, as in Goldreich & Tremaine
(1979) [38]. We denote perturbed quantities with δ, e.g., density perturbation
is denoted as δρ. We Fourier transform in t-, y-, and z-directions, i.e., we
shall consider the solution of the form δρ ∝ exp[−i(ωt − kyy − kzz)]. Since
we consider the stationary pattern, the frequency ω is zero. The perturbed
quantities are then

δρ(x, y, z) =
∑
ky ,kz

δρky ,kz(x)ei(kyy+kzz), (4.48)

and the inverse transformation is

δρky ,kz(x) =
1

LyLz

∫ Lz/2

−Lz/2

∫ Ly/2

−Ly/2

dydzδρ(x, y, z)e−i(kyy+kzz), (4.49)

where Ly and Lz denote the box sizes of y- and z-directions respectively.
Imposing periodic boundary conditions in y- and z- directions, the wave
numbers in these directions are ky = 2πny/Ly and kz = 2πnz/Lz respectively,
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where ny and nz are integer. We shall drop the subscripts ky and kz of the
Fourier modes unless it is ambiguous.

We define the Lagrangian displacement ξ by

δvx = −iσ(x)ξx, (4.50)

δvy = −iσ(x)ξy +
3

2
Ωpξx, (4.51)

δvz = −iσ(x)ξz, (4.52)

where

σ(x) ≡ ω +
3

2
Ωpkyx. (4.53)

Using the Lagrangian displacement, the linearized induction equations
are

δBx = ikzB0ξx, (4.54)

δBy = ikzB0ξy, (4.55)

δBz = −B0

(
dξx

dx
+ ikyξy

)
. (4.56)

The equation of continuity is

δρ

ρ0

+
dξx

dx
+ ikyξy + ikzξz = 0, (4.57)

and the equations of motion become, using the induction equations,

(−σ2 −3Ω2
p)ξx + 2iΩpσξy =

−(c2 + v2
A)

d

dx

δρ

ρ0

+ v2
A

(
−k2

zξx − ikz
dξz

dx

)
− dψp

dx
, (4.58)

−σ2ξy −2iΩpσξx =

−(c2 + v2
A)iky

δρ

ρ0

− v2
A

(
−kykzξz + k2

zξy

)
− ikyψp, (4.59)

−σ2ξz = −c2ikz
δρ

ρ0

− ikzψp, (4.60)

where v2
A = B2

0/4πρ0 denotes the Alfvén velocity of the background gas. We
shall also define, for later convenience, the plasma β by c2/v2

A.
The equations (4.57), (4.58), (4.59) and (4.60) are four independent equa-

tions for four variables δρ and ξ. The boundary conditions to be imposed
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are such that wave excited propagate away from the planet in both inner and
outer parts of the disk.

Once the wave pattern is derived for each Fourier mode, z-component of
the torque, of which backreaction causes the orbital migration, exerted on
the disk by the planet for each mode is calculated by

Tky ,kz = −2LyLzρ0rpky

∫
Im

(
δρky ,kz(x)

ρ0

)
ψpkykz(x)dx, (4.61)

where Im denotes the imaginary part.

Wave Propagation Property of the Disk

We shall investigate the wave propagation property of the disk with poloidal
magnetic field. First, we derive a wave equation from (4.57)-(4.60). The x-
and y-components of the equations of motion can be written

(σ2 + 3Ω2
p − v2

Ak2
z)ξx − 2iΩpσξy =

df

dx
, (4.62)

(σ2 − v2
Ak2

z)ξy + 2iΩpσξx = ikyf, (4.63)

where f(x) is defined by

f(x) ≡ 1

σ2

[{
(c2 + v2

A)σ2 − c2v2
Ak2

z

} δρ

ρ0

+ (σ2 − v2
Ak2

z)ψp

]
. (4.64)

Equations (4.62) and (4.63) are the generalization of equation (10) of Gol-
dreich & Tremaine (1979) [38]. Variable f(x) is related to the perturbation
of total pressure δΠ = c2δρ + B0δBz/4π by

f(x) =
δΠ

ρ0

+ ψp. (4.65)

Therefore, it is a natural extension of the variable used by Goldreich &
Tremaine (1979) [38] that is c2δρ/ρ0 + ψp. Solving for ξx and ξy,

ξx =
1

D

[
(σ2 − v2

Ak2
z)

df

dx
− 2Ωpσkyf

]
, (4.66)

ξy =
1

D

[
−2iΩpσ

df

dx
+

(
σ2 + 3Ω2

p − v2
Ak2

z

)
ikyf

]
, (4.67)

where D is
D = (σ2 − v2

Ak2
z)(σ

2 − v2
Ak2

z + 3Ω2
p) − 4σ2Ω2

p. (4.68)
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This generalizes what is denoted by D in the case of unmagnetized disk,
e.g., equation (12) of Goldreich & Tremaine (1979) [38]. Note that in the
absence of magnetic field, D is a quadratic function of σ, while this becomes
a quartic function in the present situation. From equations (4.57) and (4.60),
we finally obtain a second order ordinary differential equation which describes
wave excitation and propagation of the disk,

d2f

dx2
+ A1

df

dx
+ A2f = S, (4.69)

where

A1 =
d

dx
ln

σ2 − v2
Ak2

z

D
, (4.70)

A2 =
(σ2 − c2k2

z)D

{(c2 + v2
A)σ2 − c2v2

Ak2
z} (σ2 − v2

Ak2
z)

+
2Ωpσky

σ2 − v2
Ak2

z

d

dx
(ln D) − k2

y, (4.71)

S =
σ2D

{(c2 + v2
A)σ2 − c2v2

Ak2
z} (σ2 − v2

Ak2
z)

ψp. (4.72)

Imposing WKB approximation, df/dx, kzf À kyf , this equation sim-
plifies to
Schrödinger type:

d2f

dx2
+ V (x)f = S (4.73)

where

V (x) =
(σ2 − c2k2

z)D

{(c2 + v2
A)σ2 − c2v2

Ak2
z} (σ2 − v2

Ak2
z)

. (4.74)

The regions where V (x) > 0 are wave propagation regions, and those where
V (x) < 0 are evanescent. The boundary between these regions, where V (x) =
0 or V (x) = ±∞, is the resonances. Figure 4.5 shows the appropriately
normalized potential V (x) for disk with β = 0.9 and mode kyh = 0.196 and
kzh = 3.14.

There are two or three points where V (x) = 0 in one side of the disk with
respect to the planet (either x > 0 or x < 0), depending on the value of β.
From the condition D = 0, we have

σ2 = v2
Ak2

z +
1

2

[
Ω2

p ±
√

Ω4
p + 16Ω2

pv
2
Ak2

z

]
(4.75)
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Figure 4.5: Potential V (x) given by equation (4.74) for β = 0.9, kyh = 0.196,
and kzh = 3.14. Resonance positions in the outer disk (x > 0) are indicated.
LR+ and LR− denote Lindblad resonances, AR denotes Alfvén resonance,
VR denotes vertical resonance, and MR denotes magnetic resonance. The
grey regions correspond to the evanescent regions. Note that regions |x/h| >
15 are all propagation regions.
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We call the point with positive sign Lindblad Resonance Plus (LR+) and
with negative sign Lindblad Resonance Minus (LR−). In the unmagnetized
disk, LR+ coincides with the usual Lindblad resonance, σ2 = κ2, where κ is
the epicycle frequency, and LR− degenerates into corotation point. We note
that LR− exists only when v2

Ak2
z > 3Ω2

p, which is exactly the same as the
stability condition against MRI [6]. When LR− does not exist but kz 6= 0,
the corotation region becomes a wave propagation region. Since σ = 0 at
the corotation, this indicates that there is a mode with zero frequency but
non-zero wavelength, and therefore, in general, there is an unstable mode.
Another condition for V (x) = 0 is

σ2 = c2k2
z . (4.76)

This condition does not depend on magnetic field strength. This resonance
corresponds to that found by Takeuchi & Miyama (1998) [81] and is named
“Vertical Resonance” by Zhang & Lai (2006) [94]. We shall also call this
point Vertical Resonance (VR) in this paper.

There are two points in one side of the disk where V (x) diverges. One is
given by

σ2 = v2
Ak2

z . (4.77)

At this point, the radial wavelength of Alfvén wave becomes zero. We shall
call this point Alfvén Resonance (AR). Note that this divergence is related to
what is called Alfvén resonance in plasma physics (see e.g., Stix 1992 [80]).
The other point where V (x) diverges is given by

σ2 =
c2v2

Ak2
z

c2 + v2
A

. (4.78)

At this point, the wavelength of the slow mode becomes zero, and this cor-
responds to “Magnetic Resonance” found by Terquem (2003) [86] in the
analysis of toroidal field. Therefore, we shall also call this point Magnetic
Resonance (MR) in this paper.

For two-dimensional modes, kz = 0, only LR+ exists, and the region in
the vicinity of the corotation is evanescent region, whereas the regions further
away from LR+ are propagation regions. The details of the wave propagation
property of the disk depend on the value of β and kz, but in general, there
are three propagation regions on one side of the corotation, corresponding
to the three wave modes of the magnetohydrodynamics. There are only two
propagation regions in the analysis of Terquem (2003) [86], since the mode
is restricted to kz = 0 and the Alfvén wave with δvz 6= 0 is not taken into
account. Figure 4.6 shows the wave propagation property of one side of the
disk in the case of β < 1.
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With careful investigation of the properties of the resonances, it is possible
to analyze the wave excitation, propagation, and absorption. In this paper,
however, we calculate the torque in some restricted cases and compare the
results with numerical calculation. We first investigate the case when kz =
0. We then calculate three dimensional modes, kz 6= 0, when very strong
magnetic field is exerted. In these cases, MRI does not occur [6], and we
expect the wave pattern becomes stationary with respect to the planet’s
motion.

Two Dimensional Mode: kz = 0

We consider the two-dimensional, or kz = 0, mode. In this case it is possible
to calculate the torque exerted on the disk without imposing WKB approxi-
mation. When kz = 0, it is clear from equation (4.60) that the fluid particles
do not move along z-axis, ξz = 0, and the effect of magnetic field appears
only in the pressure term. The sound speed becomes the phase velocity of
the fast mode, c2+v2

A, and this acts as an effective sound speed. We can then
follow the track of Artymowicz (1993) [4] and calculate the torque exerted
on the disk by evaluating the angular momentum flux carried by the wave
at |x| → ∞.

The position of the effective Lindblad resonance is given by

σ2(xeff) − Ω2
p − c2k2

y(1 + β−1) = 0. (4.79)

When
Ω2

p + c2k2
y(1 + β−1)

Ωpcky

√
1 + β−1

À 1, (4.80)

the resonances inside and outside of the corotation radius are well isolated
each other, and the torque exerted on the disk may be evaluated by the
strength of the gravitational potential of the planet at the resonance point.

We now describe how the formula for one-sided torque is derived. The
linearized equations of continuity and motion for kz = 0 modes are

−iσ
δρ

ρ0

+
d

dx
δvx + ikyδvy = 0, (4.81)

−iσδvx + c2(1 + β−1)
d

dx

δρ

ρ0

− 2Ωpδvy = − d

dx
ψp, (4.82)

−iσδvy +
1

2
Ωpδvx + ikyc

2(1 + β−1)
δρ

ρ0

= −ikyψp. (4.83)

From these, we obtain the equation for vorticity:

d

dx
δvy −

1

2
Ωp

δρ

ρ0

− ikyδvx = 0. (4.84)
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Using the equations of motion, we finally obtain the Schrödinger-type second-
order ordinary differential equation for δvy:

d2

dx2
δvy +

1

c2(1 + β−1)

[
σ2 − Ω2

p − c2(1 + β−1)k2
y

]
δvy

=
1

c2(1 + β−1)

[
−1

2
Ωp

dψp

dx
+ σkyψp

]
. (4.85)

The position of the effective Lindblad resonance is given by

σ2 = Ω2
p + c2(1 + β−1)k2

y. (4.86)

Waves are evanescent in the region in the vicinity of the planet and the
regions further away from the resonance are propagation regions. Waves are
excited at the effective Lindblad resonances and propagate away from the
planet to |x| → ∞.

We shall now evaluate the angular momentum flux at infinity. The an-
gular momentum flux is calculated by

FA = 2rpρ0LyLzRe
[
δvxδv

∗
y

]
. (4.87)

Since the gravitational potential of the planet vanishes at infinity, the flux
at the infinity is

FA(x → ∞) = 2rpρ0LyLz
4c2(1 + β−1)ky

Ω2
p + c2(1 + β−1)k2

y

Im

[
δv∗

y

d

dx
δvy

]
. (4.88)

The solution of the wave equation (4.85) is given by parabolic cylinder func-
tions. Here, for simplicity, we assume the two resonances, inside and outside
the planet, are isolated each other. The equation in the vicinity of the reso-
nance is then given by

d2

dz2
δvy + 2γ(z − γ)δvy = −S, (4.89)

where

z =

[
3Ωpky

2c
√

1 + β−1

] 1
2

x (4.90)

γ2 =
2

3

Ω2
p + c2(1 + β−1)k2

y

Ωpcky

√
1 + β−1

(4.91)

S =
Ωp

c(1 + β−1)3/4
√

6Ωpcky

[
dψp

dz
− σ(1 + β−1)1/4

√
8cky

3Ω3
p

ψp

]
eff

. (4.92)
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The subscript “eff” denotes the quantity evaluated at the resonance.

We impose the boundary condition as follows. In the evanescent region,
the solution does not grow exponentially and in the propagation region, the
waves propagate away from the planet. The solution is then

δvy =
πS

(2γ)2/3

{
Gi

[
−(2γ)1/3(z − γ)

]
+ iAi

[
−(2γ)1/3(z − γ)

]}
(4.93)

Where Ai represents the Airy function and Gi is the solution of the equa-
tion [1]

d2

dx2
Gi(x) − xGi(x) = − 1

π
. (4.94)

Substituting the equation (4.93) into (4.88), we obtain the torque formula:

T2D =
2π

3
rpρ0LyLz

Ωp

Ω2
p + 4c2k2

y(1 + β−1)

1√
Ω2

p + c2k2
y(1 + β−1)

Ψ2
eff , (4.95)

where

Ψeff =
dψp

dx
(xeff) − 2ky

√
Ω2

p + c2k2
y(1 + β−1)

Ωp

ψp(xeff). (4.96)

The condition of the isolation of the resonances is satisfied when the
solution at one resonance does not affect the other resonance. The distance
between the resonances is δzres ∼ γ, while the scale that the solution in the
vicinity of one resonance changes in the evanescent region is δzwave ∼ γ−1/3.
Hence, resonances are well separated each other when δzres À δzwave, or
γ À 1.

Equation (4.95) generalizes the equation (56) of Artymowicz (1993) [4]
to a magnetized disk. Since the effective sound speed becomes faster when
poloidal magnetic fields present, the magnitude of the torque becomes smaller.
There are two kinds of cutoff mechanism of the torque, as Artymowicz
(1993) [4] pointed out. One is mild cutoff that comes from the coefficient
of Ψeff . The other is the sharp cutoff, which is the consequence of the fact
that position of the effective Lindblad resonance goes further away from
the corotation when magnetic field is stronger. In the case of planetary
migration, the effect of sharp cutoff is more important, and the torque by
two-dimensional mode is strongly suppressed when β . 1. We emphasize
that we have obtained the torque formula (4.95) including the torque cutoff
at high ky mode because we have not imposed WKB approximation, and
hence, not neglected terms with ky.
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Three Dimensional Mode: kz 6= 0, in the Limit of Strong Magnetic
Field

In the unmagnetized disk, the contribution from three-dimensional, or kz 6= 0,
mode is small [83]. However, it is indicated in the previous section that the
two-dimensional mode is strongly suppressed when strong magnetic field is
present. Therefore three dimensional mode may be important in this case.
We investigate three-dimensional mode in the limit of β = 0. We impose
WKB approximation in this section.

In the limit of β → 0, the resonances LR+, LR-, and AR are infinitely
far away from the corotation and we can safely neglect their contribution.
The other two resonances, MR and VR, degenerate and the equation (4.69)
becomes

d2f

dx2
− k2

zf = S(x), (4.97)

where the source term S(x) is

S(x) = − σ2

σ2 − c2k2
z

ψp. (4.98)

In this case, waves are evanescent in the vicinity of the corotation, but there
is a singularity in the source term at the degenerate point of MR and VR,

σ2
MR = c2k2

z . (4.99)

The subscript MR denotes the quantities evaluated at this point. Note that
this divergence originally comes from the divergence of the source term (4.71)
at MR.

In order to regularize the singularity, we consider the small viscosity ef-
fective only in the vicinity of this point. The viscosity is effectively taken
into account by adding the small positive imaginary part to the frequency,

σ(x) → σ(x) + iε, (4.100)

where ε > 0 is small positive number (see e.g., Meyer-Vernet and Sicardy
1987 [60]). Taking the limit of ε → 0,∫

g(x)

σ − ckz

dx = P
∫

g(x)

σ − ckz

dx − iπ

∫
δD(σ − ckz)g(x)dx (4.101)

where g(x) is an arbitrary smooth function, P denotes the principal value of
the integration and δD(x) is the Dirac’s delta function.
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The boundary condition we impose is that the perturbation must vanish
for |x| → ∞, i.e.

f(x → ∞) ∝ e−kzx, (4.102)

f(x → −∞) ∝ ekzx. (4.103)

The solution that satisfies this condition is

f(x) = − 1

2kz

[
e−kzx

∫ x

−∞
ekzuS(u)du − ekzx

∫ x

+∞
e−kzuS(u)du

]
. (4.104)

Substituting S(x), the real and imaginary part of the solution are

2

kz

Ref = P
∫ x

−∞
ekz(u−x)ψp(u)

[
1 +

ckz

2

(
1

σ(u) − ckz

− 1

σ(u) + ckz

)]
du

−P
∫ x

+∞
ekz(x−u)ψp(u)

[
1 +

ckz

2

(
1

σ(u) − ckz

− 1

σ(u) + ckz

)]
du

(4.105)

and

− 6Ωpky

πck2
zψp,MR

Imf =



ekzx

[
exp

(
− 2ck2

z

3Ωpky

)
− exp

(
2ck2

z

3Ωpky

)]
x < −xMR

exp

[
− 2ck2

z

3Ωpky

] (
e−kzx − ekzx

)
−xMR < x < xMR

−e−kzx

[
exp

(
− 2ck2

z

3Ωpky

)
− exp

(
2ck2

z

3Ωpky

)]
x > xMR

(4.106)

In the limit of β → 0, the density perturbation is given by

δρ

ρ0

=
1

σ2 − c2k2
z

[
σ2

v2
A

f + k2
zψp

]
. (4.107)

In order to calculate the torque, we need imaginary part of δρ/ρ0 which is
given by

2ckzIm

[
δρ

ρ0

]
= −π {δD(σ − ckz) − δD(σ + ckz)}

(
σ2

v2
A

Ref + k2
zψp

)
+

σ2

v2
A

{
P

σ − ckz

− P
σ + ckz

}
Imf. (4.108)
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It is possible to show that f does not diverge at the resonance. For
simplicity, we set the planet’s gravitational potential ψp to be constant. The
part of the equation (4.105),∫ x

−∞
duekz(u−x) −

∫ x

+∞
duekz(x−u) (4.109)

is finite. We consider the rest. Since we are working on the local Cartesian
coordinate where inside and outside the planet are symmetric, we assume
x > 0 without loss of generality. Let I be

I = P
∫ x

−∞
duekz(u−x)

[
1

σ(u) − ckz

− 1

σ(u) + ckz

]
−P

∫ x

−∞
duekz(x−u)

[
1

σ(u) − ckz

− 1

σ(u) + ckz

]
, (4.110)

then

I = IA − IB − IC + ID, (4.111)

IA = exp

[
−kz

(
x − 2ckz

3Ωpky

)]
Ei

(
kzx − 2ck2

z

3Ωpky

)
, (4.112)

IB = exp

[
−kz

(
x +

2ckz

3Ωpky

)]
Ei

(
kzx +

2ck2
z

3Ωpky

)
, (4.113)

IC = exp

[
kz

(
x − 2ckz

3Ωpky

)]
Ei

(
−kzx +

2ck2
z

3Ωpky

)
, (4.114)

ID = exp

[
kz

(
x +

2ckz

3Ωpky

)]
Ei

(
−kzx − 2ck2

z

3Ωpky

)
, (4.115)

(4.116)

where Ei denotes the exponential integral,

Ei(w) = P
∫ w

−∞
dt

et

t
. (4.117)

We can check IA, IB, IC , and ID do not diverge at infinity by the asymptotic
expansion of the exponential integral,

e−w

∫ w

−∞

et

t
dt ∼ 1

w
(4.118)

and the inequality derived from the series expansion of the exponential inte-
gral,

Ei(w) = γ + ln w +
∞∑

n=1

wn

nn!
< γ + ln w + ew. (4.119)
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For x → ∞, I ∼ O(1).

We now consider the vicinity of the resonance, x ∼ 2ckz/3Ωpky. Although
IA and IC are divergent logarithmically, the combination IA − IC does not
diverge:

IA − IC ∼ P
∫ kzδ

−kzδ

dt
et

t
(4.120)

where we set x ∼ 2ckz/3Ωpky + δ. It is easy to show IB, ID ∼ O(1) and
therefore, I is order of unity for all x. Although ψp is not strictly a constant,
it is smooth in the vicinity of the resonance. Therefore, we can safely assume
this to be constant when we discuss the divergence at the resonance.

From (4.105), the order of magnitude of Ref is

Ref ∼ O
(

ck2
z

Ωpky

ψp

)
. (4.121)

It is clear from the equation (4.106), the imaginary part of f is also of the
same order.

Given that f does not diverge at the resonance, we can neglect the term
with σ2/v2

A in right hand side of the equation (4.107) when magnetic field is
strong enough. Quantitatively, we can neglect these terms when

σ2

v2
A

ck2
z

Ωpky

¿ k2
z (4.122)

since f ∼ O(ck2
zψp/Ωpky). Since σ2 ∼ c2k2

z in the vicinity of the resonance,
we obtain

β ¿ Ωpky

ck2
z

. (4.123)

When this condition is satisfied, the imaginary part of the density perturba-
tion is

Im

[
δρ

ρ0

]
∼ −πkz

2c
{δD(σ − ckz) − δD(σ + ckz)}ψp. (4.124)

The first delta function indicates the torque exerted on the outer disk, and
the second inner disk. These torques are of the same magnitude but different
in sign. The magnitude of the torque on one side of the disk is then, from
(4.61),

TMR =
2π

3
LyLz

ρ0rpkz

Ωpc
ψ2

p,MR. (4.125)
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4.2.2 Numerical Calculation

We have performed numerical calculations in order to investigate how well
the equations (4.95) and (4.125) describe the realistic value of the torque.
We have done two sets of runs. One is for a two-dimensional disk. The other
is for a three-dimensional thick disk.

Numerical Methods

We adopt the nested grid method (see, e.g., Machida et al. 2005, Matsumoto
& Hanawa, 2003) to obtain high spatial resolution near the planet. Each level
of rectangular grid has the same number of cells (= 64 × 256) for 2D run,
while (= 64×256×16) for 3D run. The cell width ∆s(l) depends on the grid
level l. The cell width is reduced by half with increasing grid level (l → l+1).
We use 4 grid levels (l =1,2 · · · 4) for 2D run and 5 levels for 3D run. The
box size of the coarsest grid l = 1 is chosen to (Lx, Ly) = (64h, 256h) for
2D run and (Lx, Ly, Lz/2) = (64h, 256h, 16h) for 3D run. Note that in z-
direction, the simulation box extends from midplane to z = Lz/2. The box
size of the finest grid is (x, y) = (2h, 8h) for 2D run and (x, y, z) = (2h, 8h, h)
for 3D run. The cell width of the coarsest grid is ∆s(1) = h, while that of
the finest grid has ∆s(4) = 0.125h for 2D run and ∆s(5) = 0.0625h for 3D
run. We assume the fixed boundary condition in the x-direction and periodic
boundary condition in the y-direction. For z-direction, we impose a periodic
boundary condition between z = −Lz/2 and z = Lz/2.

For two dimensional calculation, we neglect the z-dependence of the
planet potential, i.e. we adopt the potential of the form

ψp = − GMp√
x2 + y2

. (4.126)

We employ the softening in the gravitational potential as follows. The
gravitational force F by the planet is given by

F =
GMp

(r + ε)3
x, (4.127)

where ε is the softening length, r is the distance from the planet’s position,
and x is the position vector. We choose ε such that this equals the mesh size
of the finest grid, i.e., ε = 0.125h for 2D run and ε = 0.0625h for 3D run.

We fix the planet mass to be r̃H = 0.3, corresponding to 3M⊕ planets
when Mc = M¯ and h/rp = 0.05, and vary the initial strength of the poloidal
magnetic field. We performed the calculations for β = ∞, 100, 10, 2, 0.3,
0.1, 0.01, and 0.001.
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4.2.3 Comparison between Numerical Calculation and
Linear Analysis

For all two-dimensional calculations and for three-dimensional calculation
with β = ∞, 0.01, and 0.001, we do not observe MRI and steady states are
realized. This is consistent with the stability criterion of MRI derived from
linear analysis.

We then Fourier transform the density pattern of the steady state in y-
and z-directions and calculate the torque exerted on one side of the disk
by equation (4.61), and this torque is compared with the results of linear
analysis. The normalization of the torque is taken to be

T̃ =
T

ρ0rpH4Ω2
p

. (4.128)

We make use of FFT (e.g., Press et al. 1996 [31]). The wavenumber k
we evaluate is given by

k =
2πn

L
, (4.129)

where L is the box size of the y- or z-directions and n is an integer with
−N/2 < n < N/2 where N is the mesh number. We also Fourier transform
the gravitational potential of the planet numerically to obtain the value of
ψp.

Two-dimensional Calculation

Figure 4.7 shows the stationary pattern of density perturbation obtained by
two dimensional calculations for β = 0.01, 2, and 100. It is clear that, with
increasing magnetic field, the amplitude of the wave becomes small and the
point where waves are excited goes further away from the planet. Figure 4.8
shows the torque calculated as a result of numerical calculation for various
magnetic field strength, or different β. It is clear that the torque becomes
weaker as the magnetic field is stronger.

We show in figure 4.9 the comparison between the results of numerical
calculation and linear analysis, equation (4.95). It is clear that for modes
that satisfy condition (4.80), which we expect that equation (4.95) gives a
good approximation for the torque, numerical calculation and linear analysis
indeed show reasonably good agreement, at least an order of magnitude,
even though equation (4.95) estimates the torque by the value of density
perturbation only at the position of effective Lindblad resonance. Therefore,
equation (4.95) is useful for estimating two-dimensional torque when poloidal
magnetic field is exerted on the disk.
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Figure 4.7: Density profile obtained by the two-dimensional numerical calcu-
lation. The pattern of density perturbation δρ/ρ0 is indicated by false color.
It is clear that the stronger the magnetic field, the further the point where
waves are excited and the smaller the amplitude. Note that color scales are
different for different values of β. The x- and y-axes correspond to the axes
of shearing-sheet, normalized by the scale height c/Ωp. The elapsed time t is
normalized by the planet’s Kepler time Ω−1

p . Four different levels of nested
grid are super-imposed.
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Figure 4.9: Comparison of the torque obtained by the two-dimensional nu-
merical calculation (plus) and the linear analysis (line), the equation (4.95)
for β = 100 (top left), β = 2 (top right), and β = 0.1 (bottom). The hori-
zontal axis denotes the azimuthal mode number and the vertical axis denotes
normalized torque.
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Figure 4.10: kz-dependence of the torque obtained by three-dimensional nu-
merical calculations. The left panel shows β = 0.01 and the right β = 0.001.
The horizontal axis denotes the azimuthal mode number and the vertical
axis denotes normalized torque. Two-dimensional modes are denoted by
plus, three-dimensional modes with nz = 1 by cross, and nz = 2 by filled
square. Three-dimensional modes with nz = 1 dominate the two-dimensional
modes when the magnetic field is sufficiently strong (β ¿ 1).

We also checked that the numerical calculation and linear analysis are in
good agreement for other values of β except for β = 0.001. For β = 0.001,
since the amplitude of density perturbation is very small, numerical torque
is dominated by small noise in the disk.

Three-dimensional Calculation

For β = 0.01 and β = 0.001 models of the three-dimensional calculations, we
do not observe MRI and steady state is realized. For other parameters, we
observe the instability. Since we investigate the stationary pattern, we focus
on results in which we do not observe MRI. We show in figure 4.10 the torque
that is derived from numerical calculation for nz = 0, 1, and 2, where nz is
the mode number of z-direction. It is clear that nz = 1 modes overwhelm
the two-dimensional modes in these models.
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Figure 4.11: The comparison of nz = 1 mode torque between the analytic
formula (line), equation (4.95), and three-dimensional numerical calculation
for β = 0.001 (plus) and β = 0.01 (cross). The horizontal axis shows the
azimuthal mode number and the vertical axis shows the normalized torque.

Figure 4.11 compares the torque calculated from the three-dimensional
numerical calculations and that calculated from linear analysis of nz = 1
modes, torque formula (4.125). From the derivation of formula (4.125), this
expression of the torque is valid when WKB condition ky ¿ kz and strong
magnetic field condition (4.123) are both satisfied. In the present parameter,
the WKB condition is more restrictive. Since kzh = 2π/32 = 0.196 for nz = 1
mode, we expect that for kyh greater than this value, equation (4.125) does
not give a good approximation for the torque. Nevertheless, the result of the
numerical calculation indicates that the equation (4.125) shows a very good
agreement even in the modes with kyh greater than this limit.

We also find that the imaginary part of the Fourier components of density
perturbation diverges around MR, as expected from linear analysis. Figure
4.12 shows the profile of the imaginary part of the density perturbation of
β = 0.001 calculation for (kyh, kzh) = (0.498, 0.785). The position of mag-
netic resonance is indicated by an arrow. It is clear that density perturbation
diverges at the resonance position and the contribution of the torque mostly
comes from this divergence. The torque is localized at the magnetic reso-
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Figure 4.12: The radial profile of Im(δρ/ρ0) for the Fourier component
(kyh, kzh) = (0.498, 0.785) obtained by β = 0.001 numerical calculation. The
profile of the torque on the disk depends on the imaginary part of the den-
sity perturbation [see equation (4.61)]. The horizontal axis shows the radial
coordinate and the arrow indicate the position of the magnetic resonances
calculated by the linear analysis.

nances since waves cannot propagate on the disk, and, therefore, the analytic
torque formula (4.125) gives a good approximation of the total torque, even
if we consider the regions only in the vicinity of the resonance.

4.2.4 Discussion

The Strength of Three-dimensional Modes in a Thin Disk

Tanaka et al. (2002) [83] has shown that in the unmagnetized disk, three-
dimensional modes are subdominant. In contrast, when poloidal magnetic
field is exerted on the disk, it is indicated that three-dimensional modes can
dominate the torque when the magnetic field is sufficiently strong. In this
section, we briefly discuss the critical value of β at which kz 6= 0 modes
dominate the total torque in a thin magnetized disk according to the results
of linear analysis. By “thin disk”, we refer to the disk with small aspect
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ratio, smaller than that we have used in the numerical calculation, but not
two-dimensional.

We calculate the torque for nz = 0 modes by (4.95) and nz = 1 modes by
(4.125). The Fourier transformation of the planet’s gravitational potential is
done numerically with the box size Lx = 32h, Ly = 128h, Lz/2 = 2h and the
spatial resolution 0.125h. We have checked that nz = 2 modes are smaller
than nz = 1 modes. Figure 4.14 shows the torque for β = 0.01, 2, and
100. The vertical wavenumber of nz = 1 modes is kzh = 1.57, and WKB
approximation is valid for kyh less than this value. For thin disk case, it is
indicated, just as thick disk case, that two-dimensional modes are dominant
for a weak magnetic field, while three-dimensional modes are important for
a strong magnetic field case. We have investigated other values of β and it is
indicated that for the disk with β . 0.1, three-dimensional modes are more
important than two-dimensional modes.

Since three-dimensional torque formula (4.125) is valid only in the strong
magnetic field limit, it is not possible to extrapolate this to the case with
β ∼ 1. However, since the torque formula for two-dimensional modes (4.95)
does not have any restriction, we can safely conclude that kz = 0 modes
are always suppressed for strong magnetic field. Therefore, qualitatively, we
expect that two-dimensional modes are suppressed for β . 1.

Differential Torque

For an unmagnetized disk, it is known that the outer torque that is exerted
by the disk outside the planet wins over the inner torque exerted by the
disk inside, when the disk gas density is larger in the inner disk than the
outer [91]. This is the result of the competition of two effects. On one hand,
since the inner density is larger than the outer, the inner torque becomes
larger than the outer. On the other hand, the effect called pressure buffer
enhances the outer torque. Considering the background disk structure, gas
is slightly sub-Keplerian resulting from the outward pressure gradient. Since
the planet is in Keplerian rotation, the corotation point locates slightly inside
the planet, which makes the outer Lindblad resonance slightly closer to the
planet. Calculating the difference of these two competing effects, the outer
torque is larger than the inner torque.

Let us now qualitatively discuss the differential torque in the disk with
poloidal magnetic field. First, we consider the two-dimensional mode when
magnetic field exerted on the disk inside the planet’s orbit is larger than the
outside. In the case without variation in density and temperature, the mild
cutoff of the torque by magnetic field makes the outer torque stronger. If
the disk has radially decreasing magnetic pressure distribution, the planet
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locates slightly outside the corotation point since outward magnetic pressure
is exerted on the gas. This also enhances the outer torque, since the outer
effective Lindblad resonance locates closer to the planet. The outer torque
is, therefore, expected to be stronger because of these two effects, in contrast
to the toroidal magnetic field case of Terquem (2003) [86] where the inner
torque is stronger. This might indicate that the differential torque may be
very sensitive to the configuration of magnetic field near the planet.

We now turn to the magnetic resonances of kz 6= 0 modes, effective for
low β. Since the formula (4.125) is for the limiting case of β → 0, the torque
does not depend on the magnetic field strength. We shall propose a simple
torque formula for MR which generalizes equation (4.125) and discuss the
effect of magnetic field. Firstly, we note that the relation between f and
δρ/ρ0 is given by

δρ

ρ0

=
1

(c2 + v2
A)σ2 − c2v2

Ak2
z

[
σ2f − (σ2 − v2

Ak2
z)ψp

]
. (4.130)

Since f in the right hand side can be neglected when β = 0, we expect this
term can be neglected even in β 6= 0, provided that β is sufficiently small.
This equation also indicates that there is a δ-function-like divergence at MR.
Neglecting the term with f , we obtain the following torque formula at MR
for low β,

TMR,mod =
2π

3
LyLz

ρ0rpkz

Ωpc(1 + β)3/2
ψ2

p,MR, (4.131)

where the value of gravitational potential is evaluated at MR. The smaller
the magnetic field strength is, the closer towards the planet the MR posi-
tion locates, which makes the gravitational potential at MR, ψp,MR, stronger.
However, the coefficient, (1+β)−3/2, becomes smaller, which makes the eval-
uation complicated. Using the parameters with three-dimensional torque
calculation, we evaluate the Fourier transform of the gravitational potential
and calculate the torque. Figure 4.13 shows the torque calculated from the
modified formula (4.131) for β = 0.001, 0.01, and 0.1. It is indicated that MR
torque becomes smaller for weaker magnetic field strength. Therefore, we ex-
pect that when the inner magnetic field is stronger than the outer magnetic
field and the field strength is high enough for kz 6= 0 modes to be dominant,
the inner torque wins over outer torque, in analogous to the results of the
analysis of toroidal field by Terquem (2003) [86].

When magnetic field is very strong, equation (4.131) indicates that the
value of the torque is not sensitive to the strength of the field, and the
differential torque can be very small. We consider, then, the effect of the
gradient of sound speed, which changes the location of the resonance even in
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Figure 4.13: Torque at the magnetic resonance obtained by equation (4.131).
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β → 0 limit. Let us consider the disk with higher sound speed inside. The
outer MR, which nearly degenerates with VR, is closer to the planet, giving
a larger value of gravitational potential. The coefficient of the gravitational
potential in equation (4.125) is inversely proportional to the sound speed
because Lzkz is the mode number of the z-direction that is indifferent to the
value of c. Therefore, the coefficient is smaller for the inner MR than the
outer MR. The outer torque is expected to be stronger than the inner torque
when magnetic field is very strong and when there is a negative gradient of
the sound speed.

The qualitative dependence on magnetic field of the differential torque
for laminar modes may be summarized as follows. Consider the case where
inner magnetic field is stronger than the outer. When magnetic field strength
is weak and two-dimensional modes are dominant, the outer torque is more
enhanced and the migration is inward. When magnetic field is strong enough
for three-dimensional modes to be dominant, the migration can be outward.
Note, however, that the rate and directions of migration may depend sensi-
tively on the gradient of the sound speed c. Negative gradient of the sound
speed may cause the inward migration for very low β.

It seems difficult to halt the inward migration in a disk with strong
poloidal magnetic field, since outward migration may require positive gradi-
ent of sound speed. Note, however, that the typical magnitude of one-sided
torque is always smaller than the unmagnetized case, as shown in figure
4.14. In the disk with β = 100, the torque is dominated by two-dimensional
modes and its magnitude is approximately 10−3 in our normalization, while
in β = 0.01 case, the magnitude is smaller by about two orders of magni-
tude. Therefore, the strong magnetization of disk is expected to slow down
the migration. Actually this outcome is analogous to the effect of increasing
gas temperature, and hence, thermal pressure and sound speed in the disk
without magnetic field.

4.3 Comparison between Toroidal and Poloidal

In this chapter, we have shown the analyses of disk-planet interaction when
the disk is threaded by toroidal or poloidal magnetic field. We now make
a qualitative discussion by comparing the effect of magnetic resonances of
purely toroidal and that of purely poloidal case.

In the case of toroidal magnetic field, there is a magnetic resonance in
two-dimensional modes too. In the strong field limit, the position of the
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Figure 4.14: Comparison between two-dimensional torque formula (4.95) and
three-dimensional formula (4.125) for thin disk with β = 0.01 (top left), β = 2
(top right), and β = 100 (bottom). Two-dimensional torque is denoted by
the solid line and three-dimensional torque is denoted by the dashed line.
The horizontal axis denotes azimuthal mode number and the vertical axis
denotes normalized torque.
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magnetic resonance is given by

xMR,toroidal =
2

3
H. (4.132)

Since the magnetic resonance in poloidal case is located at

xMR,poloidal =
2

3

kz

ky

H, (4.133)

and in a thin disk, modes kz À ky are important, the magnetic resonance of a
toroidal field is closer to the planet than the toroidal case. We also note that
the Fourier components of three-dimensional modes of gravitational potential
are much smaller than the two-dimensional modes, as shown by Tanaka et
al (2002) [83]. Therefore, in a standard case of a planet on a circular orbit
embedded in a disk midplane, we expect that when the net magnetic field
is dominated by toroidal components, the effect of poloidal magnetic field is
small compared to that of a toroidal field. A possible exception is provided by
a large inclination of planet’s orbit. In this case, the gravitational potential
of planet has a large z-component (three-dimensional modes), and thus, the
poloidal field would be important. Note, however, that we need a new set of
analyses for the case of a planet with inclined orbit (for unmagnetized disks,
see Tanaka & Ward 2004 [84]).



Chapter 5

Effects of Viscosity

In the previous chapter, we have shown that the properties of disk-planet
interaction is qualitatively different from standard, non-magnetized case if
MHD effects are considered . In this chapter, we investigate how the char-
acteristics of disk-planet interaction is altered by the effects of viscosity. Al-
though there has been a number of investigations on the disk-planet in-
teraction in a viscous disk (for example, Masset 2001, 2002 [57] [58] or
Paardekooper and Papaloizou 2009 [69] for corotation torque, D’Angelo et
al. 2002, 2003 [18] [19] for high resolution numerical study), there has not
yet been a study of wide range in the viscous coefficient that requires an
analysis on the detailed density structure in the vicinity of the planet. In
this chapter, as a first step for the complete investigation, we show results of
linear calculation in a local, shearing-sheet analysis.

We find that as we increase the values of viscous coefficient α, one-sided
torque stays unchanged until α . 0.01, then increases until α ∼ 1, and finally
decreases. The torque can be factor of two larger than inviscid case when
α = 0.1, and more importantly, the enhancement of the torque is a result
of the modified density structure in the vicinity of the planet, which has
not yet been investigated in detail. Our results indicate that the physical
mechanisms of the disk-planet interaction in a viscous disk may depend on
the detailed density structure around the planet.

We use time-dependent methods to calculate the disk response against
the planet potential. Although this method has not been widely used so
far, this is useful in investigating the effects of various physical processes on
disk-planet interaction. We calculate the non-axisymmetric density structure
around the planet and investigate how the resulting torque is altered by the
effect of shear viscosity. We have studied wide range of the parameters of
viscous coefficient and calculate the density structure with high resolution.
We find that the density structure in the vicinity of the planet is altered

87
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in a viscous disk, with viscous coefficient of ∼ 0.1 in terms of α (standard
α parameter, see equation (5.27) for definition), which may be realized as
a result of the turbulence induced by magneto-rotational instability (MRI,
Balbus and Hawley 1991 [6], Sano et al. 2004 [74]).

5.1 Methods of Calculation

We consider isothermal Navier-Stokes equations with one planet using shearing-
sheet approximation.

∂ρ

∂t
+ ∇ · (ρv) = 0 (5.1)

∂v

∂t
+ v · ∇v + 2Ωpez × v

= −c2

ρ
∇ρ + 3Ω2

pxex + ν∇2v +
1

3
ν∇(∇ · v) −∇ψp (5.2)

where ρ is density, v is velocity, Ωp is the Kepler angular velocity of the
planet, ψp is the gravitational potential of the planet, ν is shear viscosity.
We assume the planet is located at the origin and stationary with respect to
this coordinate system, i.e.,

ψp = ψp(x, y, z), (5.3)

where ψp does not depend on time. In this chapter, we neglect bulk viscosity
for simplicity. We also neglect vertical stratification and assume that the
background density without a planet is homogeneous. This gives an uncer-
tainty in the box size in the z-direction, which will be discussed later in this
section. We also neglect the effect of global gas pressure gradient exerted
on the background disk and assume that the background gas is rotating at
Kepler velocity.

The unperturbed state without a planet is given by

ρ = ρ0 = const (5.4)

v0 = −3

2
Ωpxey. (5.5)

In the presence of viscosity, if we perform a global analysis, there is a mass
accretion onto the central star in general. However, in the shearing-sheet
approximation, where linear background shear is assumed, this effect is not
taken into account. We expect that the density structure only in the vicinity
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of the planet can be well approximated even if we neglect the global mass
accretion.

We consider linear perturbation. All the perturbation quantities are de-
noted with δ, e.g., δρ for density perturbation. Perturbation equations are
given by (

∂

∂t
− 3

2
Ωpx

∂

∂y

)
δρ

ρ0

+ ∇ · δv = 0 (5.6)

(
∂

∂t
− 3

2
Ωpx

∂

∂y

)
δv − 2Ωpδvyex +

1

2
Ωpδvxey

= −c2∇δρ

ρ0

+ ν∇2δv +
1

3
ν∇ (∇ · δv) −∇ψp (5.7)

We solve equations (5.6) and (5.7) to obtain a steady state solution and
calculate torque exerted on one side (either x > 0 or x < 0) of the disk by
the planet. The torque exerted on the planet is obtained as a backreaction
of this torque. Since we use shearing-sheet approximation, torque exerted
from each side of the planet is the same in magnitude and opposite in sign.
Although we do not obtain a net torque, it is still possible to investigate how
the disk structure is affected by the viscosity and qualitatively predict how
the disk and planet interact.

In order to obtain a steady state solution, we solve linear perturbation
equations (5.6) and (5.7) using Fourier transform methods given by Good-
man and Rafikov (2001) [39]. We transform the equations into the shearing
coordinate (t′, x′, y′, z′) defined by

t′ = t (5.8)

x′ = x (5.9)

y′ = y +
3

2
Ωpxt (5.10)

z′ = z. (5.11)

In this coordinate system, temporal and spatial derivatives are given by

∂

∂t
=

∂

∂t′
+

3

2
Ωpx

′ ∂

∂y′ , (5.12)

∂

∂x
=

∂

∂x′ +
3

2
Ωpt

′ ∂

∂y′ , (5.13)

∂

∂y
=

∂

∂y′ ,
∂

∂z
=

∂

∂z′
. (5.14)
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Then, perturbation equations become

∂

∂t′
δρ

ρ0

+ ∇ · δv = 0 (5.15)

∂

∂t′
δv − 2Ωpδvyex +

1

2
Ωpδvxey

= −c2∇δρ

ρ0

+ ν∇2δv +
1

3
ν∇ (∇ · δv) −∇ψp, (5.16)

where the spatial derivatives in ∇ are given by equations (5.13) and (5.14).
The coefficients of equation (5.15) and (5.16) are now independent of

(x′, y′, z′). Therefore, if we Fourier transform in spatial directions, we obtain
a set of ordinary differential equations decoupled for each (k′

x, k
′
y, k

′
z) mode

(Goldreich and Lynden-Bell 1965 [37]),

δf(t′, x′, y′, z′) =
∑

δf(t′, k′
x, k

′
y, k

′
z) exp

[
i(k′

xx
′ + k′

yy
′ + k′

zz
′)
]
. (5.17)

The relationship of wavenumber in (x, y, z)-coordinate and (x′, y′, z′)-coordinate
is given by

kx(t) = k′
x +

3

2
Ωpkyt. (5.18)

ky = k′
y, kz = k′

z (5.19)

Equation (5.18) indicates that the value of radial wavenumber in (x, y, z)-
coordinate evolves with time owing to the background shear. The value of
radial wavenumber in shearing coordinate k′

x gives the initial value of radial
wavenumber in (x, y, z)-plane. Equations of continuity (5.6) and motion (5.7)
are now

d

dt

δρ

ρ0

+ ikx(t)δvx + ikyδvy + ikzδvz = 0, (5.20)

d

dt
δvx − 2Ωpδvy = −c2ikx(t)

δρ

ρ0

− ν(kx(t)
2 + k2

y + k2
z)δvx

−1

3
νkx(t)(kx(t)δvx + kyδvy + kzδvz) − ikx(t)ψp, (5.21)

d

dt
δvy +

1

2
Ωpδvx = −c2iky

δρ

ρ0

− ν(kx(t)
2 + k2

y + k2
z)δvy

−1

3
νky(kx(t)δvx + kyδvy + kzδvz) − ikyψp, (5.22)
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and

d

dt
δvz = −c2ikz

δρ

ρ0

− ν(kx(t)
2 + k2

y + k2
z)δvy

−1

3
νky(kx(t)δvx + kyδvy + kzδvz) − ikzψp. (5.23)

In equations (5.20)-(5.23), we write all the terms in (t, x, y, z)-coordinate.
These equations describe the excitation and evolution of density wave by the
source ψp. The source of the density wave becomes zero when wavenumber
(k′

x, k
′
y, k

′
z) is large.

As an initial condition, we assume that there is no perturbation: δρ(t =
0) = δv(t = 0) = 0, and k′

x is taken to be sufficiently large in absolute mag-
nitude and negative (positive) in sign for positive (negative) ky. If we use
spatial resolution of x-direction ∆x, we should take k′

x = ∓2π/∆x, where
upper (lower) sign is used for positive (negative) ky. As a result of time
evolution, kx(t) increases (decreases) for each positive (negative) ky mode.
When kx(t) reaches ±2π/∆x, where upper (lower) sign is for positive (neg-
ative) ky modes, we obtain a steady state profile of perturbation quantities
in Fourier space for non-axisymmetric (ky 6= 0) modes. 1 The Fourier am-
plitude of each kx mode in steady state is given by the time evolution data
through equation (5.18). The profile of physical quantities in Fourier space
is then inverse Fourier transformed to obtain values in real space. Since we
are interested in torque, we do not calculate axisymmetric modes (ky = 0).

The standard procedure to obtain steady state solution is as follows.
Firstly, stationary solution in the frame corotating with the planet is as-
sumed: ∂/∂t = 0. Then, Fourier transformation in the y- and z-directions
is performed to obtain the ordinary differential equations in the x-direction.
Finally, these ordinary differential equations are solved by imposing outgoing
boundary condition, or equivalently the boundary condition that admits only
trailing wave, see e.g., Goldreich and Tremaine (1979) [38], Korycansky and
Pollack (1993) [48], or Tanaka et al. (2002) [83].

In the presence of viscosity, this method introduces higher order derivative
with respect to x, since viscous terms include the second order derivative in

1The reason why we obtain a steady state as a result of time evolution is as follows.
Let us assume that if |kx| > Kc, the source ψp is so small that we can approximate it to
be zero. The Fourier amplitude of the specific kx0 mode in (t, x, y, z)-coordinate at time
t = t0 is given by the solution at t = t0 with k′

x = kx0− (3/2)Ωpkyt0 mode. Therefore, the
absolute magnitude of k′

x that contributes to the Fourier amplitude of fixed kx0 becomes
large as time t0 increases. If the absolute magnitude of k′

x is larger than Kc, there is no
wave excitation for this mode until |kx(t)| becomes smaller than Kc. Therefore, when
|k′

x| > Kc, the contribution to the kx0 mode is always the same regardless of t0.
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the radial direction. The resulting ordinary differential equations are higher
order in the x-derivative than in inviscid cases. The terms with the highest
order derivative comes from viscous terms and their coefficients are viscous
coefficient ν. In this case, it is difficult to take natural ν → 0 limit, since
equations become singular in this limit.

Time-dependent approach overcomes this difficulty since the order of time
derivative is not affected by viscous terms since they do not include any time
derivative. It is also easy to take ν → 0 limit since viscous terms simply
drop from equations (5.21)-(5.23) in this limit and they do not introduce any
singularity.

In our formulation using the Fourier transform in sheared coordinate, the
outgoing boundary condition in the radial direction that is assumed in the
standard stationary formulation is not exactly satisfied, since Fourier trans-
form introduces the periodic boundary condition in the sheared coordinate.
However, we find that outgoing boundary condition is effectively satisfied if
we vary the box size in the x-direction depending on the modes specified by
ky and kz. Details of our methods are given below.

We also note that if we assume an initial condition with non-zero per-
turbation, additional homogeneous wave is introduced. This wave has both
leading (kxky < 0) and trailing (kxky > 0) components and the resulting
solution is simply the superposition of the specific solution of Equations
(5.20)-(5.23) assuming zero initial condition and homogeneous (ψp = 0) so-
lution assuming the specified initial condition. The solution with non-zero
initial condition is irrelevant in the present problem because we consider the
perturbation that is induced by the gravitational perturbation by the planet.

We write the box size in (x, y, z)-directions by (Lx, Ly, Lz) and the coor-
dinate system extends −Lx/2 < x < Lx/2 and so forth for other directions.
Practically, our procedure to obtain the stationary, non-axisymmetric struc-
ture of the disk is summarized as follows.

1. We take k′
x = ∓2π/∆x for positive (negative) ky modes.

2. Equations (5.20)-(5.23) are solved with initial condition δρ(t = 0) =
δv(t = 0) = 0.

3. Resulting solutions in (kx, ky, kz) space are inverse Fourier transformed
to real space.

In steps 2 and 3, there are some points we need to take care. In calculating
the Fourier modes, we have varied the mesh number in kx directions, which
corresponds to the step size of time, in such a way that all the oscillations
are well resolved for each (ky, kz) mode. The mesh number in kx direction
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becomes as much as 106 for small ky. We perform inverse Fourier transform
in kx direction using the increased number of mesh in kx direction. This
procedure effectively makes the box size of x-direction longer for a specific
ky mode, and the data corresponding to necessary x, which is −Lx/2 < x <
Lx/2, is then interpolated from the resulting profile in (x, ky, kz) space. This
data is then used to perform inverse Fourier transform in (ky, kz) directions.
In this way, it is possible to avoid aliasing effect in x-direction and outgoing
boundary condition in the steady state solution is effectively satisfied. We do
not use any window function, which has been incorporated by Goodman and
Rafikov (2001) [39], in Fourier transform. We have checked that the resulting
torque is not affected by the window function in the absence of viscosity. Also,
since window function introduces additional artificial dissipation, this affects
our results with viscosity.

Once we have obtained the profiles of perturbation quantities in real
space, we can calculate the one-sided torque exerted on x > 0 part of the
disk by the planet by

T = −rp

∫ Lx

0

∫ Ly/2

−Ly/2

∫ Lz/2

−Lz/2

dxdydzδρ(x, y, z)
∂ψp

∂y
, (5.24)

where rp is the semi-major axis of the planet, and the torque exerted on the
planet is obtained as backreaction. For later convenience, we define “torque
distribution” T (x, y, z) that is simply the torque exerted on the fluid element
located at (x, y, z),

T (x, y, z) = −rpδρ(x, y, z)
∂ψp

∂y
(5.25)

and “torque density” that is the torque exerted on an annulus of the disk at
x,

T (x) = −rp

∫ Ly/2

−Ly/2

∫ Lz/2

−Lz/2

dzdyδρ(x, y, z)
∂ψp

∂y
(5.26)

We normalize equations using c, Ωp, and ρ0 so that the homogeneous
equations (ψp=0) contain only one dimensionless variable α that is defined
by

α =
ν

cH
, (5.27)

where H = c/Ωp is the scale height of the disk. Since we consider the linear
perturbation analysis, the amplitude of the perturbation is proportional to
the normalized planet mass:

µ = GMp/Hc2. (5.28)
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We show the results with µ = 1 in subsequent sections.
We use the fifth order Runge-Kutta method to solve time evolution and

FFT routine given by Press et al. (1996) [31] to perform Fourier transform.
We use box size of Lx = 10H and Ly = 40H, and the grid number in x- and
y-directions (Nx, Ny) = (512, 512).

We need to be careful about the treatment in the x-direction in three-
dimensional calculations. We now discuss how 2D and 3D calculations differ
from each other and determine the relevant box size in the z-direction with
which the effect of vertical stratification is effectively taken into account.

We compare 2D calculation and 2D mode of 3D calculation. By “2D
calculation”, we mean the gravitational potential of the planet is given by

ψp,2D(x, y) = − GMp√
x2 + y2 + ε2

2D

, (5.29)

where ε2D denotes the softening length of 2D calculation, which is usually
incorporated in most of 2D work. By “2D mode of 3D calculation”, we mean
that the analysis is restricted to kz = 0 mode of 3D calculation. Three-
dimensional potential is given by

ψp,3D(x, y, z) = − GMp√
x2 + y2 + z2 + ε2

3D

. (5.30)

Therefore, gravitational potential for “2D mode of 3D calculation” is given
by

ψp,3D(x, y) = − 1

Lz

∫ Lz/2

−Lz/2

dz
GMp√

x2 + y2 + z2 + ε2
3D

= −GMp

Lz

log

∣∣∣∣∣x2 + y2 + ε2
3D + L2

z/2 + Lz

√
L2

z/4 + x2 + y2 + ε2
3D

x2 + y2 + ε2
3D

∣∣∣∣∣ ,

(5.31)

where we denote softening length in 3D calculation by ε3D. We note that ψp,2D

and ψp,3D coincides if x2 + y2 + ε2 À Lz, but they differ if x2 + y2 + ε2 ¿ Lz,
since in this case, 3D potential behaves as ψp,3D ∼ log r while 2D potential
behaves as ψp,2D ∼ 1/r, where r2 = x2 + y2 + ε2. Vertical averaging makes
the potential weaker in the vicinity of the planet, thereby producing small
perturbation in 2D mode of 3D calculation. Figure 5.1 shows the torque
obtained by 2D inviscid (ν = 0) calculation using ψp,2D and ψp,3D with various
Lz. We note that in producing Figure 5.1, one-sided torque is calculated
according to equation (5.24) and the value is normalized by

Γ2D = µ2ρ0LzrpHc2. (5.32)
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Figure 5.1: Comparison of the torque obtained in 2D calculation and the
2D mode of 3D calculation for various Lz. In 2D calculations (dashed line),
we use the gravitational potential given by equation (5.29), while in 2D
mode of 3D calculation (solid line), we use the gravitational potential given
by equation (5.31). The value of the normalized torque, T/Γ2D is plotted,
where Γ2D is defined by equation (5.32).

It is clear that 2D and 3D results coincide if Lz is small, but the 3D result
becomes small when Lz is large.

The reasonable value of Lz may be obtained by comparing the results of
2D mode of 3D calculation with calculation in which vertical stratification is
taken into account. Tanaka et al. (2002) [83] performed such calculations for
an inviscid disk. Their method is to decompose vertical modes in terms of
Hermite polynomials, and they have found that the vertically averaged 2D
mode gives most of the contribution to the resulting torque. Their 2D mode
of the potential, ψp,TTW, is given by

ψp,TTW = − 1√
2πH

∫ ∞

−∞
dz

GMp√
x2 + y2 + z2 + ε2

3D

e−z2/2H2

(5.33)

= − GMp√
2πH

exp
[
(x2 + y2 + ε2

3D)/4
]
K0

[(
x2 + y2 + ε2

3D

)
/4

]
,

where K0(x) is the modified Bessel function of the zeroth order. Fitting
equation (5.31) with equation (5.34), we find Lz = 2.7H gives a reasonable
agreement, see Figure 5.2. Zeroth order of modified local approximation
incorporated by Tanaka et al. (2002) [83] coincides with the shearing-sheet
approximation, and we have exactly the same homogeneous equations with
them for 2D (kz = 0) mode if we assume ∂/∂t = 0. As is clear from Figure
5.1, 2D mode in 3D calculation gives smaller amount of torque than the
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Figure 5.2: Comparison of the 2D mode of the potential used by Tanaka et
al. (2002) [83] given by equation (5.34) (solid line) and the kz = 0 mode of
the potential given by (5.31) with Lz = 2.7H (dashed line).

calculation using 2D potential given by equation (5.29). This explains why
Tanaka et al. (2002) [83] has obtained slightly smaller amount of torque
compared to 2D results. We have also checked that setting Lz = 2.7H, our
results of one-sided torque agree with those determined by using Tanaka et
al. (2002) [83] methods within an error of 3%. 2

We use Lz = 2.5H and the mesh number in z-direction is taken to be 128.
In total, we have performed calculation with (Lx, Ly, Lz) = (10H, 40H, 2.5H)
with mesh number (512, 512, 128), and the resulting mesh size is (∆x, ∆y, ∆z) =
(0.02H, 0.08H, 0.02H). However, the radial box size is variably extended ac-
cording to modes in calculation. Effective box size in x-direction is as much
as 104H. We use ε3D = 10−3H for the softening parameter. Our results vary
upto 30% for large values of viscosity when smoothing length is varied upto
twice the grid resolution. Therefore, our results give at least a qualitative
view of how disk-planet interaction is altered by the effects of viscosity. The
variation of one-sided torque as a function of smoothing parameter is further
discussed in Section 5.2.2.

2There is another complication regarding the normalization of the torque when com-
paring the value of the torque obtained by our calculation and that given by Tanaka et al.
(2002) [83]. They use surface density to normalize the torque they have obtained. We use
normalization given by equation (5.32). Correspondence between the two results is given
by reading our ρ0Lz to σp of Tanaka et al. (2002) [83], and this is how we have obtained
the agreement with their calculation.
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5.2 Results

In this section, we show our results of density structure and one-sided torque
obtained by linear analysis. In this section, the normalization of the torque
is given by

Γ3D = µ2ρ0rpH
2c2. (5.34)

Note the difference in the normalization from that used in Section 5.1. The
results of 2D mode torque given in Section 5.2.1 are different by a factor of
Lz/H = 2.5 from those given in Figure 5.1. The normalization of torque
distribution defined by equation (5.25) is taken to be

T (x, y, z)

µ2ρ0rpc2H−1
, (5.35)

and torque density T (x) defined by equation (5.26) is given by

T (x)

µ2ρ0rpc2
. (5.36)

5.2.1 Calculations Restricted to 2D Mode

We first show the results of calculations restricted to 2D modes (kz = 0). Al-
though this is only an approximation, physics involved is made clear. Figure
5.3 shows the torque obtained for various viscosity parameter α. For small
viscous coefficients (α . 10−2), torque is not affected by the viscosity, as
discussed by Meyer-Vernet and Sicardy (1987). However, when viscous coef-
ficient is large, it is shown that one-sided torque increases and peaks around
α ∼ 1.

Since viscosity, or any form of dissipation, damps density contrast in gen-
eral, one may think that Lindblad torque is a decreasing function of viscosity.
3 However, our result shows that one-sided torque peaks at α ∼ 1. This result
originates from two different effects of viscosity. First, viscosity damps spiral
density wave, as discussed by Papaloizou and Lin (1984) [71] or Takeuchi et
al. (1996) [82]. The second effect of viscosity may be observed by looking
at the density structure in the vicinity of the planet. Figure 5.4 shows the
contour of density profile of the xy-plane for α = 10−4 and α = 10−1. It
is clear that the oval density profile in the vicinity of the planet is slightly

3The effect of viscosity on the fluid elements trapped in the horseshoe regions enhances
the resulting torque since viscosity keeps the asymmetry of the potential vorticity. This
applies corotation torque, see Masset (2001) [57] for detail. In shearing-sheet calculations
presented here, however, there is no corotation torque since background values are assumed
to be constant.
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Figure 5.3: Variation of torque as a function of viscous coefficient α as a
result of 3D calculation restricted to 2D modes.

tilted for large viscous coefficient, while the spiral density wave is damped.
This tilt produces asymmetry of density structure in the y-direction, thereby
exerting one-sided torque on the planet.

Figure 5.5 shows the torque density for α = 10−1 and α = 10−4, respec-
tively. It is clear that the peak of torque density locates slightly closer to the
planet for α = 10−1 than α = 10−4. The main contribution to the torque
comes from the flow structure in the vicinity of the planet, which is evident
when we consider the asymmetry of the density perturbation between y > 0
and y < 0 regions. In Figure 5.6, we plot the contour for the sum of torque
at y > 0 and y < 0 region,

T (x, y) + T (x,−y), (5.37)

as a function of x and y(> 0). This shows the asymmetry of torque dis-
tribution in the y-directions. In Figure 5.6, we compare the results for two
different values of viscosity, α = 10−4 and α = 10−1. In the case of α = 10−4,
the forward-back difference of the torque in the vicinity of the planet almost
vanishes since the density perturbation around the planet is symmetric in the
y-direction. In the case of α = 10−1, however, the most of the contribution
to the torque comes from the region very close to the planet since the oval
density perturbation structure is tilted in y < 0 direction (see also Figure
5.4).

5.2.2 3D Calculation and the Effects of Smoothing Length

In this section, we present the results of 3D calculation. Figure 5.7 shows
the one-sided torque as a function of viscosity. The qualitative behavior of
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Figure 5.4: Contour plot of the density fluctuation δρ/ρ0 around the planet
(located at the origin) for 2D mode of 3D calculation with Lz = 2.5H with
α = 10−4 (left) and α = 10−1 (right). Axisymmetric mode is not included.
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Figure 5.5: Torque density given by equation (5.26) for α = 10−4 (solid line)
and α = 10−1 (dashed line). Values are normalized according to equation
(5.36).
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Figure 5.6: Forward-back asymmetry of the torque distribution given by
equation (5.37) for α = 10−4 and α = 10−1.

torque increasing with viscosity is unchanged, but the enhancement of torque
becomes large compared to 2D calculation. We fit the data and obtain the
following empirical relation

T

ρ0rpH2c2
= (0.94 + 10α)e−1.5α (5.38)

for α < 0.3 and Lz = 2.5H. We have chosen a form of fitting function in
such a way that torque converges to a non-zero value for α ¿ 1, peaks at
α ∼ 1, and decreases to zero for α À 1. This fitting formula is in reasonably
good agreement with our calculation in this range of viscosity coefficient.

Just as in the calculations restricted to 2D modes, the density structure
mainly in the vicinity of the planet contributes to the one-sided torque if
large values of viscosity is assumed. Figure 5.8 shows the torque density
profile obtained for different viscosity coefficients. The more viscous is the
disk, the closer to the planet is the location of the dominant contribution
to the torque. Figure 5.9 compares the density structure in the yz-plane at
x = 0.068H for calculations with α = 10−4 and α = 10−1. The asymmetry
in the y-direction in strongly perturbed region is present in calculations with
large viscosity.

In 3D calculations, gravitational potential in the vicinity of the planet is
not as strongly softened as in 2D modes. In the vicinity of the planet, gas feels
the gravitational potential that decreases as −1/r, where r is the distance
from the planet, in full 3D calculations. However, the gravitational potential
varies only logarithmically when r . H (see equation (5.31)) in calculations
restricted to 2D modes. Since the density fluctuation around the planet is
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Figure 5.7: Variation of the torque as a function of viscosity parameter α
obtained for 3D calculations (plus). For comparison, we plot the results
restricted to 2D modes by cross. Dashed line shows the fitting function given
by equation (5.38).

-2

 0

 2

 4

 6

 8

 10

 12

 0.01  0.1  1

to
rq

ue
 d

en
si

ty

x/H

α=10-4

α=10-2

α=10-1
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Figure 5.9: The contour plot of 3D mode density structure in yz-plane at
x = 0.068H with α = 10−4 (solid line) and α = 10−1 (dashed line). The lines
show the contours of δρ/ρ0 = 10.

given by δρ/ρ0 ∼ ψp/c
2, the deeper gravitational potential gives the higher

value of the torque exerted on the planet if there is a substantial asymmetry
in the density structure.

Calculations restricted to two-dimensional modes predict one-sided torque
very well if viscosity parameter is small, since regions close to the planet
(r . H) is not very important. However, if large values of viscosity is used,
it is necessary to perform full three-dimensional calculations since the density
structure close to the planet is important.

At the end of Section 5.1, we addressed that varying smoothing length
changes one-sided torque upto 30%. Below, we discuss the effects of smooth-
ing length in our calculation and argue that the values of one-sided torque
obtained for large viscosity, α & 0.01, seems to be the lower limit of the
one-sided torque.

Figure 5.10 shows how one-sided torque of three-dimensional calculation
varies with smoothing length ε3D. Results with α = 10−4 and α = 10−1

are shown. In this calculation, we used the box size with (Lx, Ly, Lz) =
(10H, 10H, 2.5H) and the grid number with (Nx, Ny, Nz) = (512, 512, 128).
Note that resolution in the y-direction is better by a factor of four compared
to the parameters used in Figure 5.7. Grid resolution is ∼ 0.02H in all
directions in Figure 5.10.

It is shown that one-sided torque converges well for small values of viscos-
ity parameter. If α is as large as 0.1, the calculation converges for sub-grid
smoothing lengths, and results vary approximately 30% if smoothing length
with twice the grid scale (∼ 0.04H) is assumed. The qualitative behavior
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Figure 5.10: One-sided torque obtained by 3D calculation for different
smoothing length. Horizontal axis shows the values of smoothing length
ε3D and vertical axis shows the one-sided torque. Calculations with α = 10−4

(solid line) and 10−1 (dashed line) are shown.

of one-sided torque can be understood if we notice that smaller smoothing
length gives a deeper potential in the vicinity of the planet, and if large val-
ues of viscosity is assumed, density structure in the vicinity of the planet is
important for one-sided torque.

Since contribution to one-sided torque in case of large viscosity mainly
comes from the density structure close to the planet, it may depend on the
grid resolution used in the calculation. Figure 5.11 shows the one-sided
torque obtained for different resolutions. Calculations with (Nx, Ny, Nz) =
(512, 512, 128), (256, 256, 64), and (128, 128, 32) are shown while keeping (Lx, Ly, Lz) =
(10H, 10H, 2.5H). These values corresponds to grid resolutions with ∆x =
∆y = ∆z = 0.02H, 0.04H, and 0.08H, respectively. The value of softening
parameter is kept ε3D = 10−3H for all the calculations. It is shown that the
value of one-sided torque for α = 10−4 is well converged while the value of
the torque for α = 10−1 varies approximately 30% when grid resolution is
varied by a factor of four. We note that in case of small viscosity, we have ob-
tained well-converged values of one-sided torque since the effective Lindblad
resonances, which are located at |x| & (2/3)H, are all well resolved.

We note that the vertical averaging, large softening length, and coarser
grid all introduce more softened potential in the vicinity of the planet and
therefore one-sided torque becomes smaller in case of large viscosity. Equa-
tions (5.30) and (5.31) show that the vertically averaged potential diverges at
the location of the planet more mildly. Gravitational force becomes weaker
in the vicinity of the planet if we use larger values of softening length. The
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Figure 5.11: One-sided torque obtained by 3D calculation for different grid
resolutions. Horizontal axis shows the values of grid size (the same for all
three dimensions) and vertical axis shows the one-sided torque. Softening
parameter ε3D = 10−3H is used. Calculations with α = 10−4 (solid line) and
10−1 (dashed line) are shown.

larger grid scale cuts off gravitational potential at larger distance.
From the behaviors when we vary the softening parameter and the grid

scale, we conclude that the values of the one-sided torque obtained in our
calculation for large viscosity is the lower limit. We also argue that the
numerical treatment in the vicinity of the planet may cause a quantitative
difference in the one-sided torque since it may change the density structure in
the vicinity of the planet. If high values of viscosity is assumed, the density
structure close to the planet is important and therefore, three-dimensional
calculation with high resolution and small softening parameter is essential.
The resolution and the softening parameter should be determined, in princi-
ple, by considering the realistic size of the planet.

5.3 Analytic Treatment of Density Structure

We have seen that the viscosity exerted on the disk can change the density
structure in the vicinity of the planet and in a viscous disk, the planet ex-
periences one-sided torque from the gas well inside the effective Lindblad
resonance. In this section, we show that a dissipative force distorts the den-
sity structure close to the planet by using a simple analytic model.

We consider a two-dimensional model with a friction force exerted only
in the y-direction. We consider equations (5.20)-(5.22) with viscosity terms
replaced by friction. We assume kx(t) ∼ 0 since significant excitation of
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perturbation occurs when radial wavenumber becomes zero. We also set
kz = 0 and consider 2D perturbation for simplicity. The set of equations we
solve is

dσ

dt
+ ikyδvy = 0, (5.39)

d

dt
δvx − 2Ωpδvy = 0, (5.40)

and
d

dt
δvy +

1

2
Ωpδvx = −c2iky

(
ψp

c2
+ σ

)
− γδvy, (5.41)

where σ = δρ/ρ0 and γ is a drag coefficient.
Using equations (5.39) and (5.40) to eliminate δvy and integrating once

the resulting equation, we obtain

δvx = −2Ωp

iky

σ + V, (5.42)

where V is a constant of integration. Physically, V is the perturbation of
vortensity, which is actually conserved in this model since we neglect terms
with kx(t) and we assume friction force is exerted only in the y-direction.
Therefore, V is zero if we assume there is no vortensity perturbation ini-
tially. Since we are interested in the perturbation that arises from the planet
potential, we assume V = 0 hereafter.

Using equations (5.39) and (5.42) to eliminate δvx and δvy from equation
(5.41), we obtain a single telegraph equation with a source terms,

d2σ

dt2
+ γ

dσ

dt
+ s2

0σ = −k2
yψp, (5.43)

where
s2
0 = c2k2

y + Ω2
p. (5.44)

The right hand side of equation (5.43) is the source of perturbation that is
induced by the planet’s gravity. The source potential ψ(kx(t), ky) depends
on time through the time-dependence of kx(t).

Let us now derive the steady state profile of density perturbation in
(t, x, y)-coordinate space. In order to solve equation (5.43), we Fourier trans-
form perturbation in t-direction

f(t, ky) =

∫ ∞

−∞
dsf(s, ky)e

ist, (5.45)

where f denotes any of perturbation quantities. We note that the Fourier
transformation in t-direction is equivalent to the inverse Fourier transforma-
tion of kx modes into x-coordinate space. The “frequency”, s, in equation
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(5.45) is the frequency of perturbation experienced by a single mode specified
by ky.

The real space quantity f(x, y) is obtained by

f(x, y) =

∫ ∞

−∞
dky

∫ ∞

−∞
dkxf(kx, ky)e

i(kxx+kyy). (5.46)

In a steady state, the value of k′
x can be taken arbitrary. Therefore, we can

take k′
x = 0 without loss of generality. Time-dependence of kx is given by

kx(t) =
3

2
Ωpkyt, (5.47)

and therefore, we obtain

dkx =
3

2
Ωpkydt. (5.48)

Changing the integration variable from kx to t in equation (5.46), we obtain

f(x, y) =

∫ ∞

0

dky

∫ ∞

−∞
dt

3

2
Ωpkyf(t, ky) exp

[
3

2
kyxΩpt + kyy

]
−

∫ 0

−∞
dky

∫ ∞

−∞
dt

3

2
Ωpkyf(t, ky) exp

[
3

2
kyxΩpt + kyy

]
.

(5.49)

The value f(t, ky) appeared in this equation is Fourier transformed in the
t-direction according to equation (5.45). Substituting equation (5.49) into
(5.45), performing integral in t and s, we obtain the relationship between
f(s, ky) and f(x, y),

f(x, y) = 2π

∫ ∞

0

dky
3

2
Ωpky

×
[
eikyyf(s = −(3/2)Ωpkyx, ky) + e−ikyyf(s = (3/2)Ωpkyx,−ky)

]
.

(5.50)

One-sided torque is calculated by equation (5.24) (but there is no integral
in the z-direction in two-dimensional problem considered in this section). We
choose the phase of the potential such that ψp(s, ky) is real. It is possible
because the potential of the planet is spherically symmetric and the planet
is fixed at the origin of the coordinate system. Thus, we obtain

T ∝
∫ ∞

0

dkyk
2
y

∫ ∞

0

dsIm [σ(s,−ky)] ψp(s,−ky), (5.51)
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where constant of proportionality does not depend on ky, γ, and x and “Im”
denotes the imaginary part. From this equation, torque is exerted on the
planet only when σ(s, ky) and ψp(s, ky) are out of phase. In other words,
the amount of torque can be estimated by looking at the imaginary part
of σ(s, ky), provided that the phase of Fourier transform is taken in such a
way that ψp(s, ky) is real. If density perturbation and the potential are in
phase, the y-component of the force exerted on the planet is symmetric in
the y-direction and there is no net one-sided torque when integrated over y.

Now we consider the solution of equation (5.43). By Fourier transform in
t-direction, we obtain

σ(s, ky) = − (s2
0 − s2) − isγ

(s2
0 − s2)2 + s2γ2

k2
yψp(s, ky), (5.52)

and as equation (5.50) indicates, it is sufficient to consider s = (3/2)Ωpkyx
mode.

In the limit of small friction, γ → 0, σ and ψp are out of phase only at
the resonance, which is located at

s2 =
9

4
Ω2

pk
2
yx

2 = s2
0. (5.53)

From equation (5.44), we see that this corresponds to the location of effec-
tive Lindblad resonance (Artymowicz 1993 [4]). There is a phase shift of π
only in the vicinity of the resonance and torque is localized at the resonance
location. This localization of the torque comes from our assumption of zero
radial pressure term in equation (5.40). We note that in this case, the re-
sulting torque is independent of the amount of friction if integrated over the
resonance width (Meyer-Vernet and Sicardy 1987 [60]). This can be seen
by considering the imaginary part of the density fluctuation σ limits to, for
sufficiently small γ,

lim
γ→0

Im[σ(s, ky)] = lim
γ→0

sγ

(s2
0 − s2)2 + s2γ2

k2
yψp = πδD(s2

0 − s2)k2
yψp, (5.54)

where δD(x) is Dirac’s delta function. The last expression is independent of
the amount of friction, and the torque exerted by the mode ky is determined
by the strength of the source ψp at the resonance. Using equations (5.44)
and (5.53), we see that there is no resonance close to the planet, or region
|x| < xc, where

xc =
2

3

c

Ωp

. (5.55)

In this region, density perturbation and source term are in phase. In terms
of real space coordinate (x, y), this corresponds to ψp(x, y) ∝ σ(x, y).
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In the case of finite friction, the situation is different. From equation
(5.52), we see that resonance width is given by |s− s0| ∼ γ. Therefore, when
γ ∼ Ωp, the region in which density perturbation and source term are out
of phase can overlap the location of the planet. Note that s0 is a function
of ky and x [see equation (5.53)], so “the width of the resonance” refers to
the width in the x-direction, and this width varies with the mode in the
y-direction (ky) we consider. The finite width of the resonance causes the
asymmetry in density perturbation in y > 0 and y < 0 regions even at the
location of the planet, x ∼ 0. Since gravitational force exerted by the planet
on the disk is large in the vicinity of the planet, the significant amount of
one-sided torque can be exerted on the planet.

The amplitude of perturbation is suppressed when significant friction is
exerted. From equation (5.52), we see that, in the vicinity of the planet

|σ| ∼ 1√
s4
0 + s2γ2

k2
yψp(s, ky). (5.56)

The suppression is significant only when γ exceeds Ωp.
One-sided torque is calculated by equation (5.24) (but there is no integral

in the z-direction in two-dimensional problem considered in this section).
Using equations (5.51) and (5.52), it is possible to obtain

T ∝
∫ ∞

0

dkyk
4
y

∫ ∞

0

ds
sγ

(s2
0 − s2)2 + s2γ2

ψ2
p(s,−ky), (5.57)

where constant of proportionality does not depend on ky, γ, and x. The value
of the torque is determined by the competition between the suppression of
the amount of the density perturbation and the amplification of the amount
of the torque as the resonance width becomes wider. Therefore, it is expected
that the torque peaks at γ ∼ Ωp. This explains the peak of the torque for
α ∼ 1 in the calculation of viscous disk presented in the previous section.

The qualitative behavior of one-sided torque can be captured more clearly
if we consider a further simplified case. We consider the case when the forcing
potential ψp(s, ky) does not depend on s,

ψp(s, ky) = Ψ. (5.58)

This corresponds to the case where forcing potential is constant in the x-
direction. In this case, it is possible to perform s integral analytically,

T ∝
∫ ∞

0

dkyk
4
y ×


1

2
√

4s2
0 − γ2

(
π + 2 tan−1

[
2s2

0 − γ2

γ
√

4s2
0 − γ2

])
γ2 < 4s2

0

1

2
√

γ2 − 4s2
0

log

[
γ2 − 2s2

0 + γ
√

γ2 − 4s2
0

γ2 − 2s2
0 − γ

√
γ2 − 4s2

0

]
γ2 > 4s2

0

(5.59)
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If there is only one ky mode in the potential, this gives the exact amount of
torque. Otherwise, this gives the amount of torque exerted by each mode of
ky. Limiting values of equation (5.59) are

T →
πk4

y

2s0

γ → 0

T ∝ 1

|γ − 2s0|
γ ∼ s0

T → 0 γ → ∞.

(5.60)

Therefore, the amount of torque is independent of the amount of dissipation
in the limit of γ → 0, it increases as γ increases and peaks at γ ∼ s0, and
then it decreases to zero as γ becomes very large. In case of small γ, the
integrand of (5.57) is localized at s ∼ s0. When γ is large, however, it is
necessary to consider contribution from all the region of s. In general, since
the amplitude of forcing term ψp(s, ky) increases as s → 0, it is expected that
the value of torque peaks at γ ∼ s0. If the amplitude of forcing term cuts off
at Ω2

p ∼ c2k2
y, the peak of the torque is expected at γ ∼ Ωp.

5.4 Discussion

5.4.1 Prospects of Modified Local Analysis and Global
Calculation

Validity of Linear Analysis on One-sided Torque

In this subsection, we discuss whether or not linear approximation well de-
scribes the real density structure around the planet. In the linear approxima-
tion, the magnitude of perturbed quantities such as δρ/ρ0 or δv/c must be
smaller than the order of unity. In our calculation, all the non-dimensional
perturbed quantity is proportional to the value of GMp/Hc2, which is about
10−1 − 10−2 for typical values of protoplanetary nebula. Therefore, when
δρ/ρ becomes the order of ten in the normalized calculations given in this
paper, linear approximation becomes less accurate. Since the contribution
of the torque in a viscous disk mainly comes from such strongly perturbed
regions, it may be necessary to perform high resolution numerical calcula-
tion in order to fully obtain the structure of the density fluctuation. This
is one of the future prospects of this study. However, we expect that the
basic physics and the order of magnitude of one-sided torque is similar to the
linear calculation.
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Differential Lindblad Torque

The total torque that is exerted on the planet is the differential torque, which
is the difference of the torque exerted by the inner disk (x < 0) and outer
disk (x > 0). In the shearing-sheet calculations, the inner and outer disks
are symmetric and therefore torque exerted on the two regions cancel each
other. We have seen that the one-sided torque is mainly exerted by the tilted
spheroidal density profile around the planet if strong viscosity is exerted on
the disk. Therefore, we expect that the asymmetry between the inner and
outer disk comes from the asymmetry of the density structure around the
planet, probably within, or around, the distance of the order of Bondi radius,
rB = GMp/c

2. Assuming that the differential torque Tdiff mainly comes from
the effects of curvature, the order of the magnitude is

Tdiff ∼ Tone−side ×
δx

rp

, (5.61)

where Tone−side is one-sided torque obtained in this paper, and δx is the length
scale where most contribution to the torque comes from. In the inviscid case,
δx ∼ H and therefore

Tdiff,inviscid ∼ Tone−side,inviscid ×
H

rp

. (5.62)

In the viscous case presented in this paper, δx may be as small as Bondi
radius rB. Therefore, the lower limit of the differential torque in viscous disk
may be estimated as

Tdiff,viscous ∼ Tone−side,viscous ×
rB

rp

, (5.63)

and the ratio of differential torque in viscous disk and that in inviscid disk
may be given by

Tdiff,viscous

Tdiff,inviscid

∼ Tone−side,viscous

Tone−side,inviscid

× rB

H
. (5.64)

Since
rB

H
∼ Mp

Mc

(rp

H

)3

= 8 × 10−3

(
10−6

Mp/Mc

)(
0.05

H/rp

)−3

, (5.65)

and Tone−side,viscous/Tone−side,inviscid ∼ 2 from our calculation, differential torque
in a viscous disk can be much smaller than that in an inviscid disk, although
one-sided torque becomes larger when the value of viscosity is α ∼ 1.

In order to include the effect of asymmetry, which comes from curvature
effect, it is necessary to proceed to modified local approximation (Tanaka et
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al. 2002 [83]) or to perform a global calculation. In order to find the precise
value of the torque exerted on the disk and find how various physical processes
change the nature of type I migration, the time-dependent formulation of
modified local approximation is necessary.

Corotation Torque

In the shearing-sheet formalism, we cannot calculate corotation torque. For
two-dimensional modes, this is because all the background quantities (and
therefore vortensity) are assumed to be constant. For three-dimensional
modes, we note that, in Tanaka et al. (2002) [83], there is a singularity
at corotation modes (see equation (A5) of their paper). However, this sin-
gularity does not account for the torque in itself. Results of shearing-sheet
calculations must be combined with the higher order solutions of modified lo-
cal approximation in order to find the torque exerted at corotation resonance,
see equation (57) of Tanaka et al. (2002) [83].

If we assume that time derivatives of equations (3.3) and (5.7) are zero in
order to obtain a stationary solution, we also find a similar singularity at x =
0 for three-dimensional waves (kz 6= 0), even we have assumed the constant
background density in the z-direction. However, within the shearing-sheet
formalism, it does not give a torque at the corotation. Also, this singularity
does not seem to play a major role in our time-dependent calculations, since
there is no singularity in our formulation.

If we proceed to the modified local approximation, we expect that it is
possible to calculate the corotation torque in the linear regime. Recently,
Paardekooper and Papaloizou (2009a) [69] has shown that large viscosity
will push the corotation torque into a linear regime. Therefore, not only
from the point of view of differential torque but also from the view of the
corotation torque, extension of our time-dependent methods to modified local
approximation is an interesting future work.

In summary, in order to predict the precise value of the torque, it is nec-
essary to use a modified local approximation or perform global calculations,
which can take into account the curvature effect. Non-linear analysis may be
important since the main contribution comes from the region in the vicinity
of the planet where density is strongly perturbed. However, we believe that
the basic physics that exerts torque onto the planet can be captured by this
linear analysis and therefore, high-resolution study is necessary. In global
calculations, we also note that it is also possible to investigate the effects
of gas accretion onto the central star on type I migration, which is always
present in a viscous disk but is not captured in our local calculations.
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Figure 5.12: Density and streamline for calculations restricted to 2D mode in
3D calculation with α = 10−4 (left) and α = 10−1 (right). This corresponds
to the calculations presented in Figure 5.4. Mass ratio between the central
star q = Mp/Mc and disk aspect ratio h = H/rp are assumed in such a
way that q/h3 = 0.0252, which is the same as Paardekooper and Papaloizou
(2009b). Gray scale shows the density perturbation δρ/ρ0 divided by q/h3

and solid lines are streamlines.

5.4.2 Flow Structure in the Vicinity of the Planet

Recently, Paardekooper and Papaloizou (2009) [70] has shown an interesting
results regarding the flow structure close to the planet. In this section, we
observe streamline of the flow in the vicinity of the planet and compare
our results with those previously studied. We note that since we have not
calculated axisymmetric (ky = 0) modes, the flow structure we have obtained
is incomplete. However, we can still find some qualitative difference between
inviscid and viscous calculations.

Figure 5.12 shows the streamlines plotted over the density fluctuations
for calculations corresponding to Figure 5.4. Results with α = 10−4 and α =
10−1 are shown. Calculations are restricted to 2D modes of 3D calculation.
Mass ratio between the planet and the central star q = Mp/Mc and disk
aspect ratio h = H/rp are assumed in such a way that q/h3 = 0.0252, just
as Paardekooper and Papaloizou (2009) [70].

We find that the width of horseshoe orbit is ∼ 0.1H for α = 10−4, while
the width becomes slightly narrower in calculations with α = 10−1. We
have obtained about a factor of two smaller horseshoe width compared to
Paardekooper and Papaloizou (2009) [70] in calculations with small viscosity
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(see Figure 3 of their paper.) We think that this is probably because we have
weaker potential in the vicinity of the planet because of the effective softening
introduced by vertical averaging, see equation (5.31). In Paardekooper and
Papaloizou (2009) [70], they also obtained narrower horseshoe width in cal-
culations with larger softening parameters. However, since we have neglected
axisymmetric modes and non-linear effects, which may be potentially impor-
tant in determining the streamline, this issue needs further investigation.

5.4.3 Axisymmetric Modes

Although we have neglected the axisymmetric modes in our calculations, a
viscous overstability in axisymmetric modes has been discussed, especially
in the context of Saturn’s rings. In this subsection, we discuss whether this
overstability affects our results.

Local linear analysis of viscous overstability using a simple hydrodynamic
model is performed by Schmidt et al. (2001) [77]. Stability criterion for
isothermal case depends on the derivative of viscous coefficient ν with re-
spect to surface density perturbation. We note that the system of equations
we have solved, equations (5.20)-(5.23), are actually stable against viscous
overstability, since our assumption of viscosity corresponds to β = −1 of
Schmidt et al. (2001) [77]. 4 In this case, we do not expect viscous oversta-
bility to occur and therefore, we can safely neglect the axisymmetric modes.

However, disk may be prone to viscous overstability if different prescrip-
tion of viscosity is taken into account. If the non-linear consequence of vis-
cous overstability produces non-axisymmetric structure in the vicinity of the
planet, this may exert additional torque onto the planet. However, obser-
vation of the particle simulation performed by Schmidt et al. (2001) [77]
(their Figure 1 for example) indicates that non-axisymmetric modes are not
strongly driven by the viscous overstability and therefore this may not play
an important role in planetary migration. Nonetheless, the effects of viscous
overstability seems to be an interesting extension of the analysis presented
here.

5.4.4 Turbulent Disk

In this subsection, we briefly discuss that our analysis may indicate that the
stochastic torque is important in a turbulent disk dominated by magneto-
rotational instability (see e.g., Nelson and Papaloizou 2004 [65]). The effec-

4Compare our equations (5.6) and (5.7) and their equation (8). Note there is no self-
gravity and bulk viscosity in our calculations and we assumed isothermal equation of
state.
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tive turbulent viscosity originated in MRI may become as much as α ∼ 0.1
(e.g., Sano et al. 2004 [74]). Therefore, our calculation indicates that the
density structure around the planet is more important than the tidal wave
launched at the effective Lindblad resonances. Since the density structure
around the planet is turbulent in the vicinity of the planet, stochastic force
may be exerted on the planet embedded in such a turbulent disk.

In order for the α-viscosity prescription [see equation (5.27)] to be a good
approximation of the turbulent flow, the length scale in consideration must be
larger than the eddy size. In the present problem, the scale in consideration
is smaller than disk thickness. In a turbulent flow driven by MRI, eddies of
sizes on the order of several tenths of the disk scale lengths exist. This can
be understood if we notice that the wavelength of the most unstable mode is
much smaller than the scale height of the disk with weak magnetic field. If
weak poloidal magnetic field, Bz0, is exerted on the unperturbed disk, there
always exists a net magnetic flux,

〈Bz〉 = Bz0, (5.66)

where 〈Bz〉 is the horizontally averaged z-component of magnetic field. There-
fore, there always exists eddies with scales of the order of the most unstable
mode of magneto-rotational instability with net flux Bz0,

λ ∼ vA,0

Ω
, (5.67)

where λ is the eddy scale, vA,0 = Bz0/
√

4πρ is Alfvén velocity constructed
from the average poloidal field, and Ω is Keplerian angular frequency. In
most cases, Alfvén velocity is smaller than sound speed by more than an
order of a magnitude,

vA,0 . 10−1c. (5.68)

This indicates

λ . 10−1H. (5.69)

Thus, we can possibly use the effective turbulent viscosity in order to study
the qualitative effects of the interaction between a turbulent disk and a
planet.

However, the effective values of α may be obtained by averaging turbulent
stress over several scale heights, since it includes all sizes of eddy that is
important in turbulent flow driven by MRI. Thus, the use of α prescription
may not be valid in discussing very small scale structure, and full MHD
calculation is necessary. More detailed, quantitative analyses require high-
resolution numerical study of the magnetized turbulent disk.



5.4. DISCUSSION 115

We have found that the effects of viscosity becomes apparent if α exceeds
the value of ∼ 0.01− 0.1. Actual values of α in the disk is largely uncertain,
but estimated values are around this value. Numerical simulations by Sano et
al. (2004) [74] indicates that the values of α varies from 10−4−10−1 depending
on the setup. From the observational constraints of dwarf novae, which seem
to be better studied than protoplanetary disks, it is indicated that the values
of α can vary from 0.01 to 0.1 (e.g., Cannizzo et al. 1988 [12]). The values
of α seems to be an open issue for both theoretically and observationally.





Chapter 6

Weakly Non-linear Analyses

So far, we have mainly focused on the linear perturbation of disk-planet
interaction. Linear analyses help us to understand some properties of disk-
planet interactions. For example, it is possible to derive the torque exerted
at Lindblad resonances by low-mass planets, and therefore, it is possible to
calculate the timescale of planetary migration.

However, it is also noted that the applicability of linear perturbation
theory is restrictive. Obviously, it cannot be applied for high-mass planet.
Since the amplitude of perturbation scales with GMp/Hc2, we expect that if
the planet mass exceeds Neptune or Saturn mass, linear perturbation theory
fails.

It is also pointed out recently that linear perturbation theory fails for low-
mass planets. Paardekooper and Papaloizou (2008) [69] have shown that the
interaction at the corotation resonances are not described by linear theory. It
is also known that it is not possible to derive mass flux by linear perturbation
theory (Balbus and Hawley 1998 [7], Lubow 1990 [54]).

In this chapter, we investigate the disk-planet interaction in a weakly
non-linear regime. Our goal is to derive the mass flux excited by the planet
embedded in a disk, which results in the gap formation around the planet.
Gap formation is important because if a gap is formed in the vicinity of
the planet, the surface density of the gas decreases. Since type I migration
timescale is proportional to the disk surface density at effective Lindblad
resonances, the type I migration timescale becomes longer if gap is formed.

We first give some analytic framework of non-linear disk-planet interac-
tion. We then perform numerical simulations to verify the analytic results.
Finally, we discuss the gap formation criterion based on the results. We
consider a very simple case: two-dimensional local shearing-sheet analysis
with isothermal gas. This may be a great simplification, but the analyses
are also simplified and high-resolution calculations are possible. We expect
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that essential physical mechanisms of gap formation can be captured by this
analysis.

6.1 Basic Equations

As usual, we take the origin of the coordinate system at the planet’s location,
and the x- and y-axes are the radial and the azimuthal direction, respectively.
We use iso-thermal ideal hydrodynamic equations

∂ρ

∂t
+ ∇ · (ρv) = 0 (6.1)

∂v

∂t
+ v · ∇v = −c2

ρ
∇ρ − 2Ωpez × v + 3Ω2

px −∇ψp (6.2)

where we have assumed that the gas is rotating at the Kepler velocity. No-
tations are as follows: ρ is density, v is velocity field, c is sound speed, Ωp

is the angular velocity of the planet, and ψp is the gravitational potential of
the planet. For ψp, we assume the form

ψp =
GMp

(x2 + y2 + ε2)1/2
, (6.3)

where G, Mp, and ε are gravitational constant, mass of the planet, and the
softening parameter, respectively.

6.2 Second-Order Perturbation Theory

In this section, we consider second-order linear perturbation in order to derive
the mass flux in the vicinity of the planet. Although angular momentum
flux can be calculated using the results of linear perturbation only, it is
necessary to perform second-order analysis to derive the mass flux, since
axisymmetric (ky = 0) mode of the second-order perturbation contributes
to the mass flux. Lubow (1990) [54] performed the time-dependent analysis
using Fourier and Laplace transformation. In this section, we revisit the
second-order perturbation theory using a slightly different method from the
previous calculations. We use Fourier-transform in the y-direction only and
analyze in the real space in time and the x-direction.

The equations for second-order perturbation are given by(
∂

∂t
− 3

2
Ωpx

∂

∂y

)
δρ(2)

ρ0

+
∂

∂x
δv(2)

x +
∂

∂y
δv(2)

y =

− ∂

∂x

(
δρ(1)

ρ0

δv(1)
x

)
− ∂

∂y

(
δρ(1)

ρ0

δv(1)
y

)
(6.4)
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∂

∂t
− 3

2
Ωpx

∂

∂y

)
δv

(2)
x +c2 ∂

∂x

δρ(2)

ρ0

− 2Ωpδv
(2)
y =

−δv(1)
x

∂

∂x
δv(1)

x − δv(1)
y

∂

∂y
δv(1)

x + c2 δρ(1)

ρ0

∂

∂x

δρ(1)

ρ0

(6.5)

(
∂

∂t
− 3

2
Ωpx

∂

∂y

)
δv

(2)
y +c2 ∂

∂y

δρ(2)

ρ0

+
1

2
Ωpδv

(2)
x =

−δv(1)
x

∂

∂x
δv(1)

y − δv(1)
y

∂

∂y
δv(1)

y + c2 δρ(1)

ρ0

∂

∂x

δρ(1)

ρ0

.

(6.6)

The superscripts “(1)” and “(2)” denote the first- and second-order perturba-
tion, respectively. We assume that the first-order results are already known.

The mass flux is given by

Ṁ(t, x) = ρ0δv
(2)
x + δρ(1)δv

(1)
x , (6.7)

where bars denote the integral over y. Assuming the periodic boundary
condition in the y-direction, it is possible to derive the equation for Ṁ which
reads

∂2Ṁ

∂t2
− c2∂2Ṁ

∂x2
+ Ω2

pṀ = S(t, x), (6.8)

where S is the source term consisting of two parts,

S(t, x) = Sv(t, x) +
∂

∂t
St(t, x), (6.9)

and

Sv(t, x) = 2Ωp

[
Ωp

2
δρ(1)δv

(1)
x − c2δv

(1)
x ∂xδv

(1)
y

]
(6.10)

St(t, x) = ∂t

(
δρ(1)δv

(1)
x

)
−

[
δv

(1)
x ∂xδv

(1)
x + δv

(1)
y ∂yδv

(1)
x − c2

ρ0

δρ(1)∂xδρ(1)

]
(6.11)

The term Sv is related to the formation of specific vorticity. In two-dimensional
ideal flow in a rotating frame, the specific vorticity conserves along the
streamline

d

dt

(∇× v)z + 2Ωp

ρ
= 0, (6.12)
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where d/dt is the Lagrangian derivative. The background value of the specific
vorticity is Ωp/2, and the linear perturbation is(

∂

∂t
− 3

2
Ωp

∂

∂y

)[
∂

∂y
δv(1)

x − ∂

∂x
δv(1)

y +
1

2
Ωp

δρ(1)

ρ0

]
= 0. (6.13)

If there is no formation of specific vorticity,

∂

∂y
δv(1)

x − ∂

∂x
δv(1)

y +
1

2
Ωp

δρ(1)

ρ0

= 0 (6.14)

and from equation (6.10), Sv(t, x) = 0. However, if there is a formation
of vorticity by, for example, shock damping of the spiral density wave, this
term can not be neglected. We also note that if stationary state is assumed a
priori, and if there is no formation of specific vorticity, the source term S(t, x)
is zero, leading to the zero mass flux (Lubow 1990, Muto and Inutsuka 2009).

However, if time-evolution effects are taken into account, we derive non-
zero mass flux. The solution for equation (6.8) is given by

Ṁ(t, x) =
1

c

∫ ∫
dt0dx0G(t, t0; x, x0)S(t0, x0), (6.15)

where G(t, t0; x, x0) is the Green’s function

G(t, t0; x, x0) =


1

2
J0

(
1

H

√
(t − t0)2 − (x − x0)2/c2

)
|x − x0| < c(t − t0)

0 otherwise

,(6.16)

where J0 is the Bessel function of zeroth order. From linear perturbation,
it is possible to predict that the mass flux scales with M2

p , since the source
term is the second order of perturbation.

6.3 Non-Linear Evolution of Density Wave

We have seen that mass flux appears when source term is time-dependent or
when there is a formation of specific vorticity. Since we consider the phase
when the planet mass does not change very much, the mass flux, if there is,
should appear as a result of the formation of specific vorticity.

Specific vorticity is formed when dissipation mechanisms act. Goodman
and Rafikov (2001) [39] investigated the propagation of density wave and
showed that the spiral density wave shocks as it propagates in the disk.
They have derived that the location of shock formation is proportional to
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M
−2/5
p . In this section, we derive this relationship using a slightly different

consideration.
Shock is formed when two characteristics cross. For two-dimensional su-

personic steady flow, the gradient of characteristic curves is given by (Landau
and Lifshitz 1959 [51]) (

dy

dx

)
±

=
vxvy ± c

√
v2 − c2

v2
x − c2

. (6.17)

In the background state of the shearing-sheet, this gives(
dy

dx

)
±

= ±1

c

(
9

4
Ω2

px
2 − c2

) 1
2

. (6.18)

For x > 0, (dy/dx)− is the perturbation propagating away from the origin.
At x À (2/3)H, the characteristic curve is given by

y ∼ −2

3

x2

H
+ y0. (6.19)

It is to be noted that the outgoing characteristics coincide the curve of the
same phase of the perturbation of the density wave. This is not a coincidence,
since the density wave is essentially the sound wave propagating on the disk.

For linear perturbation, the gradient of the characteristics is given by(
dy

dx

)
±
∼ 1

c2

[
∓c

(
9

4
Ω2

px
2 − c2

) 1
2

+
3

2
Ωpx

{
δvx ±

cδvy(
(9/4)Ω2

px
2 − c2

)1/2

}]
(6.20)

Since the amplitude of δvy decreases with x−1/2, δvy in the second term of
the right hand side can be neglected. Assuming the perturbed characteristic
curve of the form

y(x) = −3

2

x2

H
+ y0 + δy(x), (6.21)

δy(x) may be given by

d

dx
δy =

3

2

Ωp

c2
xδvx(x, y(x)). (6.22)

Approximating y(x) ∼ −(3/2)x2/H + y0 in the argument of δvx, we have

δy(x) ∝ Mpx
5/2g(y0). (6.23)

In the vicinity of g(y0) = 0, g(y) is negative for y > y0 and g(y) is positive
for y < y0. This indicates that the characteristic curves shrinks compared to
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the unperturbed case. Assuming that when δy exceeds a critical value, the
shock forms, we obtain, for the location of the shock formation,

x ∝ M−2/5
p , (6.24)

which is the same condition as derived by Goodman and Rafikov (2001).
Since the flow is supersonic only x > (2/3)H, condition∣∣∣∣x − 2

3
H

∣∣∣∣ ∝ M−2/5
p (6.25)

may be more appropriate.
The distance over which the spiral density wave can propagate without

shock formation may be of the order of the scale height. If it is the case, spiral
shock will create the specific vorticity, and as a result, mass flux is excited
to form a gap around the disk. In the subsequent section, we investigate
whether gap formation is possible using numerical calculations.

6.4 Numerical Calculation

In order to investigate the gap opening process more quantitatively, we per-
form numerical calculations of disk-planet interaction.

6.4.1 Numerical Setup

We solve Euler equations (6.1) and (6.2) with isothermal equation of state
using second-order Godunov scheme (e.g., Colella and Woodward 1984 [16]).
In order to investigate the density wave propagation while resolving all the
length scale (Hill radius, Bondi radius, and radial wavelength of the density
wave), we need to use rather large box size with relatively high resolution.
We choose the box size (Lx, Ly) = (16H, 32H) with mesh number (Nx, Ny) =
(512, 1024), which results in the resolution ∆x = ∆y = H/32.

Using linear perturbation theory in WKB limit, the radial wavelength of
the wave with mode ky may be approximated by

λ ∼ H
8π

3

1

kyH

H

x
. (6.26)

The most important modes are kyH ∼ O(1). For mode with kyH = 10 at
x/H ∼ 4, λ ∼ 1/4, and this wave is resolved by eight meshes in the radial
direction if we use ∆x = H/32. Higher-order modes or the wave outside
this regions are damped numerically. Therefore, we mainly use data within
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Model Number GMp/Hc2 Planet Mass rH/H
1 0.05 1.875M⊕ 0.26
2 0.1 3.75M⊕ 0.32
3 0.2 7.5M⊕ 0.41
4 0.4 15M⊕ 0.51
5 0.6 22.5M⊕ 0.58

Table 6.1: Mass parameters used in numerical calculations. For the calcula-
tion of planetary mass, we assume 1AU of MMSN Model

|x| < 4H in the analyses of the results. We set the numerical boundary
well-outside this region.

If we normalize the length by H = c/Ωp and the time by Ωp, the only
dimensionless parameters in this calculation is the planet mass, or Bondi
radius rB/H = GMp/Hc2 and the softening parameter ε/H. We use the
softening length used in previous local shearing-sheet calculations ε = rH/4,
where r

H
is the Hill’s radius

rH =

(
Mp

3Mc

)1/3

rp (6.27)

(Miyoshi et al. 1999 [61]). We have performed calculations with five different
planetary mass Mp shown in Table 6.1. Note that Bondi radius, Hill radius,
and the softening parameter are resolved (at least marginally) for the smallest
mass model. We have increased the planetary mass linearly from tΩp = 0
to 12. The result does not depend on significantly on this timescale if the
timescale is longer than this.

In the x-direction, we use the non-reflecting boundary used by FARGO
(Baruteau 2008 [9]), modified for the shearing-sheet. For the y-direction, we
adopt the periodic boundary condition. Shearing-sheet calculations given by
Miyoshi et al. (1999) [61] or Tanigawa and Watanabe (2002) [85] used the
different boundary conditions in the y-direction, which is the combination
of Keplerian inflow and supersonic outflow. This boundary condition may
be appropriate to study the flow structure only in the vicinity of the planet,
but for the study of gap formation, this boundary condition is inappropriate
because this forces the unperturbed gas flowing into the computational do-
main. We also note that the periodic boundary condition in the y-direction is
useful for the purpose of comparison with the linear analyses, which assume
the periodicity in the y-direction.

We have checked that our code reproduces the results of Miyoshi et al.
(1999) [61] well when the same parameter and the boundary conditions are
used.
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Figure 6.1: Left: Density profile for the calculation with GMp/Hc2 = 0.1
at tΩp = 200. Right: Evolution of azimuthally averaged density for
GMp/Hc2 = 0.1.

6.4.2 Results

Figures 6.1 and 6.2 show the snapshot of density perturbation δρ tΩp = 200
and the evolution of the azimuthally averaged density profile for GMp/Hc2 =
0.1 and 0.4 respectively. For the calculation with GMp/Hc2 = 0.4, a clear gap
is already formed, but it is possible to see that even for low-mass calculations,
density gap is gradually formed.

We now investigate the gap formation in detail. We first investigate
the shock formation. Figure 6.3 shows the density profiles at various x at
tΩp = 200. It is possible to see the shock-like structure for the calculation
with GMp/Hc2 = 0.4, while for the run with GMp/Hc2 = 0.1, the structure
is not very obvious.

However, we argue that the spiral shock already forms for the low mass
calculations as well. It is possible to see whether dissipation acts or not by
looking at the perturbation of specific vorticity. In the absence of dissipation,
the specific vorticity conserves along the streamline, and since the background
specific vorticity is constant in the calculation box, we expect that it is also
constant in the presence of the planet. Note that any potential force, whether
it is time-dependent or not, does not produce specific vorticity. Therefore,
specific vorticity arises only if dissipative mechanisms come into play. In our
calculation, the dissipation is implemented in the shock-capturing scheme. If
the formation of specific vorticity is driven by the formation of shock, relation
given by equation (6.25) should be observed a least for the weak shock cases.

Figure 6.4 shows the azimuthally-integrated specific vorticity perturba-
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Figure 6.2: Left: Density profile for the calculation with GMp/Hc2 = 0.4
at tΩp = 200. Right: Evolution of azimuthally averaged density for
GMp/Hc2 = 0.4.
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Figure 6.4: Perturbation of specific vorticity (in arbitrary unit) as a function

of (x − (2/3)H)M
2/5
p

tion as a function of (x−(2/3)H)M
2/5
p . If shock dissipation occurs as equation

(6.25) describes, the peak of the specific vorticity perturbation comes at the
same location of the horizontal axis. It is possible to observe that the for cal-
culations with GMp/Hc2 < 0.2, equation (6.25) is marginally satisfied. For
calculations with larger planet mass, it is not the case. This is because the
shock formation occurs immediately after the wave is excited at x ∼ (2/3)H,
and therefore in the unit of x − (2/3)H, the shock occurs relatively further
away.

We now look at the radial mass flux ρvx excited by the planet. In Figure
6.5, we show the azimuthally averaged mass flux at tΩp = 100. It is possible
to see that the mass flux is roughly proportional to M2

p except for the highest-
mass calculation. This motivates us to compare the results with second-order
perturbation theory given by equation (6.15).

Figure 6.6 compares the mass flux derived by numerical calculation and
by equation (6.15). Since it is not possible to predict the amount of specific
vorticity only from linear perturbation theory, we have used the results of
numerical calculation in obtaining the source term S(t, x). It is possible to
observe that the second-order perturbation theory is valid for calculations
with low-mass planet, GMp/Hc2 = 0.1. We find that perturbation theory
fails to describe the amount of mass flux for calculations with GMp/Hc2 &
0.4. However, we note that it is still possible to say that the mass flux is
roughly proportional to M2

p even if second-order perturbation theory fails.
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6.5 Gap Opening Timescale and Criterion

We have seen that low-mass planets can potentially open a gap in an inviscid
disk, it is interesting to investigate the minimum mass of the planet that
can open up the gap. Low-mass planets are prone to type I migration and
therefore, if the planet migrates before it opens up a gap, gap formation is
impossible. Since the width of the gap is the order of scale height H, we
compare the timescale of the planet migration with length H and the gap
formation timescale. The planet migration timescale in an isothermal disk is
estimated by Tanaka et al. (2001) as

τ−1
mig ∼ 3Ωp

Mp

M∗

Σr2
p

M∗

(rp

H

)3

. (6.28)

Note that the power of H/rp is 3 because we consider the migration over the
radial length H. For gap formation timescale, we use the mass flux obtained
from the simulation

1

Ly

∫
dyΣvx ∼ 4 × 10−2Σc

x

H

(
GMp

Hc2

)2

(6.29)

within the range of |x/H| . 3. Therefore, the gap formation timescale may
be estimated as

τ−1
gap =

∂x(1/Ly)
∫

dyΣvx

(1/Ly)
∫

dyΣ
∼ 4 × 102Ωp

(rp

H

)6 Mp

M∗
. (6.30)

Comparing τmig and τgap, we obtain the gap formation condition

Mp

M∗
& 3 × 10−6

(
H/rp

0.05

)3
Σ

2 × 103gcm−3

( rp

1AU

)2
(

M∗

M¯

)−1

. (6.31)

We used typical values of Protoplanetary disk at 1AU to estimate the number.
This condition derives that even Earth mass planet can form a gap in a
protoplanetary disk at 1AU.

If the disk is in turbulent state, the effective viscosity can fill the gap. If
we use standard α-prescription for turbulent viscosity ν = αcH, the timescale
of viscous diffusion over length scale ∼ H is

τ−1
vis ∼ αΩp. (6.32)

If τvis is shorter than τgap, we do not expect that the gap forms. This leads
to another condition,

α . 2.5 × 10−6

(
H/rp

0.05

)−6 (
Mp/M∗

10−6

)2

. (6.33)
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Figure 6.7: Mass flux obtained by the calculation with GMp/Hc2 = 0.1 at
tΩp = 100 for ∆x = ∆y = H/16 and ∆x = ∆y = H/32.

The disk must be very quiet in order for low-mass planets to open up the
gap. We comment that this condition may not be simply extrapolated to
higher mass case, since this is based on local calculations.

Equation (6.31) shows that gap can be opened even for low-mass planets.
The gap opening criterion previously known for an inviscid disk is (Crida et
al. 2006 [17])

rH

H
& 3

4
. (6.34)

We note that the gap formation for low-mass planets can be observed only for
high-resolution calculations. Figure 6.7 compares the mass flux obtained for
calculations with GM/Hc2 = 0.1 between resolution with H/16 and H/32.
For calculations with low resolution, mass flux nearly vanishes. We have
checked that for runs with GMp/Hc2 greater than 0.2, the result does not
depend on the grid resolution. It is reasonable because length scales necessary
to be resolved is smaller for smaller mass planets.

6.6 Gap Depth

We have seen that the gap may be opened around a low-mass planet. We now
question when this gap opening ends. Li et al. (2005, 2008 [27] [53]) showed
that there is a secondary instability after gap formation, which prevents the
further opening of the gap. We have also seen that such an instability occurs
for the high-mass run. Figure 6.8 shows the evolution of density profile and
mass flux for the later stage of the run with GMp/Hc2 = 0.6. The gap
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Figure 6.8: Left: Evolution of azimuthally averaged density perturbation for
GMp/Hc2 = 0.6. Right: Evolution of mass flux.

opening is saturated when approximately half of the mass is depleted due to
the highly time-dependent mass flux.

The appearance of secondary instability may be understood by a simple
linear analysis (see also de Val-Borro et al. 2007 [20]). We derive the condi-
tion for instability by performing stationary perturbation without a planet.
Let us consider, for simplicity, a gapped disk without a planet. The equations
we consider is therefore the equations (6.1) and (6.2) without ψp. We assume
that the background disk is axisymmetric with density profile ρ0(x). We de-
note the background values with subscript “0”. In the background state, the
pressure gradient must be balanced by Coriolis force and therefore,

vy,0(x) = −3

2
Ωpx +

c2

2Ωp

1

ρ0

dρ0

dx
≡ U(x), (6.35)

and
vx,0 = 0. (6.36)

We now consider linear perturbation. Perturbed values are denoted by δ
and consider the solution proportional to exp[−iωt + ikyy] Linear perturba-
tion is then

(−iω + U(x)iky)
δρ

ρ0

+
d

dx
δvx + ikyδvy = 0, (6.37)

(−iω + U(x)iky) δvx + c2 d

dx

δρ

ρ0

− 2Ωpδvy = 0, (6.38)

(−iω + U(x)iky) δvy + c2iky
δρ

ρ0

+

(
2Ωp +

dU

dx

)
δvx = 0. (6.39)

From these equations, we can derive a single second-order ordinary differen-
tial equation for δvx,

d2

dx2
δvx + (4Ωp + 2U ′) iky

d

dx
δvx + iky

(
U ′′

−iωUiky

+ iky

)
δvx = 0, (6.40)
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where ′ denotes the derivative with x. If there exists a non-trivial solution
for ω = 0, the system is marginally stable. The boundary condition to be
imposed is that the solution does not diverge at |x| → 0. We also assume
that the gap is weak and approximate U ∼ −(3/2)Ωpx in the second term
of equation (6.40). However, the term U ′′ cannot be neglected. For ω = 0,
using this approximation, we can further simplify the equation to the form
of Schroedinger-type equation,

d2g

dx2
+ (−k2

y − V (x))g(x) = 0, (6.41)

where
g(x) = x−1/3δvx (6.42)

and

V (x) =
U ′′

(3/2)Ωpx
+

4

9x2
. (6.43)

From equation (6.41), the condition for marginal stability is that there exists
a “bound state” with energy −k2

y. Since −k2
y < 0, it is possible when there

exists a point where U ′′ < 0, which corresponds to the pressure bump from
equation (6.35). This instability criterion is analogous to the condition of
Kelvin-Helmholtz instability with smooth velocity shear background (e.g.,
Chandrasekhar 1981 [14]).

Li et al. (2005) [27] shows that the secondary instability can cause the
vortices with low-m. To understand the saturation, it may be necessary to
perform global calculations. We also note that since the conservation of spe-
cific vorticity is restricted to two-dimensional calculations, three-dimensional
effects can well affect the final state. High-resolution three-dimensional cal-
culations are interesting future work.

The gap formation around low-mass planets and the appearance of sec-
ondary instability may provide some new insights in the planetary migra-
tion. If a clear gap opens up around a planet, the interaction between the
planet and the disk becomes weak, and therefore, migration timescale be-
comes longer. If secondary instability prohibits the formation of gap but
causes the disk to be in a turbulent state, the migration can become ran-
dom. Both of these effects can cause migration timescale longer, and the
planet may be formed without falling onto the central star.





Chapter 7

Summary

Disk-planet interaction and planetary migration are important because they
can provide the new ingredients of planetary formation theory. Classical (or
standard) core accretion scenario assumes in-situ formation, that is, planets
are formed from dust particles that have been there, and they have not
migrated. However, it seems very probable that the planets migrate, and
planetary migration can greatly alter the picture of planet formation theory.

The serious problem of planetary migration is that we do not know
whether migration occurs inward or outward, and the direction of migration
can be very sensitive to the disk state. In this thesis, we have explored exten-
sively how the characteristics of disk-planet interaction are affected by mag-
netic field, viscosity, and non-linear effects, compared with non-magnetized,
inviscid, linear theory first analyzed by Goldreich and Tremaine [38]. We have
used local shearing-sheet approximations in order to simplify the problem,
and to reveal the essential physical mechanisms of the disk-planet interaction
in various disk states.

The effects of magnetic field are explored in Chapter 4. We have shown
that very strong poloidal magnetic field (typically, magnetic energy needs to
be much larger than thermal energy) can reduce the timescale of planetary
migration drastically. We have derived analytic formulae for one-sided torque
that agrees very well with numerical simulations. However, it may be quite
likely that poloidal magnetic field is not so much strong that affects the
planetary migration. Toroidal magnetic field can also affect the planetary
migration, and the direction of migration can be reversed compared to the
non-magnetized disk. Toroidal magnetic field at the equipartition level can
affect the planetary migration. Our calculations in Chapter 4 are restricted
to stable configuration of magnetic field. The effects of magneto-rotational
instability are also a very interesting topic regarding the planetary migration.

The effects of viscosity on disk-planet interaction are investigated in
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Chapter 5. We use a time-dependent formulation of linear analysis, which
can be very easily extended to include many other effects. We have explored
a wide range of viscous parameter, and found that the viscosity can tilt the
density structure in the vicinity of the planet, which increases the one-sided
torque exerted on the planet. When viscosity is very strong, one-sided torque
becomes smaller due to strong damping. We have provided a fitting formula
for one-sided torque as a function of viscous parameter. Our results sug-
gest that the properties of planetary migration can be different if turbulent
viscosity is considered, and future high-resolution numerical calculations are
necessary.

Finally in Chapter 6, we have explored in detail the non-linearity of the
interaction between the low-mass planet and the isothermal, inviscid disk
using both analytic and numerical calculations. We have shown that mass
flux appears in the vicinity of the planet as a result of shock formation of
density wave. We have shown that the low-mass planets are potentially pos-
sible to form a gap in the vicinity of them, which may reduce the migration
rate of the planet or causes instability. The message of this chapter is that
non-linearity is important even if we consider low-mass planets. We have
also shown that high-resolution calculations are necessary to see the effects,
providing that future three-dimensional calculations are essential to under-
stand more quantitatively the secular evolution of the gas disk in the vicinity
of the planet.
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