Full one-loop electroweak radiative corrections to single photon production in e⁺e⁻

ACAT03, Tsukuba, 4 Dec. 2003 LAPTH and Minamitateya Collaboration presented by K.Kato

Motivation

- Higgs and SUSY study at future colliders
- Detailed, high-accuracy prediction required for discovery/(major) background channels
- EW radiative corrections for multi-body channels ... huge computation
- Automation of perturbative computation ... essential tool for HEP

$2 \rightarrow 3$ in ee

$$e^+e^- \rightarrow v\bar{v}H$$

$$e^+e^- \rightarrow t\bar{t}H$$

GRACE, hep-ph/0212261 Denner etal., hep-ph/0302198

GRACE, hep-ph/0307029 You et al., hep-ph/0306036 Denner etal., hep-ph/0307193

 $e^+e^- \rightarrow ZHH$

GRACE, hep-ph/030910 Zhang etal., hep-ph/0308203

New results

$$e^+e^- \rightarrow e^+e^-H$$
 $e^+e^- \rightarrow \nu\nu\gamma$

$$v = v_{\mu}, v_{e}$$

hep-ph/0212261 Phys.Lett.B 559(2003) 252.

$$e^+e^- \rightarrow t\bar{t}H$$

hep-ph/0307029 Phys.Lett.B 571(2003) 163.

system components

- Diagram generation for input process
- Amplitude/Matrix element generation
- Kinematics and Integration (efficiency)
- Event generation (efficiency & weight)
- Peripheral tools: rule generator, diagram selection, QED radiation, PDF, loop integral library, multi-process, color flow and interface for hadronization, etc.

Diagnostics

- How you can believe the numbers an automated system has produced?
- UV finiteness
- IR finiteness
- gauge invariance

Non-linear gauge

 Check by gauge invariance in 1-loop Independence on several gauge parameters

$$\widetilde{\alpha}, \widetilde{\beta}, \widetilde{\delta}, \widetilde{\varepsilon}, \widetilde{\kappa}$$

- Numerator structure is the same as Feynman gauge
- Vertices modified
- New vertices (ghost sector) appear
- $g^{\mu\nu}$ (for $\xi = 1$)
- $\widetilde{\alpha} = 1 \Longrightarrow \text{no AW}\chi$

Non-linear gauge fixing terms

$$L_{GF} = -\frac{1}{\xi_{W}}F^{+}F^{-} - \frac{1}{2\xi_{Z}}(F^{Z})^{2} - \frac{1}{2\xi}(F^{A})^{2}$$

$$\mathsf{F}^{\pm} = \left(\partial^{\mu} \mp \mathsf{i} e \widetilde{\alpha} \mathsf{A}^{\mu} \mp \mathsf{i} \frac{\mathsf{e} \mathsf{C}_{\mathsf{W}}}{\mathsf{S}_{\mathsf{W}}} \widetilde{\beta} \mathsf{Z}^{\mu}\right) \mathsf{W}_{\mu}^{\pm}$$

$$\mathsf{F}^{\mathsf{A}} = \partial^{\mu} \mathsf{A}_{\mu}$$

$$+\xi_{W}\left(\mathsf{M}_{W}\chi^{\pm}+\frac{\mathsf{e}}{2\mathsf{s}_{W}}\widetilde{\delta}\mathsf{H}\chi^{\pm}\pm\mathsf{i}\frac{\mathsf{e}}{2\mathsf{s}_{W}}\widetilde{\kappa}\chi_{3}\chi^{\pm}\right)$$

$$\mathsf{F}^{\mathsf{Z}} = \partial^{\mu}\mathsf{Z}_{\mu} + \xi_{\mathsf{Z}}\left(\mathsf{M}_{\mathsf{W}}\chi_{3} + \frac{\mathsf{e}}{2\mathsf{s}_{\mathsf{W}}\mathsf{c}_{\mathsf{W}}}\widetilde{\varepsilon}\mathsf{H}\chi_{3}\right)$$

Samples of NLG Feynman rules

$$\begin{split} & \mathsf{W} - \mathsf{W} - \mathsf{A} & \mathsf{W} - \chi - \mathsf{A} \\ & \mathsf{e}[\mathsf{g}^{\mu\nu}(\mathsf{p}_{1} - \mathsf{p}_{2})^{\rho} & \mp \mathsf{ie}\mathsf{M}_{\mathsf{W}}(1 - \widetilde{\alpha})\mathsf{g}^{\mu\nu} \\ & + (1 + \widetilde{\alpha} / \xi_{\mathsf{W}})(\mathsf{p}_{3}^{\nu}\mathsf{g}^{\mu\rho} - \mathsf{p}_{3}^{\mu}\mathsf{g}^{\nu\rho}) \\ & + (1 + \widetilde{\alpha} / \xi_{\mathsf{W}})(\mathsf{p}_{2}^{\mu}\mathsf{g}^{\nu\rho} - \mathsf{p}_{1}^{\nu}\mathsf{g}^{\mu\rho})] & \text{modified} \end{split}$$

$$\\ & \overline{\mathsf{C}}^{\mp} - \mathsf{C}^{\mathsf{A}} - \mathsf{A} - \mathsf{W}^{\pm} & \overline{\mathsf{C}}^{\mp} - \mathsf{C}^{\mathsf{A}} - \chi^{\pm} - \mathsf{H} \\ & - \mathsf{e}^{2}\widetilde{\alpha}\mathsf{g}^{\mu\nu} & \mp \mathsf{ie}^{2}\frac{1}{2\mathsf{s}_{\mathsf{W}}}\widetilde{\mathsf{S}}_{\mathsf{W}} \end{split}$$
ghost-ghost- vector-vector / ghost-ghost-scalar-scalar

5-point functions

(QED), (EW)

 $\sigma = \sigma_0 (1 + \delta_{OFD} + \delta_W)$

 δ_W non-QED virtural corrections

$$\delta_{\text{QED}} = \delta_{\text{QED}}^{\text{V}} + \delta_{\text{QED}}^{\text{soft}} + \delta_{\text{QED}}^{\text{hard}}$$

phase space subtraction f_{LL} =radiator $\delta_{QED} = \int (d\sigma_0 \delta_{QED}^v + d\tilde{\sigma}_0 \otimes f_{LL}) + \int_{hard} (d\sigma_{1\gamma} - d\tilde{\sigma}_0 \otimes f_{LL})$

- diagrams

 full set (for NLG check)
 tree 42, 1-loop 4470 (inc. C.T.)
 production set (for integration)
 tree 2, 1-loop 510 (inc. C.T.)
- M_W = 80.3766 GeV , M_Z = 91.1876 GeV _Z= 2.4956 GeV (appear at resonant poles only) M_H = 120GeV, m_t = 174GeV E_{CM} = 200 ~ 3000 GeV, kcut=E*0.05

check by NLG $(ee \rightarrow eeH)$

 $f = \sum_{k=1}^{4} a_{k} \xi^{k} \quad (\xi = \widetilde{\alpha}, \widetilde{\beta}, \widetilde{\delta}, \widetilde{\varepsilon}, \widetilde{\kappa})$

compute for several , at a point in PS

I	a^4		a^3	Ι	a^2		a^1	I	a^0
166 @					.2626107E-05		5842526E-05		.3216419E-05
167 w 168				Ι	124//60E-04		.1306251E-04 .1083887E-05		1083887E-05
169 @	<i>~</i>	\sim			.3625232E-06		7250464E-06		.3625232E-06
170 @					.2626107E-05		5842526E-05		.3216419E-05
171 @		Y			1247760E-04	ļ	.1306251E-04	ļ	2558662E-04
172					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ļ	.1083887E-05	ļ	1083887E-05
173 @					.3625232E-06	I	/250464E-06		.3625232E-06
:					:				
4457						-	.1349235E-16	-	1248992E-14
4400							.0200719E-10		0749209E-10 4100276E 29
4459							4199270E-20 37/8007E-18	ł	.4199270E-20
4400						 		 	
sum1	52754E-3	7	.30729E-36		29743E-36		91553E-26		18099E-04
max	.62693E-3	7	.94040E-37		.12478E-04		.13063E-04		.32607E-04
cnt	0		0		30		364		

$e^+e^- \rightarrow \nu\nu\gamma$

- diagrams full set (for NLG check) tree 10, 1-loop 1099 (inc. C.T.) production set (for integration) tree 5, 1-loop 331 (inc. C.T.)
- M_W= 80.3766 GeV , M_Z= 91.1876 GeV _Z= 2.4956 GeV M_H= 120GeV , m_t = 174GeV E_{CM}= 200 ~ 3000 GeV OPAL cut: ()p_T>0.05E_B, 15 ° < <165 °

 $e^+e^- \rightarrow \nu \nu \gamma$

IR diagrams

tree diagrams

check by $NLG_{(ee \rightarrow nunuA)}$

	a^4	Ι	a^3	I	a^2	I	a^1		a^0	
1V						•	.5252278E-(03	.7952048E-03	
2V							.1872623E-	14	1872623E-14	
6V	_		-				.1872623E-′	14	1872623E-14	
: 18\/		\sim		ı	4986017E-11	I	7865753E-	101	- 8364354F-10	
19\/				i '	3779384E-10	ï	1104061E-(nai	- 1482000E-09	
201/					1208277E-10	 .	· 2416554E-	10	1208277E-10	
22V				1	.12002172 10	i	6561564E-	101	- 6561564E-10	
23V			_			¦ .	.4995059E-4	42	4995059E-42	
24V				L.	.4797596E-09	ί.	.9595192E-(09	.4797596E-09	
26V						i.	.6561564E-	10 İ	.6561564E-10	
27V						i	.4995059E-4	12	4995059E-42	
28V				-	.4797596E-09	ï	.9595192E-(09	4797596E-09	
29V-	4773915E-3	37 .2	2482467E-36	i.	.5633036E-36	i-	.7638111E-3	36	1405948E-07	
30V-	7346840E-3	. 39	4897893E-39	İ.	.3673420E-38	i-	.3428525E-3	38	.5827357E-08	
31V-	1040802E-3	37 .9	9896805E-37	İ.	1900383E-36	İ -	.2785983E-3	36	1405949E-07	
: 854D						Ι.	11802265-	1/1	11802265-14	
004P 855P				ī	763/11/E-0/		. 1 100220E- . 3060816E-0	14 N2	8768512E-14	
				· ۱	.,034114∟-04				.07000122-03	_
sum1	.14148E-3	so -	.40640E-30		86324E-25		.17416E-23		.51997	
max	.12998E-3	0	.32070E-04		.96820E-04		.59183E-01		.15505	
cnt	15		25		70		381			

conclusion

- Technology is established to handle full-EW RC for 2→3 processes.
- Gauge parameter independence in NLG is powerful to confirm the results.
- New results for full EW correction is obtained for $e^+e^- \rightarrow e^+e^-H$, $vv\gamma$