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ABSTRACT
Three gluon decay functions in space-like gluon branching are calculated in the

next-to-leading order of QCD. The calculated results satisfy crossing symmetry be-
tween space-like branching and time-like one. Some properties of the decay functions
are also examined in the case of the soft gluon radiations and in that of the branch-
ing to the space-like gluon with small momentum fraction. Furthermore kinematical
constraints for leading logarithmic branching due to interference effects are studied.
It is pointed out that the next-to-leading order contributions are not negligible even
the angular-ordering conditions are imposed into two-body branching processes.



2 §1. Introduction

So far, many works of experimental and theoretical studies have been devoted
to jets. One of remarkable results of the studies is establishment of the parton
shower1). In the high energy reactions, many soft gluons and collinear partons are
produced. Especially in e+e− annihilation, detailed studies have been made from
experimental and theoretical points of views2). In these processes, contributions
of the next-to-leading logarithmic(NLL) order of Quantum Chromodynamics(QCD)
have been included3).

On the contrary, the most of the works for the parton shower models in the deep
inelastic scattering and those for the hadron-hadron scattering are limited to the
leading logarithmic(LL) order of QCD. The higher order contributions such as the
interference effects are only taken into account by the approximated forms for the
soft gluon radiations in the final state and for the branching to the space-like gluon
with small momentum fraction in the initial state4). These works suggest that the
interference contributions can be absorbed by imposing angular ordering restrictions
in the LL order branching vertices. It has been also argued that these restrictions
are different from those obtained in the case of the e+e− annihilation5).

In the case of e+e− annihilation, the properties of the angular ordering for the
soft gluon radiations have also been studied by using the explicit calculations of
the three-body decay functions6). However the three-body decay functions of the
space-like parton branching in NLL order of QCD have been only calculated for the
flavor non-singlet quarks in the deep inelastic scattering7). Therefore, the explicit
calculations of the full NLL order of QCD for the flavor singlet sectors are desired
in order to check above mentioned arguments for the interference effects as well as
to evaluate actual magnitudes of the NLL order terms.

Another motivation is concerned with construction of the NLL order parton
shower model, where the three-body decay functions are the most important parts
of the NLL order parton shower. As discussed in Refs.3) and 7), the kinematical
constraint for parton branching process is a part of the NLL contribution so that
theoretically needed constraint can be derived from study of the three-body decay
function.

In this paper we focus on the pure gluon decays, which dominate over other
contributions in the initial state partons for the region of the small momentum
fraction. We shall present the calculated results of the three gluon decay function
for the space-like gluon branching in the NLL order of QCD by using space-like jet
calculus proposed in Ref.7). We also examine the behaviors of the three gluon decays
in some limited kinematical regions.

Contents of our paper are as following: In next section, outline of the techniques
for calculation of the three-body decay will be presented. Calculated results are found
in section 3. Properties of the decay functions are also discussed in this section. In
final section we will make summary and will give some comments on implementation
of calculated results to Monte-Carlo simulations. Practical calculations and the
explicit expressions of three gluon decay function are presented in Appendices.



3§2. Outline of Calculation

First we shall briefly explain about the methods of our calculations. Following
the the space-like jet calculus presented in Ref.7), we calculate a process of a gluon
decaying to two on mass-shell gluons and a gluon with space-like virtuality

g(p)→ g(k1) + g(k2) + g(k3), (2.1)

where the momenta of the mother gluon, two on mass-shell daughter gluons and
one with the space-like virtuality are denoted by p, k1, k2 and k3, respectively. The
space-like momentum k3 is sometimes denoted by r. We take p

2 = k2
1 = k

2
2 = 0 and

r2 = s < 0.
The diagrams which contribute the three body decay are classified into following

types according to its structure of the denominators of the squared matrix elements.
Type [A]: Two same time-like propagators(MA ∝ 1/s2

12).

Type [B]: Two same space-like propagators(MB1 ∝ 1/s2
23 or MB2 ∝ 1/s2

13).

Type [C]: One time-like propagator and a space-like one (MC1 ∝ 1/(s12s23) orMC2 ∝
1/(s12s13)).

Type [D]: Two different space-like propagators(MD ∝ 1/(s13s23)).
Here we define invariants as

sij = (ki + kj)
2 (i 6= j). (2.2)

where the relation

s12 + s23 + s13 = s (2.3)

holds. It should be noted that s12 > 0 and s13, s23 < 0.
An amplitude T4g for the four gluon interaction is written by T4gs12/s12, thus

this contribution can be included in above four types. Corresponding diagrams are
presented in Fig.1, where the four gluon interaction is not explicitly presented.

Although one loop diagrams are present in O(α2
s) corrections, they only con-

tribute to the two-body decay functions and to regularize infrared divergence of
three body decay function in such a way that

[f(x)]+ = f(x)− δ(x)
Z 1

0
dyf(y), (2.4)

where the function f(x) is singular at x = 0.
Additional contribution to the three-body decay function may come from O(²)

terms which annihilate the mass singular pole 1/² in 4+² dimensional integrals. Since
the mass-singularity is regularized by the virtual massM0 in jet calculus framework,

6)

the mass singular poles do not appear in the three-body decay functions. Thus the
O(²) terms do not contribute to the three-body decay function. Therefore we proceed
the calculation of the three-body decay functions in 4-dimensional space-time. We
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obtain the infrared regularized form by replacing infrared singular term f(x) by
[f(x)]+.

In following calculation, the momentum fraction is defined as

xi =
kin

pn
, (2.5)

where n is the light-like vector which specifies the light-cone gauge. In order to
extract the collinear contributions, we introduce a projection operator P that acts
on uncut propagator(virtual line) and extracts mass singularity from it, where the
Lorentz indices are factorized by −gµν .6),7)

We define the collinear contributions of the branching vertex extracted by the
projection operator P as

V = g4

Z
dΓ

rn

pn
PM

1

(−s)2 , (2.6)

where g is the QCD coupling constant, M stands for the squared matrix elements
summed over the polarization states for final gluons and averaged over them for
initial gluon, and dΓ is the phase space which is given by

dΓ = (2π)4δ(4)(p− k1 − k2 − k3)
1

(2π)3
d3k1

2k10

1

(2π)3
d3k2

2k20

1

(2π)4
d4k3. (2.7)

Here momenta are represented by the Sudakov variables:

ki = αin+ xip+ kiT (n2 = p2 = nkiT = pkiT = 0) (2.8)

where

αi =
~k2
iT + k

2
i

2xi(pn)
(k2

1 = k
2
2 = 0, k

2
3 = s) . (2.9)

Using these variables, the phase space is written as

dΓ =
1

(2π)6
dx1

2x1

dx2

2x2
d2~k1Td

2~k2Tdsδ(s− r2) (2.10)

=
1

(2π)6
dx1

2x1

dx3

2x3
d2~k1Td

2~k3Tdsδ
(+)(k2

2) . (2.11)

The first form in Eq.(10) of dΓ is called form-12 and the second one in Eq.(11) is
called form-13. We use either form of the phase space according to the convenience
of the calculation. We also define dΓ̃ by

dΓ =
1

(8π2)2
1

4π2X
δ(1− x1 − x2 − x3)dx1dx2dx3dsdΓ̃ (2.12)

where X = x1x2 in form-12 and X = x1x3 in form-13, respectively. The extracted
vertex defined in Eq.(6) is given by

V =
³αs
2π

´2
δ(1− x1 − x2 − x3)dx1dx2dx3J

d(−s)
−s (2.13)
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where αs = g

2/4π and

J =
1

4π2X
dΓ̃
rn

pn
PM

−s
(−s)2 . (2.14)

Since the products of ki’s are given by s’s, i.e., 2k1k2 = s12, 2k1k3 = s13 − s,
and 2k2k3 = s23 − s, the numerator of M is expressed in terms of x’s and s, s12, s13

and s23. By use of Eq.(3), we can eliminate one of these invariants. The main part
of the calculation is the integration over a phase space, dΓ̃ , in order to obtain the
distribution for δ(1 − x1 − x2 − x3)dx1dx2dx3. In the integration we must treat

the mass singularity, e.g., 1/s23 ∝ 1/~k2
1T . Though technical details are different for

the type of denominator, we define a vector ~hT as a linear combination of ~kiT to
simplify the calculation. For instance, the term like ~k1T ·~k2T is to be removed inside
of δ function. In calculation of the matrix elements, we used algebraic language
REDUCE.8) Practical techniques of the calculation are presented in Appendix A.

§3. Properties of the Three Gluon Decay Function

3.1. Calculated Results

Here we present the calculated results and study the properties of the decay
function for three gluon decay in the light-cone gauge. Although the amplitude
for the four gluon interaction T4g is included in calculation as mentioned in the
previous section, this contributes only to the term T ∗4gT4g which gives constant. In
order to study the relation between three-body decay function and the kinematical
constraints of two-body branching, we separately show the calculated results for the
types [A] ∼ [D]. The calculated result for each type of the matrix element is written
as follows:

J [A] =

Z (−s)

M2
0

AL
ds12

s12
+ALlog

y3

x3
+AN , (3.1)

J [B1] =

Z (−s)

M2
0

B
(1)
L

d(−s23)

−s23
+B

(1)
L log

y1

x3
+B

(1)
N , (3.2)

J [B2] =

Z (−s)

M2
0

B
(2)
L

d(−s13)

−s13
+B

(2)
L log

y2

x3
+B

(2)
N , (3.3)

J [C1] = C
(1)
L log

y1y3

x1x3
+ C

(1)
N , (3.4)

J [C2] = C
(2)
L log

y2y3

x2x3
+ C

(2)
N , (3.5)

J [D] = DLlog
y1y2

x3
+DN (3.6)

with yi = 1− xi(i = 1, 2, 3), where O(M2
0 /(−s)) terms are neglected. Here J [j](j =

A ∼ D) denotes J in Eq.(14) for each type of squared matrix element Mi. M0 is a
minimum mass scale of the phase space integrations. The explicit expressions of AL
etc. are presented in Appendix B. As shown in Appendix B, the functions AL and
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BL are the convolutions of the LL order split functions. The interference terms(types
[C] and [D]) are free from mass singularity for fixed s.

Integrating over sij for the types[A] and [B] and summing over all contributions
from J [A] to J [D], we obtain

DX
i=A

J [i] = VLLlog
(−s)
M2

0

+ Vggg , (3.7)

where

VLL = AL +B
(1)
L +B

(2)
L (3.8)

and

Vggg = VL + VN (3.9)

with

VL = ALlog
y3

x3
+B

(1)
L log

y1

x3
+B

(2)
L log

y2

x3

+C
(1)
L log

y1y3

x1x3
+ C

(2)
L log

y2y3

x2x3
+DLlog

y1y2

x3
, (3.10)

VN = AN +B
(1)
N +B

(2)
N + C

(1)
N + C

(2)
N +DN . (3.11)

The first term of Eq.(21) is the contributions from the LL order vertices. The NLL
order contributions are included in the three gluon decay function Vggg which is
constructed by the logarithmic term VL and the non-logarithmic term VN presented
in Eqs.(24) and (25),respectively.

3.2. Crossing Symmetry

In order to verify our results, we examine the crossing relation between our result
and three gluon decay function for time-like gluon decay calculated in Ref.6) for the
process

g(q)→ g(l1) + g(l2) + g(l3), (3.12)

where the momenta of the mother parton with the time-like virtuality, three on
mass-shell daughter partons are denoted by q, l1, l2 and l3, respectively. For the
time-like decay process, momentum fractions of partons are defined by

zi =
lin

qn
. (3.13)

with

z1 + z2 + z3 = 1. (3.14)

Replacement of the momenta

p→ −l3, k3 → −q k1 → l1, k2 → l2 (3.15)
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gives following relations for the momentum fractions of partons between space-like
branching and time-like one:

x1 → −z1

z3
, x2 → −z2

z3
, x3 → 1

z3
. (3.16)

Inserting above relations in our result, we find that

Vggg(−z1

z3
,−z2

z3
,
1

z3
)→ V [T ]

ggg(z1, z2, z3) +AL(−z1

z3
,−z2

z3
,
1

z3
)log(−1) (3.17)

where V
[T ]
ggg denotes the three gluon decay function for the time-like gluon omitting

the infrared regularization denoted by + in Ref. 6). The term with log(−1) is
compensated by the analytic continuation of virtuality from k2

3 = s < 0 to q
2 > 0 in

phase space.

3.3. Numerical Results

In order to examine the numerical properties of the NLL order terms, we calcu-
late the ratios

R1 =
Vggg
VLL

(3.18)

and

R2 =
VL
VLL

. (3.19)

In Fig.2(a), x1 dependence ofR1 andR2 are presented for x3 = 0.5, 10
−1, 10−2, 10−3.

In Fig.2(b), x3 dependence of these ratios are also presented for x1 = 0.5, 10
−1, 10−2, 10−3.

Here R1 and R2 are denoted by the solid lines and the crossed symbols, respec-
tively. Although in the most of the region R1 ' R2 holds, it does not mean that
non-logarithmic term for each type of diagram is negligibly small compared with
corresponding logarithmic term.

In Fig.3, we present the non-logarithmic contribution for each diagram at x3 =
0.1. The non-logarithmic contributions for the branching diagrams(type[A] and
type[B]) are canceled by those for the interference diagrams(type[C] and type[D]).
Therefore the non-logarithmic contribution can be neglected only when all types of
diagrams are added. This structure is held in the most of the region of the momen-
tum fractions as shown in the Figs. 2(a) and 2(b).

3.4. Three-Body Decay Function for small x

As shown in Figs.2(a) and 2(b), the three gluon decay function becomes large
for the small x1, whereas it becomes small at small x3. In order to understand these
behaviors, we examine following two cases:
Case (i) x1 ¿ x2, x3.

Case (ii) x3 ¿ x1, x2.
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The case (i) corresponds to the soft gluon radiations, while the case(ii) is the pro-
duction of the space-like gluon with the small momentum fraction.

Case (i):Soft gluon radiation(x1 ¿ x2, x3)

In this case, since y1 ' 1,y2 ' x3 and y3 ' x2, the most singular term of Vggg
appear from the interference of type[C1] as

∼ −4C
2
AK(x3)

x1
log
x2

x1
. (3.20)

It has been suggested that the logarithmic contributions in the small x1 can
be absorbed by imposing further restrictions on the phase space in the two-body
branching vertices.4) For example, from Eqs.(16) and (18), absorption of the term in
Eq.(34) into the two-body branching of g(k2 + k3)→ g(k2) + g(k3) givesZ (−s)

M2
0

4C2
AK(x3)

x1

d(−s23)

−s23
− 4C

2
AK(x3)

x1
log
x2

x1

=

Z (−s)x1/x2

M2
0

4C2
AK(x3)

x1

d(−s23)

−s23
(3.21)

since

B
(1)
L ' −C(1)

L ' 4C2
AK(x3)

x1
(3.22)

for small x1. The phase space restriction of −s23 < (−s)x1/x2 in Eq.(34) is reduced
to the angular ordering condition θpk1 < θpk2 in the space like parton branching

4)

for θpk1 , θpk2 ¿ 1 and for x1 ¿ x2, since −s23 ∼ x1E
2θ2
pk1

and −s ∼ x2E
2θ2
pk2

with

E = p0. In this case, the three gluon decay function should be modified by

V Mggg = Vggg −
4C2

AK(x3)

x1
log
x1

x2
. (3.23)

V Mggg divided by VLL for x3 = 0.1 is presented in Fig.2(a) by dashed line. It sug-
gests that the NLL order contributions are not negligible even the angular ordering
conditions are imposed in two-body branching.

Case (ii):Small x3 region(x3 ¿ x1, x2)

In this case, since y1 ' x2,y2 ' x1 and y3 ' 1, Vggg is approximated by

Vggg ' ALlog 1
x3
+B

(1)
L log

x2

x3
+B

(2)
L log

x1

x3

+C
(1)
L log

x2

x1x3
+ C

(2)
L log

x1

x2x3
+DLlog

x1x2

x3
. (3.24)
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From the Appendix B, the coefficients of the logarithmic terms are approximated by

AL ' B(1)
L ' B(2)

L ' −C(1)
L ' −C(2)

L ' −DL ' 4C2
AK(x1)

x3
. (3.25)

Therefore O(x−1
3 )logx3 terms are canceled in this limit. This is the reason why

absolute value of Vggg becomes small for the small x3 as seen in Fig.2(b).

§4. Summary and Comments

We have calculated the three-body decay function of a gluon in the initial state
which decays to one gluon with the space-like virtuality and two on-mass shell gluons.
We have also presented the explicit expressions and some techniques for the phase
space integrations. The calculated results satisfy crossing symmetry between the
space-like branching and the time-like one.

We also studied the properties of the three gluon decays for the soft gluon
radiations and those for the gluon branching with the small momentum fraction in
the initial state. For the small momentum fraction x of the out-going gluon, the
decay function behaves like ∼ (logx)/x which can be absorbed by imposing further
restrictions of the phase space in the two-body branching vertices, which leads to the
angular ordering for the angle between out-going gluon and the gluon in the initial
state.

Although the singular contributions are suppressed at small momentum fraction
of produced gluons by imposing angular ordering, the NLL contributions still remain,
which are usually neglected in Monte-Carlo simulations. They should be taken into
account as NLL order corrections even the angular ordering conditions are imposed.

On the other hand, for the small momentum fraction of the space-like gluon,
the (logx)/x terms are canceled each other. Thus the three gluon decay function
becomes small.

In approximate approaches the logarithmic contributions due to the interference
terms are separately absorbed to each of the two-body branching. However these
arguments are meaningful only for the case where the non-logarithmic terms are
negligibly small. We found that the non-logarithmic term for each type of diagram
is sizable but they are canceled each other. The non-logarithmic contributions can
be neglected only after all types of diagrams are added.

Finally we shall comment on the implementation of our results to Monte-Carlo
simulations. Although the modified three-gluon decay function V Mggg has no large
logarithmic correction like ∼ logx/x for small x, this gives negative contribution in
some region. In parton shower models, the momentum fractions of branching partons
are generated according to the decay functions. Thus they must be positive. In order
to obtain positive probability, further modifications are needed to the three-body
decay functions, which necessarily lead to the change of the kinematical constraints
for the two-body branching processes. We will discuss this point in future paper.

It may be important to proceed exact calculation for other decay functions of
the parton branching in the initial state in NLL order of QCD and to check the
accuracy of the approximations in the limited kinematical regions. Furthermore
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these knowledge may be useful to construct NLL order parton shower models. In
future papers, we will present NLL terms of other processes which contribute to the
singlet sector and will discuss about implementation of our calculations to Monte-
Carlo simulations.
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11Appendix A

We present the practical calculation for the type [A] and type[C1]. Calculation
for other terms can be performed by similar manner.

A.1 Calculation of Type[A]

In type[A], we use form-13 for the phase space in which there is δ(k2
2). This

constraint is expressed as

k2
2 =

x2

x3
(−s)− y3

x1

~h2
T −

x2

x3y3

~k2
3T = 0 (A.1)

where ~k1T is replaced by a new vector ~hT which is defined by

~hT = ~k1T +
x1

y3

~k3T (A.2)

with yi = 1− xi(i = 1, 2, 3).
Then we integrate the phase space

dΓ̃ =
π

2
d(~k2

3T )dφd(
~h2
T )δ(k

2
2) . (A.3)

¿From Eq.(A.1) and
~k2

3T = y3(−s)− x3s12 (A.4)

~h2
T is written as

~h2
T =

x1x2

y2
3

s12. (A.5)

The integral in ~h2
T is trivial and

~k2
3T is replaced by s12 using Eq.(A.4). The boundary

of integral is determined as

0 < s12 <
y3

x3
(−s) (A.6)

since ~h2
T > 0 and

~k2
3T > 0 in Eqs.(A.4) and (A.5). Thus we haveZ

dΓ̃ =
π2x1x3

y3

Z (−s)y3/x3

M2
0

d(s12)
dφ

2π
. (A.7)

Next we notice that the numerator is expressed by the quadratic form of invari-
ants. Using Eq.(3) in text we can eliminate s13 and the integrand of J becomes

rn

pn
PM =

F1s
2 + F2s

2
12 + F3s12s+ F4ss23 + F5s12s23 + F6s

2
23

s2
12

(A.8)

where F ’s are functions of x’s. Next φ integration is considered since the variable
s23 depends on φ. It is

s23 = (p− k1)
2 = − 1

x1

~h2
T −

x1

y2
3

~k2
3T +

2

y3
| ~hT || ~k3T | cosφ. (A.9)
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By the integration over the azimuthal angle φ, the term | ~hT || ~k3T | cosφ drops.
Taking Eq.(A.4) into account, s23 and s

2
23 in the numerator become

s23 → −x2 + x1x3

y2
3

s12 − x1

y3
(−s) ,

s2
23 → [

−x2 + x1x3

y2
3

s12 − x1

y3
(−s)]2 + 2x1x2

y4
3

[y3(−s)− x3s12]s12. (A.10)

Therefore the integration of M over φ gives usZ
dφ

2π

rn

pn
PM =

G1s
2 +G2s

2
12 +G3s12s

s2
12

(A.11)

where G’s are functions of x’s. Since the mass singularity is of order of the logarithm,
the relation

G1 = 0 (A.12)

should be held. This fact is useful for a check of the calculation. Here Gi is obtained
by algebraic calculations. Substituting Eqs.(A.7) and (A.11) into Eq.(14) in text we
obtain the final result

J =
1

4y3

Z (−s)y3/x3

M2
0

(−G3
ds12

s12
+G2

ds12

−s )

=
1

4y3

Z (−s)

M2
0

(−G3)
ds12

s12
+

1

4y3
(−G3) log

y3

x3

+
1

4x3
G2 +O(

M2
0

−s ). (A.13)

The first term is the LL contribution and the second and the third terms contribute
to the three-body decay functions which we write as

1

4y3
(−G3) log

y3

x3
+

1

4x3
G2 = ALlog

y3

x3
+AN (A.14)

with

AL =
−G3

4y3
and AN =

G2

4x3
. (A.15)

The O(M2
0 /(−s)) term is a part of the two-body decay function, thus we neglect this

term in three-body decay function. Contributions from type[B1] and [B2] are also
calculated by similar method.

A.2 Calculation of Type C1

For interference terms such as types[C] and [D], the logarithmic terms log(−s/M2
0 )

do not appear from integration over invariant sij , because these contributions are
free from the mass singularity for fixed s. We perform the calculation of the inter-
ference diagram[C1], where both of the space-like and the time-like virtual partons
appear. While in the types[A] and [B] where we can take both the denominator
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and the constraint(δ-function) to be φ-independent by the rearrangement of trans-
verse vectors, such procedure is not possible in the interference case, so that the
computation is more complicated.

After eliminating s13 by Eq.(3) in the text, the integrand of J becomes

rn

pn
PM =

F1s12s23 + F2s
2 + F3ss12 + F4ss23 + F5s

2
12 + F6s

2
23

s12s23
. (A.16)

In order to process the last two terms, we define

K1 =

Z
dΓ̃

s2
12

s12s23
=

Z
dΓ̃
s12

s23
(A.17)

and

K2 =

Z
dΓ̃

s2
23

s12s23
=

Z
dΓ̃
s23

s12
. (A.18)

The variable s12 depends on φ which is

s12 = (p− k3)
2 =

x1

x2

~h2
T +

x2

x1y2
1

~k2
1T +

2

y1
| ~k1T || ~hT | cosφ (A.19)

with
~hT = ~k3T +

x3

y1

~k1T . (A.20)

Note that k2
2 in delta function is independent of φ for

~hT defined in Eq.(A.20). By

the integration over the azimuthal angle φ, the term | ~k1T || ~hT | cosφ drops. Taking
Eqs.(A.19) into account, s12 in the numerator of Eq.(A.17) become

s12 → x1

y1
(−s) + x2 − x1x3

y2
1

(−s23). (A.21)

Using Eq.(A.21), we can modify K1 as

K1 =

Z
dΓ̃
s12

s23
→

Z
dΓ̃

1

s23

³x1

y1
(−s) + x2 − x1x3

y2
1

(−s23)
´
. (A.22)

similarly, K2 can be modified by using Eq.(A.10) in type[A] as

K2 =

Z
dΓ̃
s23

s12
→

Z
dΓ̃

1

s12

³
−x1

y3
(−s) + −x2 + x1x3

y2
3

s12

´
. (A.23)

By the above modification, we can writeZ
dΓ̃
rn

pn
PM =

Z
dΓ̃
G1s12s23 +G2s

2 +G3ss12 +G4ss23

s12s23
(A.24)

where G’s are functions of x’s.
The interference term must be free from mass-singularity which may occur at

s12 = 0 or s23 = 0. The term G1s12s23 in the numerator is of course free from
mass-singularity. Below we present that there is another non-trivial form which is
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mass-singularity free. By practical calculation we find that G’s satisfy following
relations:

G3 =
y1

x1
G2, G4 = − y3

x1
G2 (A.25).

Therefore the integration in Eq.(A.24) is written byZ
dΓ̃ [G1 +

G2s

s12s23
(
y1

x1
s12 − y3

x1
s23 + s)]. (A.26)

Then we calculate the following integrals:

K0 =

Z
dΓ̃ ,

K3 =

Z
dΓ̃

s

s12s23

¡
s+

y1

x1
s12 +

y3

x1
(−s23)

¢
. (A.27)

Here we use form-13 for the phase space integration. replacing ~k3T by new vector
~h0T defined by

~h0T =
x1y1

x2

¡
~k3T +

x3

y1

~k1T

¢
(A.28)

the constraint inside the δ function is expressed as

k2
2 =

x2

x3
(−s)− x2

2

x2
1y1x3

~h02T −
x2

x1y1

~k2
1T = 0 (A.29)

Then we integrate the phase space

dΓ̃ =
π

2

³ x2

x1y1

´2
d(~k2

1T )dφd(
~h02T )δ(k

2
2). (A.30)

¿From Eq.(A.29) and

−s23 =
~k2

1T

x1
, (A.31)

the boundary of integral is given by

0 < −s23 <
y1

x3
(−s) (A.32)

due to ~h0 2
T > 0 and ~k2

1T > 0. Thus integrating over
~h0 2
T we have

dΓ̃ =
π2x3x1

y1

Z (−s)y1/x3

M2
0

d(−s23)
dφ

2π
. (A.33)

The first one in Eq.(A.27) is trivial from Eq.(A.33) as

K0 = π2x1(−s). (A.34)

For K3, using Eqs.(A.28),(A.29) and (A.31), integration over φ is written byZ 2π

0

dφ

2π

1

s12
(
y1

x1
s12 − y3

x1
s23 + s)
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=
2y1

x1

Z 2π

0

dφ

2π

~k2
1T +

~k1T
~h0T

(~k1T + ~h0T )2
. (A.35)

Using the formula Z 2π

0

dφ

2π

1

(~k1T + ~h
0
T )

2
=

1

| ~k2
1T − ~h0 2

T | , (A.36)

we have Z 2π

0

dφ

2π

~k2
1T +

~h0T~k1T

(~k1T + ~h0T )2
= θ(~k2

1T − ~h0 2
T ) (A.37)

where θ is the step function which cuts the singularity at ~k2
1T = 0. ¿From Eqs.(A.29)

and (A.31)
~k2

1T >
~h0 2
T → −s23 >

x1

y3
(−s). (A.38)

Therefore the integral K3 is written by

K3 = 2π
2x3

Z (−s)y1/x3

(−s)x1/y3

d(−s23)

(−s23)
(−s) = 2π2x3(−s) log y1y3

x1x3
. (A.39)

Finally we obtain the result

J =
1

4π2x1x3(−s)(K0G1 +K3G2)

=
1

4x3
G1 +

1

2x1
log

y1y3

x1x3
G2 . (A.40)

In the text, J is written by using

C
(1)
L =

G2

2x1
and C

(1)
N =

G1

4x3
. (A.41)

Similar method can be used in calculation of type [C2] and [D].
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In this appendix we present the calculated results of AL etc. Here K(xi) = (1 −
xiyi)

2/xiyi with yi = 1− xi. CA = 3 is the color factor.
Type[A]:

AL = 4C
2
A

K(x3)

y3
K(
x1

y3
)

AN = 4C
2
A[−

K(x3)

y3
K(
x1

y3
) +

(1 + x3)
2(x1 − x2)

2

8y4
3

] +
9

4
C2
A,

where the last term of AN comes from the four gluon interaction T ∗4gT4g.

Type[B1]:

B
(1)
L = 4C2

A

K(x1)

y1
K(
x3

y1
)

B
(1)
N = 4C2

A[−
K(x1)

y1
K(
x3

y1
) +

(1 + x1)
2(x2 − x3)

2

8y4
1

]

Type[B2]:

B
(2)
L = (x1 ↔ x2 ) in B

(1)
L

B
(2)
N = (x1 ↔ x2 ) in B

(1)
N

Type[C1]:

C
(1)
L = 2C2

A[
x3

3

x1
(
1

y3
+

1

x2y1
)− K(x3)

x1
− y

2
2

x2
K(
x3

y2
)

− y1

x1
K(
x3

y1
) +

x1(x3 − x1)

y1y3
K(
x3

x1
)− 3x1

x3
]

C
(1)
N = C2

A[fN (−1, x1, x2) + fN (x2, x1,−1)]

Type[C2]:

C
(2)
L = (x1 ↔ x2 ) in C

(1)
L

C
(2)
N = (x1 ↔ x2 ) in C

(1)
N

Type[D]:

DL = 2C
2
A[−

x3
3

y1x2
+ y2K(

x3

y2
)− K(x3)

x1
+
K(−x3)

y2
+

3

2x3
]

+(x1 ↔ x2)

DN = C
2
A[fN (x1,−1, x2) + fN (x2,−1, x1)]
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Here the function fN is defined by

fN (ai, aj , ak) =
5

8
− 2x3

3

aiajak
− 4x

2
3 + x3ak + 4a

2
k

(x3 + ai)2
+
7

2

x3 − ak
x3 + ai

+
8x2

3 + 4x3ak + 4a
2
k

aix3
+
4ai
x3

+
4x2

3 − 2aiak
x3aj

.
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19FIGURE CAPTIONS
Fig. 1Diagrams for the squared matrix elements which contribute to the decay
function Vggg. The solid lines denote the gluon lines. The crossed symbol is the
projection operator P which extracts the collinear contributions.

Fig. 2The behavior of the ratios R1 and R2 defined by Eqs.(32) and (33) in the text:
(a) The x1 dependence for x3 = 0.5, 10

−1, 10−2 and 10−3. The solid lines and the
crossed symbols denote R1 and R2, respectively. The dashed line denotes the
modified three gluon decay function VMggg obtained in Eq.(37) in the text divided

by VLL for x3 = 0.1 (b) The x3 dependence for x1 = 0.5, 10−1, 10−2 and 10−3.
Notations are the same as those for (a).

Fig. 3The x1 dependence of the non-logarithmic terms at x3 = 0.1. Here AN etc.
are defined by Eqs.(15) ∼ (20) in the text.
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Fig. 1. Fig.1
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Fig. 2. Fig.2(a)
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Fig. 3. Fig.2(b)
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Fig. 4. Fig.3


