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1 Tree Lagrangian

The standard model for the electroweak theory is the renormalizable gauge theory whose gauge
group is SU(2) x U(1). We denote the generators of the gauge group as 7%(a = 0, 1,2, 3) where
indices & = 1,2,3 and a = 0 correspond to SU(2) group and U(1) group, respectively. The
generator of U(1) group Y (= T°) is called hypercharge. Since it is Abelian, Tp commutes all
generators. We use the same notation for the generator and its matrix representation. The
normalization of T% is determined by

Tr(ToT") = %5@6. (1)

The algebra of generators is
[Ta, Tb] _ ifabcTC, (2)

where f%¢ are called as structure constants. The generators follow the Jacobi identity as
[T, [T°, T°)] + [T°, [T, T°)] + [T*, [T*, T"]] = 0, (3)

or
fbcxfaa:y + fcaxfbxy + fab:cfcwy —0. (4)

The structure constants for SU(2) x U(1) is given by

ae ) €% (a,b,c#0)
r _{ 0 (others) (5)

Explicit matrix representations for doublets are as follows.

1. L (01 , [0 —i s (1 0
T—EU,(a—1,2,3) a—(l 0), U_<2' 0), a—(o _1>. (6)

Here 0% are Pauli matrices.



The group SU(2) x U(1) breaks down spontaneously as is described later related to Higgs
field. After the breakdown, the remaining symmetry is the electro-magnetic symmetry Uegp, (1)
whose charge @ is given by

Q=I+Y (7)
where I° is the eigenvalue of T°. The strength of interaction is determined by the two couplings
g and ¢'.

g--SUE@)  g--U) ®)

The theory is constructed by the following fields.

1. Gauge fields

In the classical sense, the gauge vector bosons are the media of electroweak force. We have
4-component gauge fields W (a = 0,1, 2, 3) for the group SU(2)xU(1). Later, they become
physical A, Z,,, W:E after absorbing longitudinal freedom through Higgs mechanism. At
this stage, W’s are massless and obey the symmetry SU (2) x U(1). They belongs to the
adjoint representation of the gauge group:

SW = 0,0% + g f**Who° (9)

where §%(x) are the c-number functions for the gauge transformation. It should be noted
that since f°¢ = 0 we do not need to use ¢’ for these equations. However, sometimes it is
convenient to introduce a notation

a g (a=1,2,3)
= 10
When we use the notation g%, the summation over a is often suppressed.
The field strength Fj,
Ff, = 0, W — ,W§ + gf* Whwg (11)
is covariant by the transformation Eq.9. We sometimes use the short-hand notation
oWy = 0Wy, — 0, W,,. (12)
The relation
SFS, = gf*™Fp,0°. (13)

holds with the help of Jacobi identity. Since §(Fj, F*") = 20F);, F** = 0, we can define
the gauge invariant Lagrangian for the gauge fields:

1
L(gauge) = —ZF;}VF‘””’ (14)

We separate this Lagrangian by the order of fields as
L(gauge) = LD (gauge) + L® (gauge) + L@ (gauge). (15)
The bilinear term is
1 a av 1 a (6% 14 14 a
L (gauge) = —Zamw,,]a[ﬂw e §Wu (000%g"" — OHOV) W2, (16)

As the operator 0,0%g*” —0*0" has no inverse, the covariant propagator cannot be defined.
The gauge fixing resolves this point.



2. Matter fields

The matter fields are fermions and scalars. They belong to the fundamental representation
of the gauge group. If we write a matter field as ¢(x), its gauge transformation is given
by
Sp =1y g*0°T". (17)
a

Below, we drop the summation symbol for a. (Of course, a pair of an index implicitly means
the summation over the index. However, here three a’s appear, so that the summation is
shown explicitly.) The covariant derivative of a matter field is defined by

Dyé = B — ig"WoT"$ (18)

and
d(Dpo) =1i0%g*T*D,,¢. (19)

Then the gauge invariant matter Lagrangian can be the combination of the following terms.
Vi Dy, (Duo)'(DM¢), ¢'9. (20)

By Eq.6, the explicit form of the covariant derivative is

o 3 gt 0 3 1_ :1w/2
SU(2) doublet D, = ( O = 19,2 — ig YW, tg(Wy, — W) 2 ) . (21)

—ig(Wh +iW3)/2 8, +igW3/2—ig YW}
SU(2) singlet D, =9, —ig' YW, (22)
Now we explicitly specify the matter fields with their quantum numbers. In the table, the

generic names (e.g., f, qr, and so on) are also shown. Though it is not explicitly shown,
the quarks have color degree of freedom.

fermion( f) I Y Q
left-handed fermion (f7,)
UL ur cr tL 3 1 5
quark (qr,) D dy ) ; ( s. )\ by -1 6 -1
U, Ve vy Vr % 1 0
lepton (I1,) Dy eL ) ) ( w1\ o _% -5 1
right-handed fermion (fg)
quark (qr) ---Ug UR,CR,tR 0 % %
- Dpr dr, SR, bR 0 —3 -1
lepton (IR) - Ugr eR, LR, TR 0 -1 -1
scalar(¢) 5 Y Q
: L ix1+x2 3 1 1
S t section. — ) 2 5
(See next section.) \/§<U—I—H—zx3 _% 5 0

The suffixes L and R represent the left- and right-handed components, respectively.

b= Db = 21—, vn=Ro= (1 +s) (23



The "bar” of 1 is defined as usual

P =ply° (24)
so that ~ - B B - -
Y =9YR, Yyp=vL = 1por = Y1rY2r = 0. (25)

The mass term for fermions should appear as ~ m g + (h.c.). However, as is shown
in the table, it is impossible to write the mass term explicitly without breaking gauge
invariance. We can make the combination ~ fréfr and the fermion mass terms are
generated from the vacuum expectation value of ¢. Then the coupling of fermion and
scalar turns to be proportional to the mass of fermion. This is explicitly shown in Sec.2.2.

The matter Lagrangian becomes as follows:
L( fermion) + L(salar) (26)

Fermionic part is

L(fermion) = > friv'Dyufr + > friv'Dufr = L(f, kin) + L(g — f) (27)

where the sum is for the all left-handed doublets and all right-handed singlets. Scalar part
is
L(scalar) = L(s, kin) + L(s — f) + L(pot) (28)

where
L(s, kin) = (D)t (D"9), 29)
L(s—f) == fuftdUr —>_ fofréDgr + (h.c.),

L(pot) = =V (¢) = p*¢'¢ — A(¢')°. (31)

The last term, L(pot) is related the spontaneous symmetry breakdown as is discussed in
Sec.2.3. In the scalar-fermion interaction term, we use the notation

¢ = io?¢* (32)

(
(30)

under the representation in Eq.6. The (/5 transforms as follows. When we take the complex
conjugate of Eq.17,

* . al a\* | x . *
5" =—i Y gb 5(a y¥o* —ig'0°TOp*. (33)
a=1,2,3

Since for Pauli matrices the relation

(0%) o (0%) = —(a%)* (34)
holds, 5 3 3
Sp=1i >  g0"T"¢ —ig'0°T%. (35)
a=1,23

Thus ¢ has the same S U(2) transformation property as ¢ and its hypercharge is —Y.

. Ghost fields

Through the gauge fixing, we are to introduce auxiliary field and ghost fields. This is
discussed in Sec.3.



2 Higgs sector

In this section we study terms of L(scalar) in Eq.28 in detail. The parts L(s, kin), L(s — f),
and L(pot), are discussed in Sec.2.1, Sec.2.2, and Sec.2.3, respectively.

2.1 Higgs mechanism

The potential part of scalar, Eq.31, has non trivial minimum since it has a negative coefficient
in quadratic term. The minimum is the vacuum expectation value of the field ¢. The fields used
in the perturbation are to be defined as the fluctuation around the minimum.

As given in the last section, the scalar field ¢ is defined as

_ 1 ixt+x2 ) _ ix™
¢—ﬁ<v+H—iX3>_<(U+H—ixg)/\/§> (36)

where x* = (x1 Fix2)/v2. We have introduced v in order to represent the non-trivial vacuum
expectation value as in Sec.2.3. At this stage, v is just a parameter in the theory, and as will
be discussed below, v is determined by three physical parameters, e, My, Mz.(Eq.47)

From the definition of the electric charge(Q = T2 + Y, Eq.7) and the covariant derivative
in Eq.21 and Eq.22, the photon field A, should be contained in the neutral gauge bosons as
W3 ~ C¢g’A and W° ~ CgA. Another physical neutral gauge boson Z,, is defined orthogonal to
A,. Also, we define the charged boson states.

_gWR 4 gy

_ 3 0
AM \/W = Swwﬂ + CWwM
QWE - QIWB 3 0
Z'u = W = CWW# — SWWM (37)
1 1172
W = W, FiW;
g V2

where the notation .

g g

vETEee TR o
is used. The reversed relations are
WB = CwA# — Squ
WS =swA, +ewZy, (39)
1 _ —
mqé = (WJ++ w, _) /2
W2 =i(W,5 —W,)/V2
By use of these definitions, Eq.21 and Eq.22 become as below.
SU(2) doublet D, =
Oy —ieQA, —ie(I® — Qs%,) /swew 2y, - ieW;/ﬁsW (40)
—ieW;/ﬁsW Op —ieQA, —ie(I® — Qs%)) [swew Z, |’
SU(2) singlet D, = 8, — ieQA, +ieQ-X Z, (41)
cw

5



where ,
g9 € / €

Ve Tw

Asin the table, the charge of ¢ field is ( (1)

e= (42)

) . We explicitly write down L(s, kin) substituting
Eq.36 and Eq.40.

DF¢ =
ev 1 1 1—2s?
i (0 +——W+> —i—WH - —W AxT+ —Wz "
Z( nX 28W H te 7/281/1/ w 28W “X3+ nX + 28WcW nX
(43)
1<8H '<a v Z>>+ ¢ <W—++1Z +'1ZH>
NZAN uX3 2spew M V2sw nX 2cw uX3 2ew
We separate this Lagrangian by the order of fields as
L(s, kin) = (D,¢) D"¢ = L@ (s, kin) + LD (s, kin) + L™ (s, kin). (44)

The bilinear part is as follows:
1 1
L (s, kin) = (9ux~ — Mw W, )(0"x* — My W™*H) + 5 (Ouxs — MzZ,)* + 5(@}1)2 (45)

where v -
My = —, z= :
28w 2swew

This term provides mass terms for gauge bosons Z, W*. By Eq.46, the parameter v is given by

o 2swhMy _ 2y M5 — My My o

e eMy

(46)

If we redefine the fields as

Wﬁt = W:: - MLW ,uX:ta Zy =2y — MLZa,uX& (48)
the fields of unphysical particles, x’s, becomes just auxiliary fields. This is the Higgs mechanism,
i.e., massless Goldstone bosons are absorbed as longitudinal part of vector fields.

We do not use this redefinitions here since the gauge fixing is not yet done. The discussion
continues to Sec.3.4.
The rest of the Lagrangian is as follows.

e

LO (s, kin) = —m(auxf — My W, )W* H + h.c.
e 1 1— 242
—i T MyW )| ——WHH Ayt 4 = TTW g 3 F h.c.
Z2SW (Oux wW,) ( 25WW x3 + A'xT + S —— X > + h.c
1
+2L8“H (WWX_ + Wt + —Z“X3>
Sw cw
e . € _ _
s (Ouxz —MzZ,)Z"H + ZE(%Xs — Mz Z, ) (W HxT —WHx7)

(49)



This can be written as
LO (s, kin)
where

<_>+

L(3’SSV)(3, kin) = X~ 8“

ieA,( )+

e

d
-+ —
+28W (WM (X oW

e
. —W+
—i—zzsw ( i

and
LOVV) (s, kin) = — My W, WH + MyZ,Z"H
SW 2SWCW
—H:e(MwAM — SwMZZM)(W_#X+ - W+“X_)'
Here the notation o
_ BEY (A
aaub = a(0"b) — (0"a)b
is used.
L@ (s, kin) = €2 | +i 1 W, H— W X3+ Aux~ + QS%VZ X
; s H # 2swew M
+ + Lo 1=2sf o
x| —i W™MH — —W™Hx3 + A¥x™ + zZ
Sw 2swew

This can be written as

L@® (s, kin) = e2A,Ax X~ +

= LGSV (s, kin) +

‘6(1—28%4/)Z( _

2(1_

LGVVS) (s, kin)

<o+

e
2swew X 8/‘X )+ 2swew

H)+ W, (x* (;_; H))

_ _ —
(X7 guxa) + Wy (X" aMX3)>,

1 1
— Zux3 —i
W nX3 22CW

2

Swew

2

4 (&
SS%VCW
2
Y1 W, WHH(H® +

e2

25y [i(W:—A“Xf B

e2

2ew [i(W:ZMX_

——Z, 2" (2(1 —2s5)°x X + (H? + x%))

X3 +2xx7)

W, AP H + (W, Al + W Al )]

— W, 2V H + (Wi 20X + W, 29X )xa].

<~

(54)



2.2 Interaction with fermion

The interaction term between fermion and scalar is as follows.(Eq.30)

%(U + H +ix3)

Lis—f)= =X fu ([jL DL) ( i )UR—i—(h.c.)

-+
tX
1 U+H_ZX3) )DR+(hC)

~> fp (UL Dr) ( L
V2

We separate the mass terms and interaction terms.
Lis = f) = LO(s = f) + LO(s - f)
LO(s — f) == msff

where
fu.pv

muy,p = \/5 .
OG- )= - " i

My - Mp =
-> i— ~UsUxs + ZZTD%DXa

\/_mU \/_mD

DLUx~

_ZZ

DRUx™ + i

-y \/_mDURD Y f "W rLDx*
Here the relation(Eq.47)
1 e
v 2sw My
is to be used.

2.3 Scalar potential
The field ¢ is parameterized by Eq.36. Then

Lo P 1., 1, 4 _
¢¢:?+’UH+§H +§x3+x X

and the potential part in Eq.31 is given as follows:
L(pot) = const. + v(u? — M?)H 4+ L (pot) + L (pot) + L® (pot)

where

1 1
LO(pot) = 5 (u? — 30" H? + 5 (1* = X)X + (1 — )X "X,

2

)
H4 4 H2 2
L (pot) = -\ (T - % F )2+ =2 B )

(61)



Here, we introduce two new notations instead of u? and \. (v is defined in Sec.2.1.)

T = v(u? — \?), (67)
M?Z = 242, (68)
By these notations L(pot) becomes as follows:
L(pot) = const. + TH + L (pot) + L® (pot) + L™ (pot) (69)
where
L® (pot) = (MH - %) H? + %Zxé + TX X (70)
L9 (pot) = (Uzz - %) (H® + Hx + 2Hy " X), (71)

2772 4 4 2.2
L (pot) = (vzg - %) <H— + X (X2 + % +HAX X+ X%X*X) . (72)

In the tree level, if we require the condition that v specify the minimum of the potential, we
obtain T" = 0. So we can set T' = 0 for the definition of tree Feynman rules. For the tadpole
renormalization, we keep this notation. The terms in L® (pot) corresponds to the masses of
scalar particles. In the tree level, the physical Higgs particle H acquires the mass My and the
masses of x’s are 0, i.e., they are Goldstone bosons related to the broken symmetry. The terms
in L® (pot) and L™ (pot) are the interaction terms between scalars.

Now we check that T'= 0 determines the potential minimum. The potential part of scalar,
Eq.31, can be written as follows.

; 12 2 4
V() = (<¢ 0) - —) -£ (73)
and we define 5 )
(P
<¢'p>= 7 = o (74)

Thus T = 0 corresponds to the minimum of tree potential.

2.4  L(gauge) and L(fermion) in physical fields

In Sec.1, the Lagrangian for gauge field is defined by Eq.14 and that for fermion is done by
Eq.27. We have defined physical fields by Eq.39. In this subsection, we write L(gauge) and
L(fermion) by these fields.

1. L(gauge)
FO = CWa[HA,,] ch‘?[H V]
F3 = SW@[MA,,] + CW@[M ,,]Zg(W W+ W;WJ)
F1 = \/_(B[uW + W)
F A (W = W, ) (sw A+ es27) = (W = Wy )(swAr + esz)]  (TD)
Fﬁv = f(a[uW - 8[;AVV,,_])
+ e [+ W) (swA” +es2) + (W) + W, ) (sw A + es Z4)]



The we obtain the followings:

1 g 1 a1 _ y
L® (gauge) = -0, Ao" A — 20, 2,00 27 — S, W0 W)

L® (gauge) = ( O ALy + ZeCW 8[“ ,,]) (W HWTY — W YIWHH)
+2SW (8[“W W= — a[#W w ,u) (SwAy —f-CWzV)
2
L@ (gauge) = 462 (W, Wi — W, W (W W™ — W e
e’ L
_?WN w M(SWAV + CWZV)(SWAV + CWZV)
w
e? + +
oz W Wi+ W W) (sw A + ew 2°) (swA” + ew 27)
W
L(fermion)

L(fermion) = L(f,kin) + L(g — f)

UL\ . = =
=Y | & |n*Du(Ur Dr) + > Urin"D,Ur + Y Drin*D,Dg
(U.D) Dr U D

and derivative D, is given in Eq.40 and Eq.41.

L(f, kin) Zfz’y“@ f

L(f,g—f) = > UA*LDW,; + Dy*LUW,;

V2sw (U,D)

+e Z Q.}F'Y#fAu
f

Z M R2IL - 2Qs%y ] f 2,

QSWCW

3 Gauge fixing
3.1 Auxiliary fields

FUW] = f%(x)

10

(78)

Based on the gauge principle, the Lagrangian is constructed so that it is invariant under the
gauge transformation. However, this means that the gauge fields have redundant freedom. In
order to construct quantum theory of gauge fields, we must choose only the independent modes.
Thus the gauge fixing condition is introduced.

Here, we implicitly assume the quantization by the path integral method. The gauge fixing
condition can be written as

(82)



where f(z)’s are a set of arbitrary function. Here, F[W] is a function of gauge fields to fix
the gauge. For an instance, F*[W] = O'W i determines so-called covariant gauge. To use this
condition, we insert hyper-product of delta functions

H5 (F W] = f4(z)) (83)

into the path-integral formula for the transition amplitude.

The physical result should be independent of the explicit form of f(z). The role of f(z) is
to choose one representative point from a gauge trajectory and each point on a trajectory is
equivalent to each other. So it makes no change when we average over f(z). We consider the

following integral
/Dfexp { /d4 ( () f*(x ))] = (const.) (84)

and since it is a constant we can multiply it to the transition amplitude. Here £ is an arbitrary
number and called as the gauge parameter.
We introduce another variable B%(x) and convert the above constant.

[pBDses [z [t (gBa(x)Ba(x) + B(x) fa(x))} — (const.) (85)

When we integrate over B%(x), Eq.85 becomes Eq.84. (Overall infinite number has no sense as
usual.)

We multiply the gauge fixing condition, Eq.83, the constant number given by Eq.85, and
integrate over f®(z) to get

/ DB exp [z / o <§Ba(m)Ba(m) + B(2)F* [W])] . (86)
If we integrate over B?(z), Eq.86 turns to

exp[ / e ( F“[W])Z)}. (87)

We can conclude as follows. The gauge fixing Eq.83 is equivalent to either of the following
procedures.

1. Add a term 1
— — (F*W1)? 88
3¢ PV (59)
into the original Lagrangian.
2. Introduce a new field B and add terms
gB“B“ + BUFW] (89)

into the original Lagrangian. The field B® is called as auxiliary fields since they have no
kinetic terms like (8,B)2.

The Eq.89 for charged fields is as follows:
BB +BYF +B F* (90)

11



Then B* = (B! ¥ iB?)/v/2 gives
g(BlBl + B?*B?) + BYF* + F7)/V2 +iB*(F* —F7)/V2

= g(BlBl + B?B?) + B'F! + B?F? (91)

to give Eq.88 after integration.

3.2 BRS symmetry

The introduction of the gauge fixing term given in the last subsection leads another counter
action. The systematic treatment can be done through the idea of a new symmetry princi-
ple. In Sec.l, we already defined the gauge symmetry of the theory in classical level. The
BRS symmetry can be considered as the symmetry for the quantum theory. The use of BRS
symmetry provides us the clear understanding about the structure of gauge theory, including
unitarity, renormalizability and so forth. We construct the quantized electroweak theory by the
formulation based on the BRS symmetry.
The transformation of fields by the BRS symmetry is obtained by the replacement

0%(z) — Ac*(z) (92)

in the classical transformation in Sec.l. Here, both A and ¢*(x) are Grassmann variables and
the latter c®(x) is called as the ghost field. Corresponding to Eq.9 and Eq.17, the BRS variation
for gauge fields and matter fields is given by

AW = A(Buc® + gf** W) (93)
and
Ap =AY g*T®). (94)
We introduce a modified BRS variation dp as
A() :A5B("')- (95)
Since we have separated A, g itself has Grassmann nature, i.e.,

dp(A)B + Aép(B) (A not Grassmann)

0B(AB) = { d(A)B — Aép(B) (A Grassmann) (96)

In the last subsection we have introduced the auxiliary fields. We introduce the anti-ghost
field, ¢%, so that its BRS variation gives B field. The BRS variation of fields is summarized as
follows:

SpWyt = Buc® + gf " Whet (97)
0p¢p =i g"c"T"¢ (98)
St = _%gfabccbcc (99)

pc® = B° (100)
5pB* =0 (101)

12



The BRS variation dpg is nilpotent, i.e.,
03(--) =0. (102)

The variation of the fields above satisfies the nilpotency. As a matter of fact, dgc® is fixed by
the nilpotency as shown below. For the matter fields,

6(05¢) = ig®[05(cV)T% — *T%g T ¢ = 0 (103)

is realized if ) .
op (Ca)Ta — igaCaCbTaTb — ga%CaCb[Ta, Tb] _ _gaﬁfabccachc (104)

where we have used that ¢® is Grassmann. This proves Eq.99. The check of nilpotency for other
fields are as follows: For Eq.97,

1 1
OBWii = 0u(— 50 Cc) + gf *[(Ouc” + g fTWiie ) + Wi(—5gf V") =0 (105)

since

_%fabc'fcxycaccy — _%(_i_facmfcyb + facyfcbm)cmcy — +facxfcbyc:vcy (106)
and for Eq.99
1 1 1 1

5%0‘1 — _gifabc(_gifb:cycxcycc + cbggfcxycwcy) _ +92§g2fab6fb:cycxcycc =0 (107)

since
fabCfbxyCrcycc — l(fabc.fbrycxcycc + fabCfbxycyCccx 4+ fabCfba:ycccxcy) -0 (108)

3

Here, the Jacobi identity in Eq.4 is used. 6]295“ =0 and 5]233“ = 0 are trivial.

Here, we have shown that each field component is nilpotent(Eq.102). Then if A and
B are both nilpotent (634 = 5B = 0), the product AB is also nilpotent.

= O'/(sB(A)(;B(B) + 0'(5]3(14)5]3(3)
where o and ¢’ are signature factors defined in Eq.96, o for A and ¢’ for g A. Since
the Grassmann property of A differs from that of 6gA, 0/ = —0, so that 5% (AB) =0.
This proves that any function constructed by nilpotent fields is nilpotent.

For the later use, we write Eq.97 and Eq.98 in physical fields defined in Sec.2.1 and Sec.2.3.

The definition of charged ghost fields is ¢* = (¢! Fic?)/v/2 and ¢4, ¢Z are defined as the same
way as A, Z,, in Eq.39.

(SBVVNjE = a#ci =+ e (W#icA + Z—V;chz — Auci — Z—;V/Z#ci) (110)
_ z . W — o+ +

07y = Ouc” +ie (Weet —wie) (111)

O Ay = Ouc” +ie (Wt = Wiie™) (112)

13



In order to determines the BRS variation of scalars , we write Eq.98 by real components as

1 ix1+ X2 i [ gl+gd gt —ic?) | 1 ix1+ x2
0B : =5 1,2 3. 10 : (113)
V2 \ v+ H —ix3 2\ gl +ic®) —gc®+¢'c V2 \ v+ H —ixs

and separate the real part and the imaginary part to get the following relations.

1—2s3
0X* = s—[c* (v + H) Fictxa] £ie | xF + 5——ILcZx* (114)
25y 2swew
OpH = ——(c X"+ x7) - 5——c%x (115)
B 2sw 2swew
. € _ _
Opxs = —ig— (X" = "X + g (v + H) (116)

3.3 Gauge fixing by BRS symmetry

Now we are ready to determine the Lagrangian of gauge theory in quantum level.

e The tree Lagrangian in Sec.1, L(gauge) + L(fermion) + L(scalar) is BRS invariant since
the BRS transformation is obtained by the replacement in Eq.92.

e The explicit form of the BRS variation is determined before the introduction of gauge
fixing terms. So the present method is independent of the way how gauge is fixed.

o We request that the total Lagrangian is BRS invariant. The gauge fixing is done by the
addition of terms in Eq.89 to the tree Lagrangian. By the nilpotency of §p,

dp(c*F?) (117)
is BRS invariant. This becomes as follow:
0p(c*F*) = B°F* — c*dpF“. (118)

The first term gives one term in Eq.89 and the other term B®B¢ is BRS invariant by
Eq.101. (And still £ is arbitrary.) Thus the Lagrangian

3

L = L(gauge) + L(fermion) + L(scalar) + EB“B‘I +6p(c*F?) (119)
is BRS invariant and includes gauge fixing terms.
e The total Lagrangian is
L = L(gauge) + L(fermion) + L(scalar) + L(G.F.) + L(F.P.) (120)
where
L(G.F.) = gB“B“ + B*F?, (121)
L(F.P.) = —c"0pF*. (122)

The latter name show that this term is first obtained by Faddeev-Popov through path
integral quantization. Later, we discuss the renormalization. It should be noted that the
gauge fixing terms are written in the renormalized fields.
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3.4 Linear gauge fixing

Before the discussion on the non-linear gauge, we describe the conventional linear covariant
gauge. Since the gauge fixing terms are to be written in renormalized physical fields, we use the
suffix A, Z, W to specify terms.

The linear gauge fixing terms in Eq.88 form are as follows:

L(G.F) =LY (G.F) + L?(G.F.) + L*(G.F) (123)
W(G.F.) = —%F““F‘, F* = 0MW + &w My x™*
w
L?(G.F.) = —2£—Z(FZ) , FZ=07,+¢7Mzxs (124)
LAG.F.) = —2—1§(FA) FA=09rA,

We sum all bosonic bilinear terms.

1. Kinetic term for gauge fields, L? (gauge) in Eq.76

2. Kinetic term for scalar fields, L) (s, kin) in Eq.45

3. Bilinear term in the scalar potential, L® (pot) in Eq.70
4. L(G.F.) (above)

Then we obtain the following results.

1 1
2 _ - v — av 2 -
L& (boson) = — 20y, W oUW — ey Vo W, + Mg W, W
—la[ Zq 07" — i(aﬂz )% + 1Mg(z )2
4w 28, K 2 K
_la[ A ]3[uAV] _ i(aﬂA )2
4 26 .
— o+ 2 o+ 1 2 1 1 2
+0uXx" X — EwMiy X~ x +§(3yX3) - §§ZM X3+ 5 (8 H)? —§MHH
3T o T 5, T 4 _
T HZ il
Top T pXat XX
(125)
It will be useful to derive the propagators of gauge bosons here. We write
L (boson) = ~W, Dy W, — Z DY Z, A DH A, + - (126)
where
Dy = —0,0%g" + <1 — —> o+*0" — My g™, (127)
Ew
DY = —0,0%g"" + <1 — £—Z> OrY” — MigH, (128)
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DH = —9,0%M + <1 - %) o1, (129)

The inverse of D is defined as
DM (DY), = gh. (130)

The inverse can be calculated solving D*(ag,, + b0,0,) = gf,. They are

1 0,0,
Dity =——— | g — (1 — et , 131
( W)u 8(180‘—1-]\4%/ (gu ( éW)aaaa-i-fwM%,) (131)
N T o 9,0,
(DZ );w - aaaa +M% g;w (1 §Z)aaaa +7£WM% ; (132)
1y o1 ( _(1_ 8u81/>
(DA )NV - 8a8a 9uv (1 f) 8a8a . (133)

These functions D! are propagators of gauge bosons.

1. It should be noted that the gauge fixing terms are chosen so as to cancel the transition
terms between W, Z and x (e.g., My 8, x* W ") which appear in L (s, kin).

2. Higgs particle H is a real particle of mass M.
3. The poles of W, Z, and A are My, Mz, and 0, respectively.

4. x particles seem to appear, though their ’squared masses’ are {WM‘%V and Ez M % The fact
that the 'mass’ is gauge dependent is the feature of unphysical particles.

5. If we take &y, €z — 00, the 'mass’ of x’s becomes infinity, so that x’s decouple from the
real world. This is the unitary gauge. It corresponds to the case in which x’s are absorbed
by redefinition of gauge fields by Eq.48. (Formally, there is no gauge fixing terms when
gWa éZ — OO)

6. If we take £ = & = {z = 1, the numerator of propagators is proportional to g,,. This
helps the practical calculation and is called as ’tHooft-Feynman gauge.

3.5 Non-linear gauge fixing

Non-linear gauge is an extension of the last subsection and the common points are skipped here.
The gauge fixing terms in non-linear gauge is as follows:

Pt = <8“ T iea A" T z’ec—WBZ“> W+ &y <MWxi v SHY £ iL%X3Xi>
SW H 2sw 28w

FZ=0"Z,+ &g <MZX3 + 5HX3> (134)

2swew
FA =014,

Here, &, ﬁ, ) , K, € are non-linear gauge parameters specific to this gauge.
It can be seen that the linear terms are common to those in the linear gauge.

L(G.F)=LWG.F)+ L®G.F) + LW(G.F) (135)
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Since there is no change in the bilinear terms, L®(G.F.) , the statements in the last subsection
also hold here. However, this gauge includes new interaction terms which depend on &, B, 5, K, €.
The change is confined only in the bosonic sector, and there is no change in the fermion inter-
action with bosons. Also there appears difference in the ghost sector as is discussed in the next
subsection.

Non-linear gauge parameter dependent terms are as follows:

LO(G.F) = i Ay W L} Zr | (Wrorw, — W, 0"W,f
(G.F) = e (fW SWEW W K )

+ie (dMWA" + C—WBMWZ"> Wax™ —Wox™)
Sw

< - - N - 136
S(O"W, x™ +O0'W, x")H — zme(a"wu P W, X )xs (136)

2sw
17, xsH
2SWCW RO"Zyx3
e =~ + e ~ 2
—&w—0Mwx x H —¢&z EMzx3H
SW 2swew
2 ~ ~
L@ (G.F) = —;—[dZAMW,;AVWV* +GB(ZIW, AYWE - AW, VW) + P 2R, 2 W
w
—ie? GO (AMW, x" — AWV H — i€ - B3(ZF W, X — ZFWE ) H
25W 2$W

1 -
+e z—aﬁs(A“W X+ —|—A“W X)X 3+62;—VgﬁR(Z“W;X+ —i—Z’”W;X*)xg

e? 52 172 e? e? 222
—§W4—25 Hex —§W REXEXTXT — &2 > H?)5
Sw 8syy W

(137)

As above, several gauge-dependent interaction terms are added. Sometimes this helps us to

control the interaction. For an instance, we compare L®)(G.F.) with L&YV (s, kin) in Eq.52.
Then we find the followings:

a=1 = AW yterms vanish (138)
3 2
= —STW = ZW xterms vanish (139)
‘w

If we specify the non-linear gauge parameter to such value, we can reduce the number of Feynman
diagrams for a process. (If we have a diagram including AW W vertex, we always have another
diagram of the same structure but with AWy vertex as long as the W line is an internal line.)
This feature has been utilized to simplify the hand computation.

3.6 Ghost sector in the non-linear gauge

We have already known how to construct the ghost Lagrangian in Sec.3.3. The form is given

by Eq.122. Corresponding to three gauge fixing conditions, we use ghost fields, ¢*, ¢, ¢4, and
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anti-ghost fields as ¢+, &%, &4, respectively. The calculation of §gF can be done using Eq.110 ~

Eq.116.

L(F.P.) = Ly(F.P.) + Lz(F.P.) + La(F.P.) (140)
Lw(F.P) = —¢"6gpF~ —¢ 6gF", Ly(F.P) = —iZ6pF?, Lo(F.P.) = —¢*6gF~. (141)

Lo(F.P)=LPFP)+ LQF.P) (142)
LY(F.P) = —&"9,0"c" (143)
LY(F.P) =ie(@"e) (W, ¢t —Wire) (144)

Here and in the following, we frequently use the replacement
c0X — —(06)X

to put the derivative on an anti-ghost field as convention.

Ly(F.P)=19FP)+ LD FP)+ LY (FP) (145)
LO(F.P) =—-c70,0"c” — ;M%7 (146)
3 . cw _ — _
L(Z)(F.P.) = zeg(a“cz)(W“ " —Wyie)
€ ~N=Z Z
_£ZQSWCWMZ(1 +é)c“c”H (147)
tig s — Mz X —ty)
2sw
LP(FP) = &g—p—&(—c?c?H? +c%c?3]
4sy
(148)
ticw (e xt =) H + ew (@ e xT + EZC+X_)X3)
Lw(F.P) = L}(F.P) + Ly (F.P) = " 0pF~ — ¢ 0pF* (149)
Below only the first term (+ term) is shown. The second term is be given by the similar formulas.
Lt (F.P) = L;P(F.P) + Ly®(F.P) + Ly (F.P) (150)
Li®(F.P) = " 0,0'c™ — &wMpe e (151)
+(3 . Cw — - 5 - . _ — - -
LW( )(F.P.) = —265[(3“C+)W# Z + petw, (Oc?)] — ie[(O"cT )W, A4 ac' W, (e

tie X [(0HeT) Zye — Be Z,(0Mc7)]  +ie[(MET) A — act Ay (94cT))

SW
w5 C My(1+8)cte H —itw——DMpy(1-R)e e xs
S 2sw
+i&w Sy— (1 — 23%[/ + Fa) Mwetc?x™  +ifweMye ety

(152)
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L+(4)(FP) 62d<— cr ZAW m_ gt cAAW Hyet AA“+—5+ A Zﬂ)
sW Sw

ezc—WB< WercZ g W —credz, W+ Wete 7,20 + ¢ ‘ZA“)
Sw sSw Sw

2 ~
+e? <d+CTWﬂ>( e WIW e W, WH)

e’ - 1 4+ 1 1-— 2%V+Z 4
+éw——3>8|——<C c H —i2—E ¢ Hys+i—* Hx +ic ¢c"Hyx™

2sw 2sw Sw 2swew
N A | -, 12§83 A
+é&w—=~R | +t——=C ¢ Hys— ——=¢C c X3+ 5——C ¢c"Xx3x +C ¢ Xx3X
2s 2s 2swew
62 N + + —+ 4/ —\2
+£W4—25<+ccxx +cc(x7)+ ccmx)
Sw
o2
+w— /%(+c+c x"x -t (x )2 +i—e P Hy )
4siy, cw

(153)

4 Lagrangian and parameters

4.1 Full Lagrangian

First, we summarize the total tree Lagrangian of the standard model in the non-linear gauge.

1.free part
gauge boson | L@ (boson) Eq.125 (see also Eq.126)
fermion L(f, kin) + L@ (s — f) | Eq.80, Eq.58
higgs and x | L@ (boson) Eq.125
ghost L%, (F.P) Eq.143, Eq.146, Eq.151

2.Interaction part, bosonic

L® (gauge) Eq.77 | vvv
L® (gauge) Eq.78 | vvvv
LGVVI) (s kin) | Eq.52 | vvs
LGSV (s kin) | Eq.51 | ssv

L™ (s, kin) Eq.55 | vvss

LB (pot) Eq.71 | sss

L® (pot) Eq.72 | ssss

LO)(G.F)) Eq.136 | vvv, vvs, ssv
L®)(G.F)) Eq.137 | vvvv, vvss, ssss

3.Interaction part, fermionic
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L(f,g—f) | Eq.81 | fv
LO (s — f) | Eq.60 | ffs

4.Interaction part, ghost

LY,y (F.P) | Eq.144, Eq.147, Eq.152 | ggv, ges
LY (F.P) | Eq.148, Eq.153 ggvv, ggss

5.Tadpole term

| TH term | Eq.63 | TH |

4.2 Parameters

The parameters in the theory are as follows:

gag/7vaM2aAa{fU7fD} (154')

These are replaced by the following physical parameters.
€, MWaMZaMlzivT7 {mf} (155)

The first set of parameters are written by the physical parameters. (Eq.67, Eq.68, Eq.38, Eq.42,
Eq.46, Eq.59)
We sometimes use the notations sy, ¢y, v just as the shorthand of

\/ M% - MI%V MW . 2SWMW . 2\/ M% - MI%VMW (156)

cw = —, 70
MZ ’ MZ, (& eMZ

Sw —

Numerical values of these parameters given in 1999 PDG report are as follows:

e(= e/+/eoch) 0.3029
(™) 137.036
My 80.41 £ 0.10
My 91.187 + 0.007
(ew = My /Mz) 0.8818
(sw =/ MZ — M2, /My) 0.4716
(v =2swMw/e) 250.5

In the tree level, as in Eq.67,
T = v(u? — \?). (157)

The parameter T is not an exact independent parameter. Discussed in Sec.2.1 and in Sec.2.3.
If we specify that the v is potential minimum, then 7" = 0 is required. This means that under
the minimum condition, either of ;i or X is not independent.

5 Perturbation

In this section, we briefly review the perturbative method in the quantum field theory. For
simplicity, we deal with a scalar field ¢(z) of mass m.
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The S-matrix element describes the interaction of fundamental particles. By the LSZ reduc-
tion formula, the S-matrix for the process (p1,p2, -, 0n) — (91,05, -, pl,) is

sz =< f|7/ >=< pg_ap,27 T 7p;n|plap27 oy Pn >

= H <Z / d4ykf*(p;c)Dyk> H <7’ / d4$]f(p])Dwk> Gn+m(y17 Y2, 5 Ym,y L1, L2, "+ 7-Tn)
k=1 j=1
(158)
where GV is the N-point Green function
G (21,22, -+, an) =< 0|T[@(21)P(z2) - - P(an)]| >, (159)

D, = 0,0" + m? is the inverse propagator, and f(k) is the wave function for the external
particle of momentum k. In the definition of Green function, ¢ is the renormalized Heisenberg
field (vVZ¢ = ¢y where ¢ is the Heisenberg field) and T stands for the T-product. The relation
of S-matrix and Green function is depicted in Fig.1.

f*(rh) Qf (p1) 2 j2)
f¥(02) F(p2) w -
(b) G™

(a) Sf;
Figure 1: S-matrix and Green function for a two-to-two process
Next, we introduce the generating functional of Green functions.
Z[j] =< O|T expli / &2 (2)p(2))|0 > (160)

Here the source, J(x), is c-number quantity. If we differentiate Z[J] by J(z), we obtain the
Green functions. This is the reason we call Z[.J] as generating functional of G™.

0 0 0
n coxn) = (=i —q o e\ 7z 161
Glaneresen) = (<7 ) (S ) - (S ) 2V, 0o
Sources are set to be 0 after taking derivative.
When we use the path-integral method, Z[J] is written as follows.
211 =N [laolexp |i [ da{Lio@)] + T(x)o(a)} (162

where N is a (infinite) constant, ¢(z) is a classical (c-number) field corresponds to ¢(z), and
[dp] =11, do(x) is the (hyper-)product of integration by the field. The Lagrangian is given by

Lig) = 30,000 — 36° + L'[6] = ~30D6 + '[9 (163)

where L! is the interaction Lagrangian.
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The evaluation of Eq.162 is done by the following method. We replace ¢ in L! by the
derivative ¢/dJ.

Z1J7] = N exp [z / d4zLI[—i5/dJ]] / (] exp [z / d493{—%¢2)¢+ T(2)6(x)} (164)

The integral [d¢] can be done by the Gaussian integral.

Jslexp |i [ atal-36D0 + I@)o@)]
:i/w¢kmp[{/d%ﬂ—%@&—JD‘BIK¢—ZT4Jy+%JD‘{H] (165)

1
= (const.) exp [i/d‘lajﬁJD_lJ}
Thus,
1
Z[J] = N'exp {i/d‘leI[—id/dJ]] exp [i/d‘lmEJ’D_lJ} . (166)

Here the Gaussian integral is performed by understanding
1 1
[ 5600 = [ dtd'yz 6D )oly). (Dloy) = D(w)dw ~ y)
and

[dtez00710 = [dadtyL1@D @I, ([ DD ) = o )

where D~ 1(x,y) = Ap(z,y) is the propagator.
The evaluation of Eq.166 is straightforward and it gives conventional Feynman rules. For an
explicit demonstration, we assume

L'¢] = g¢°. (167)

Then we calculate the 2-point Green function of O(g?).

G?(z,y) = (—z%) ( 5§ >N’ (ig)? (—1'63)3( z%)gexp [i/d“x%JDlJ} . (168)

Here we expand the interaction part and keep g? terms only. After the derivative, we put J = 0,
so that the non-zero contribution comes 4-th order term of the expl[- - -].

e () () Vi Co) ()

XE§J1A 2J,= J3A34J4 J5A56J6 Je A8 Jg

(169)

In the above, J;, = J(xx), Agc = A(zj, ), and the integral for a, b, 1, ~ 8 is not shown explicitly.
Expanding this equation, we obtain various terms which are shown in Fig.2.
The comparison between Fig.2 and terms Eq.169 tells the correspondence:
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Figure 2: Diagrams for G? in O(g?)

internal vertex --- g
connection line --- Ap

In this manner, the Feynman rules can be constructed. Here, we skip the discussion on the
statistical weight for identical particles.

As is shown in Fig.2, G includes several unnecessary terms. Terms (a) and (b) are to be
separated from others. We introduce the generating functional for connected part.

iW[J] = log Z|J] (170)
In case on G2 in 0(92),

WL 1 8zl 1 8Z[J]6Z]J] )
§J(x)o6J(y)  Z[J)6J(2)dJ(y)  Z2[J]8J(x) 6] (y)

Here, 1/Z[J] in the first term cancels (c) and (d) in Fig.2 and the second term cancels (e). The
constant N vanishes when we use W{[J] instead of Z[J].

6 Feynman rules

Basic Feynman rules follow the so-called Kyoto convention. A particle at the endpoint enters
into the vertex. For an instance, if a line is denoted as W™, then the line shows either the
incoming W™ or the outgoing W~. The momentum assigned to a particle is defined as inward
except for the case of a ghost particle for which the momentum is defined along the flow of ghost
number.

6.1 Construction of Feynman rules

The relation between the rules in the following subsections and those in the conventional text-
books are as follows.
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Kyoto  Kyoto — textbook textbook
Amplitude T X T
Propagator < Qo > X —1 < ¢ >
Vertex Lint X1 1 Lint
Loop / —d4l X1 / d—4l
i(2m)4 (2m)4
External line (same)

When we write down the vertex rules from L;,;, two points are to be kept in mind.

Derivative o = —ip, (172)
Identical fields " =nl (173)
6.2 Propagators
1 k. k
Wt g — (1 —&w)5—2 | Eq.l31
k;Z—MVZV(“ ( )kz—gWMVZV
1 k. k
Z o g 1 —&) 5 Eq.132
e ( = )kz_gWMg>
1 kK,
A = <g,“, —-(1-9 22 ) Eq.133
f -1 Eq.80, Eq.58
o —m; q.80, Eq.
~1
H Eq.125
k2 — M?%
X+ ! Eq.125
k2 — &w M3,
-1 Eq.125
X3 kz — gZM% q.
c* > 1 > Eq.151
k2 — &w Mg,
Z = 1 5 Eq.146
A 1 Eq.143
k2 '
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6.3 Vector-Vector-Vector
p1(n) p2 (v) p3(p)

w- W A 6{9“”(171—172)”

be | &7 +(1+ a/éw) (psg"” — psg™")
3 ~
' +(1 - a/¢w)(P5g” — pig™)]
o v e
L L A L (e I
P - Sw -
Py P2 +(1+8/&w)(p39"” — p39")

+(1 = B/ew)(P59" — pig")]

6.4 \ector-Vector-Scalar

1 ~
sl W+ Z X+ fie My (1 — (1 - ﬂ)) gt
SWCW
u v .
W= w* H e—Mwyg"”
—_— -— S
b1 b2
1 12
Z Z H e — My g"
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6.5 Scalar-Scalar-Vector

p1 p2 p3 (W)

1 - .
H xF W*  ies— [(1—5)p5—(1+5)pﬂ
2sw

1 . .
xs xt  WE  de—|[(1-R)ph — (1+&)pf]
| K 25w
D3 ¥
— + A 12
X~ X e(p2 — p1)
Dy . + CIZ/V — SIZ/V
p1 bz X~ X Z ey ——"(p2—p)
SWCw
; 1 2\t =\t
H x3 Z eg [(1—é&)py — (1 +é)py]
SWew
6.6 Scalar-Scalar-Scalar
Dp1 D2 P3
H H H —eLM2
2sw My o
| p3
H v x* —em— (M} + 26M% - &w)
1 P2 2sw Mw
1 2
H x3 x3 —e#(M}i, +26M2 - £5)
2SWMW
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6.7 Vector-Vector-Vector-Vector

p1(w) p2(v) p3s(p) pa(o)

w* W= A A

¢ =29 9" + (1= & /&w)(9"9" + 9" 9")]

W W= A A

2w

= [29g" + (1 - aB/ew)(g""" + 9"79"")]
w

w* W= A Z

2
C ~
L [<2g" g + (1= 5 /ew)(g"9" +9"7g"")]

w
v w* W= W= w+
2 1 uo  vp up Vo uy po
—e" o [-20"79"" + (¢"9" + 9" g")]
w
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6.8 Vector-Vector-Scalar-Scalar

pr () p2(v) p3  pa
A WE  H xF  Fie?—(1—ad)g"
SW
1
A WE xg xF —€—(1—aR)g"
2sw
1 e
+ F i o2 _ 2 (11— 7%
Z Wt H xT tie T (1-d(1-58)) g
1 _
Z W F e 1— 2 (1—BR)) g™
o XT Caa (1-v(1-5R) g
A A xtoxT 26%gM
2 2
7 A vt oy 2¢2 ‘W SwW v
2swew
2 2 \?2
Z Z -+ — 2 2 CW — SW 224
X X ¢ ( 2swew
1
w* W~ H H é—g"
v 257y
B 1
wr W X3 X3 €2F9W
1%
1
W+ W— X_ X+ 62282 g/.Ll/
i%
1
z Z H H E-—5—5g"
283y Chy
1
Z Z 2 v
X3 X3 € 2512/1/6%/9
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6.9 Scalar-Scalar-Scalar-Scalar

n b2 P3  DP4

3M?2
H H H H -4
452, M2,
3M?
2941|r _p2_“"H
X3 X3 X3 X3 e ) >
4siy, M,
b3 2
M
- + F + + .2 H
X X X X € 2 2
257, Mg,
—= M2 +282M2 - ¢4
p1 H H x3 x3 —e2—H 5 ZZ
4siy, My,
M?Z + 262 M2, -
1 p2 H H y* y —é H+2 2WgW
4sWMW
M% + 2rR* MG, - €
+ _ 24 g w " SW
X X X3 X3 —€ > >
dsiy, My,

6.10 Fermion-Fermion-Vector

Mixing of fermion is not explicitly shown here. Though it is not explicitly written, one should
mind that a quark has color degree of freedom.

I Qy I Qy
U | u,ct % % Ve, Vs Vr % 0
D | d,s,b —% —% €, by T —% -1

K f f A eQ "
p3l _
f f . Z
m _ 92

625WCW7 (13(1 v5) QSWQf)

“ _ 1

+ _

P1 D2 U/D D/U w /W 62\/§SW7M(1_’75)
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6.11 Fermion-Fermion-Scalar

b1 b2 b3

_ 1 mg
H e "1
f f 628W MW
_ 1 m
ps ) U/D UID x5 (=/+)ieg —a s
U D x*
—ze;i[(m —my) + (mp + my)~s]
—= > 2 ® 2\/§SW My D U D U)Y5
b1 D2 —
D U x
1 1

_i62\/§8W o [((my —mp) + (my + mp)ys)

6.12 Ghost-Ghost-Vector

p1 p2 p3(w)

et T WE tepf

¢ ct Wt :l:eclp‘f
7 sw
|
3 ~
Py et A Wt Fe(pf — aph)

_ cw
et wt :Fe—W(p’f—ﬂpg)
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6.13 Ghost-Ghost-Scalar

b1 P2 D3
1
ZZ & H —e—— (148 My-
c 625W012/V( + &) Mw - &z
-7 + L1
¢ T xT e My - &z
2swew
p3l
¢t A Xt FieMw - &w
1
D - — B — D E:F CZ X:t q:/l/e (C‘z/v' — 812/1/ + /’%)MW . EW
- - 2SWCW
b1 p2

1
¢t ¢t H —e (14 6) My - &w
2sw

1
¢t ot xs iieZ—(l—F;)MW-gW
SW

p1 p2 p3(p) pa(v)

et A A W+ eagh
_ W
et A Z WE  —e2 =L 3"
sW
_ cw .
¢t A Wt —e?Lagt
Sw
265
¢t Z Z W+ e gvﬁg“”
v Sw

2 ~
et oF Wt owE 262 <d+cﬂﬁ) g

sty
¢t ot A A 262 a gt
F otz A (a4 By
Sw
+ 2y
E:F C VA VA 2e STﬁgMV
w
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6.15 Ghost-Ghost-Scalar-Scalar
p1 p2 p3(p) pa(v)

1
A/ 2 ~
c H H —e &z
2 2
287y Chy
¢ & X3 xs € ! £ &7
28124/6124/
1
¢t XT H Fie®— £-&y
dsyrew
_ 1 .
4 F T X3 242 €&z
1 -
¢t A Xt H ZFi622 0 Ew
s
1
¢t oA X+ X3 622—7?'51/1/
SW
¢t Z X+ H
1 .
. 2 2 2.
Fie 45%[/CW (n—i—é(cw sw)) Ew
ct o X X3
2 21 (S—F/%(CIZ/V—SIZ/V))fW
dsqew
1 -
e H H —e“—0-{w
23W
1
cFoF X3 X3 —622—25'§W
Sw
.o 1 =
ot xs H ¢Z€2—4 (k= 9) - &w
Sw
~F + _ + 2 1 8’ ~
ct ¢ X X 2 O +R)-&w
Sw
1 .
et xt Xt o (R-0)bw
Sw

7 Renormalization

7.1 Renormalization constants

In this section, we discuss the renormalization of the theory. We implicitly assume the one-loop
renormalization.
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1. All fields and couplings appeared in the last sections are bare quantities. In order to
denote explicitly, we put underline to the bare quantity. Renormalized quantities are
shown without underline.

2. The field renormalization constant is defined as
b6=VZ40=(1+62,%)¢. (174)

Since we use the perturbative expansion, and that we perform the explicit study in the
one-loop order, (52;/ 2 is a small quantity of O(e?) though it generally includes a divergent
factor.

For the mixing fields, Z = < (1) (1)

” 177

) + O(e?), so that the off diagonal components has no

There can be another convention for §Z such that
b =VZ46 = (1 + %5%) 9. (175)
The relation of two convention is straightforward.
3. 6Y , ém , 6M? are also considered to be O(e?) and 6T is O(e).
4. As is mentioned in Sec.3.3, the gauge fixing terms are written in renormalized fields.
5. BRS transformation in Sec.3.2 is defined for the bare fields.
6. Several new vertices which are absent in the tree level appear due to the renormalization.
The relation of bare and renormalized fields are as follows:

1. Gauge fields
Wk =VZyWi

Zy |\ _ Zaa VZza Zy,

A, VZaz VZaa Ay (176)
My = M, + 3M,
M?% = MZ + M3

2. Fermions

iL7R =VZiLrfLR, fL,R =VZsLrfLR

(177)
my = my + omy
3. Scalars
H=\ZyH
+ +
x* =vV2Zx
X 178
Yo = V35 (178)
M3 = M% +6M%
4. Charge
e=Ye=(1+dY)e (179)



5. Tadpole

6. Ghost

T=T+6T

(180)

There is some freedom for the introduction of renormalization constants for the ghost
fields. We use the following convention.

gi — Z3 Ci
c
c
Qi I
EA — A

2N | Zaa Zza c?
A Zaz Zaa cA

Following the Kyoto group, we use the following notations.

fermion

Higgs

0Gw

0Gz

0H =

§Gmj = omy
myj
SM%
6Gy = A

_ My
- 2M3,
_ oMj
- 2M2

SMZ — 5 M3,
2(M7 — Miy)

0G1 =6Gw —0H
0Gr =0Gz — 0H
0G3 =0Gz — 0Gw

20 M2
6G4 = W
G 2M32,

— dM%
_ M%

—0Gw —6H

)

(181)

(182)
(183)
(184)
(185)

(186)

(187)
(188)
(189)

(190)

These notations are convenient for the description of counter terms. The shift of coupling

constants can be written by above d’s. Some examples are shown below.

My, = My (14 0Gw),

1 1
=~ (1+5Gs)
Cw cw
1 1
= — (146G
Sw Sw
W _ W14 656y
Sw Sw
Q%/V _§%/V _ CIZ/V — S%/V(l +5G4)
Swlw SWCw
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M, =Mz(14+6Gy)

(191)
(192)

(193)

(194)

(195)



7.2 Counter terms in one-loop order

The construction of counter terms is done in the followings. The tree Lagrangian in the last
sections is written in bare quantities. We replace the bare quantities by the renormalized ones
and expand the expression. The terms with § are counter terms. For the one-loop order, we
only keep those up to the first order of §. Below, examples of the procedure are shown for a
generic field ¢.

Counter terms for a self-energy (propagator)

(08—~ M2¢2 = (0,7 Z0) — (M? + M%) VZ g2

= (0u0)? — M2¢? + 202,/ %[(0,0)2 — M?¢?) — 6M%¢? (196)

counter terms

Counter terms for a vertex

€6 8,0, = YeVZybaV Z otV Z pe

= epatde + (Y + 02,17 + 62,)% + 62,)% ) edudnoe (197)

counter terms

As is seen above, a vertex counter term can be obtained by multiplying a factor to that in
the tree level. It is not the case for vertex with A and/or Z since there is a mixing between A
and Z:

1/2 1/2 1/2 1/2
A= (14020 Au+ 625 20 Z, = (146240 20+ 672 A, (198)

The mixing sometimes produces a counter term which is absent in the tree level. For instance,
there is ZZ H vertex but ZAH one in the tree level. In the one-loop, the ZAH vertex diagrams
exist and its divergence is canceled by the ZAH counter term which is generated by the field
mixing.

As was mentioned several times before, the gauge fixing terms are written in renormal-
ized fields, so that they do not generate any counter terms. This means that a counter
term which does not include ghost particles is independent of the gauge fixing. In such a
counter term, neither &’s nor & etc. appears. We must be careful for L (boson) in Eq.125
since it is the mixture of bare fields and renormalized fields. The cancellation of vector-
scalar transition term (e.g., MWGMX+W_”) is not complete and generate counter terms like
—(5Gw + 622 + 625/%) My (B, FW ).

Another point is that we have put T' = 0 to write down the Feynman rules in the tree level.
The tadpole is also shifted as T'+ 7" and dT is to be kept when we expand L(pot) in Eq.70 ~

Eq.72.

The word ’counter terms’ is sometimes misleading. In the following table, we classify terms
in the total Lagrangian after the replacement of bare quantities by renormalized ones.
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fields | order | 0Z,0M | meaning

quadratic | O(1) no free part of the Lagrangian
define propagators

quadratic | O(e™) n > 2 | with counter terms for two-point functions
(propagators)

3rd or 4th | O(e, €? no vertices

3rd or 4th | O(e™) n > 3 | with vertex counter terms

linear oT tadpole counter term

constant (no meaning)

In the table the first line defines the free Lagrangian, L/7¢¢, and the rest of all consist of the in-
teraction Lagrangian, L. The perturbative calculation is done by expanding exp[i L], so that
the separation of vertex terms and counter terms is not essential. For an instance, when we cal-
culate O(e®) contribution by perturbation, we receive the contribution from [L™(O(e) vertex)]3
and L (O(e®) vertex) and the latter is called as 'counter terms’.

7.3 Counter terms in ghost sector

The counter terms including ghost particles are not necessarily in the one-loop order, so that
we do not present their explicit formula here. Below, the procedure to determine those counter
terms is described briefly.

1. Since gauge fixing terms are given in renormalized quantities, we write the gauge fixing
terms by bare ones to fix the bare F' functions. From Sec.3.3 and Sec.3.4,

L(G.F.) = B+(8”WM_ + &wMwyx™) + (h.c)
+B%(01Z, + £z Mzx3) + BAOA,
+non — linear gauge terms
+B’s bi — linear terms.

(199)

2. Yet the renormalization of the B fields and &’s (gauge parameters) is not yet fixed. We
can use this freedom to define the bare gauge fixing Lagrangian.

The renormalization of them is defined so as to erase all Z factors in the bare gauge fixing

Lagrangian.

3. Based on the policy stated above, we define the renormalization of B fields as follows.

~1
v (8)-( ) (5)

The relation is just the inverse of that for gauge fields.
Then Eq.199 is
L(G.F.)= BY0"W. + B*¢wMwx~ + (h.c.)
+B?01Z,, + BZ£zMzxs + BAOA,

+non — linear gauge terms (201)
+B's bi — linear terms.
The remaining terms in Eq.201 become as follows
B éwMwx~ =B ¢, Myx~, (202)
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B?¢;Mzx3 = BP¢, M yx, + B BM zx, (203)

where we defined the renormalization of gauge parameters as

= §W(MW/Mw)\/7W\/7%1
£, = SZ(MZ/Mz)\/ZZZ\/Z;s
B=E2(Mz/MoNZzaNVZ, ;3

(204)

in order to erase all Z. The 3 is not an independent parameter but the short-hand notation
given by the equation. Non-linear gauge terms can be transformed in a similar way by the
renormalization of & etc.

4. By the renormalization of B’s and ¢’s, the bi-linear terms for B fields, EB* B~ +- - -, receive
extra factors. However this does not affects the renormalization program since g B = 0.

5. We obtain bare F' terms by the above equations.

FT = 8“Eff + §WMWXJF + non — linear gauge terms
F? = OMZ, + &, M zx, + non — linear gauge terms (205)
FA = O'A, + BM zx, + non — linear gauge terms

Except for F4, these are the same as those in Eq.134 assuming that quantities are bare
ones. In Eq.134 F4 = 0" A, while we have additional terms here.

6. The BRS transformation is defined for the bare fields. The ghost Lagrangian is L(F.P.) =
icopF ™ + --- and the application of BRS transformation gives the explicit form as in
Sec.3.6. Since F4 differs, we have additional terms which are absent in Sec.3.6 (and also
in Sec.6). However, 3 itself is O(e?) quantity and it generates O(e®) vertices. Thus the
appearance of 3 is only in the counter terms in the one-loop calculation.

7. We have obtained the L(F.P.) expressed by the bare quantities. Then the bare quantities
are replaced by the renormalized ones. The separation of the counter terms can be done
as before.

7.4 Counter terms for vertices

Here, we summarize the vertex counter terms. Ghost vertices are not shown since they are
not necessary in the one-loop order. Counter terms for the propagators and the tadpole are
discussed in the next subsection. In this subsection (---) stands for the denoted tree vertex
defined in Sec.6 after taking @ = 8 = § = £ = & = 0. The vertex which is absent in the tree
level is denoted by (new).

The following counter terms can be obtained easily by inspection of tree Feynman rules in
Sec.6 and the operation demonstrated in Sec.7.2. However, as we put T' = 0 to obtain the tree
rules, the appearance of 07" should be traced back to L(pot).

7.4.1 \ector-Vector-Vector

p1 () p2 (v) p3(p)
W= Wt A (0Y 4262 + 67 WWA)+ 62 S (WW Z)
w- W 7 (OY +6G1 +207250% + 67 WW Z) + 6732 (WW A)
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7.4.2 \/ector-Vector-Scalar

p1 (1) p2 (v)

WE A xFT (Y +6Gw 40250 + 62 + 075 (WAY) + 62, (W Z)
we 7 XT (OY +6H +6Zy)° + 67y ° + 6 ZL0) (W Zx) + 67,7 (W Ax)
W~ WY H (0Y +6Ga+6Gw + 262y, +6Z;)°) (WWH)

Z Z  H (8Y +06Gy+06Gs+06Gy +25Z% +62:°)(ZZH)

Z A H §ZJ2(ZZH) (new)

7.4.3 Scalar-Scalar-Vector

p1 p2 p3 (W)

H XF WE  (0Y +6Ga+ 0677 + 62" + 62,7 (HxW)

X3 XT WE (OY 468G + 074 +62° + 6Z,07) (xax W)

X~ Xt A (OY + 2027+ 028 (xxA) + 6254 (xxZ)

X~ X' Z (OY +06Ga+202y° +6215) (XX Z) + 0Z 1 (xxA)
H x3s Z  (0Y +6G2+06Gs+08Zy° + 02" +82,,)(HxsZ)
H x3s A 6ZJ2(HysZ) (new)

7.4.4 Scalar-Scalar-Scalar

(See Eq.71.)
P1 P2 P3
_ a2y sp___ ¢
H H H _(5Y +0Gz = 0Gw +0GH +302y") = 0T — M}{] (HHH)
H x x* -(5Y +0Gy — 6Gw + 6Gy + 6 Z3]% + 26Z2Y2) — 6T ——— | (Hxx)
L X SwaMH
H xs x3 |00V +0Gs—3Gw +06Gy + 06742 +202F) — 6T——— | (Hxaxa)
L X sw Mw Mg
7.4.5 \ector-Vector-Vector-Vector
p1(p) p2(v) p3(p) pal(o)
wr o w- A A (20Y + 2677 + 2625 5)(WW AA)
12622 (WW AZ)
Wt ow- A 7 (20Y +0G1 + 20737 + 0735 + 6755 (WW AZ)
+OZYZWW AA) + 672 (WW Z2)
Wt w- Z 7 (20Y 420G +26Z1)% + 26205 (WW ZZ)
12575 2(WW AZ)
Wt W W WY (2Y 420Gy + 462, ) (WWWW)
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7.4.6 \ector-Vector-Scalar-Scalar

pr () p2(v) p3  pa
A WEH XF (20Y +06Ga+ 0235+ 625" +675° + 62 VAW HY)
+6ZY2(ZW HY)
A WE  x3 xF (20Y +0G2 + 0235 + 025 + 825 + 02 %) (AW xax)
+0Z3/ 4 (ZWx3x)
Z  WE H XT (20Y +6Ga+ 024 + 025" + 621" + 62 *)(ZW Hx)
+6Z% 2 (AW Hy)
Z W*  xa XT (20 +0Gs+ 027, + 025 + 020 +02y ) (ZWxax)
+(5Zil/zz (AW x3x)
A A Xt xT (20Y +20757 + 25757 (AAxx) + 26222 (Z Axx)
Z A XY X (20Y +0Ga+ 67,5 + 6755 +262°)(Z Axx)
+0Za(Z2xx) + 0237 (AAxx)
Z Z Xt X~ (26Y +206Ga+ 267,07 + 267 )V Z Zxx)
+252%2(Z Axx)
Wt W~ H H (26Y 420Gy +26Zy)° +20Z;°)(WWHH)
W* W~ x3s xs  (20Y +20G + 282y +20Z.5°) (WWxaxa)
Wt W xT X" (20Y + 206Gy + 207 + 262, ) (WWxx)
Z Z H H (26Y +25Go+25Gs + 2527 + 2673 °)(ZZHH)
Z Z  x3 x3 (20Y +20G5 +20Gs + 202,05 + 20250 Z Zxaxa)
Z A H H 6ZJJ(ZZHH) (new)
Z A xa X3 0Z/i(ZZxsxs) (new)

7.4.7 Scalar-Scalar-Scalar-Scalar

(See Eq.72.)

pr P2 P3 P4

H H H H |[(20Y+20Gs —20Gw + 6Gp + 4673
—5ng] (HHHH)

X2 X3 X3 Xz |(20Y +20G2 —20Gw + Gy + 46 2,5 )
—5ng: (Xxaxaxaxs)

X xXT XT xE [(20Y + 120Gy — 26Gw + 0G + 462y7)
—5ng: (o)

H H x3 x3 |(20Y +2G2—20Gw +0Gy +20Z5]° +20Z,%°)
0T gy (H Hxx)

H H X" x= [(20Y 426Gy — 20Gw + 0Gy + 262" +262°)
0T iy | (HLH00)

XY X xs xs |(26Y +20G, — 26Gw + 0Gy +202y° +262.%7)

e

—5TW (xxx3X3)

H
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7.4.8 Fermion-Fermion-Vector

L R=(1F1)/2
2 P2 p3(w)
R 1/2 1/2 1/2
f A (O +8Z5 + 0757 + 6257 )eQ L
HOY +0Z42 + 025 + 0Z5)eQ "R

12 €
673 o (219"L — 283, Q7" (L + R))

Z OV +0Gy+0Gs +87Yf + 71 +6Z}])s

203y L

|
K,’

Swew

1/2 1/2 €

+H(OY — 6G2 + 0G3 + 625 + 875 + 0Z7)7) (—2s{ Q7" L)

2swew

e

+(OY — 6Ga + 0G3 + 625 + 02755 + 0Zf7) 5 (—25%,Q 7" R)

SWew
+0237¢Qv"(L + R)

__ - 1/2 1/2 12y €
U/D D/U W*/W= (Y +0Ga+ 02} pyp + 0 Z b + 02 )\/isW'Y“L

7.4.9 Fermion-Fermion-Scalar

LvR:(l:F’Y5)/2

P1 p2 P3

f o H
(8Y + 62 + 6Gms — 8Gw + 8257 + 6257 +624{7) G%%) I
w Iw
H(8Y + G2 + Gy — 0Chw + 6217 + 62752 +6237) (_Lﬂ) R
2SW MW
U/D U/D xs
1/2 1/2 1/2 ie my
(Y +0G2 + 8Gms — 0Gw + 82 py g + 02 by + 02350) <(_/+) o MW> (-I)
_ 1/2 1/2 N ie mpy
H(OY +8G2 + 6Ghns — 5Gw + S22, + SZE2 o+ 6Z22) (( e _MW> R
O D x* (8Y +8Gs+0Guy — 0Gw + 62t/ 5+ 0255 + 623 ) —— (L)
\/§3W My
+((5Y +6Go +0Gp — 0Gw + 5211}{121 + 5Z£/§2 + 5Z)]€/2) —te mp
V2syw My
D U X (8Y +06G2+6Gup —6Gw + 0217+ 627 + 623" ) ——— 2 (L)
V2sw Mw
+(0Y 4+ 6G2 + 6G iy — 0Gw + 5Z})/i + (5Z[1]7/122 4 5Z>J<'/2) \/—526 %
sSw 1w
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7.5 Renormalization conditions

In Sec.7.1, we have introduced renormalization constants, e.g., v/Z, §M? and so forth. By these
constants, counter terms are described. These constants are determined by the renormalization
conditions described below. There are many possible way to present the conditions. We follow
the on-mass-shell renormalization scheme given by Kyoto group.

™ O
N\

A

(a) two O(e) vertices (b) one O(e?) vertex

(c) O(€?) vertex (counter term)
Figure 3: Two point functions

In the O(ez) perturbation, we have the contribution for the two point functions shown in
Fig.3. The contribution from (a) and (b) is called the loop term, and that from (c) the counter
term. When we denote the former as II, the latter is denoted by II. The sum of these is
represented as I = IT + II.

The decomposition of two point functions are as follows.

type formula

vector-vector Hu,,(qz) = <9/W — %) (%) + qggy 17, (¢°)
scalar-scalar I(¢%)

vector-scalar iq,11(¢%) (q flows in from scalar)

fermion-fermion ¥(¢?) = K1l + Ksvs + K, 4+ Ksy 475

The counter terms are given as follows.

1. Vector-Vector

WW T = 6M2, + 2(M%, — ¢2)6Zy)°
Y = 6MZ, +2M2,67;)°

77z 47 =M% +2(M% — ¢?)57Z,
1142 = §M% + 2M26 722

ZA A = (M3 — ?)0253 — P02l
1174 = M252)/?

AA T = 2426737
4 =0

2. Scalar-Scalar
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They originate from L®(boson) in Eq.125 including 07T terms from the last line of the
equation.

HH TH = 2(¢? — M%)623]% — 6M% + 3L

xaxs I =227 + &L

XX H 25Z1/2 6T

3. Vector-Scalar

Wy T"X = My (6Gw + 5Z§V2 + 52; %)
Zxs 029 = Mz(aaz 8247 +82.5)
Axs T3 = M,67)%

4. Fermion-Fermion

The LI for the fermion f is f(iy#9, — my)f. It is

fr(in*0,) Lfr
+fr(iv"0u) RfR
_mefoL (206)
—fimyRfr
and it gives the counter terms:
2(5Z1/2f[,(i’y“(9 )LfL
+25Z1/2fR(w“8 )Rfr
5 621/2 5Z1/2 F (207)
—(0my + ( + Jmy) fRLSL

—(6my + (521/ 2y 521/ 2Yms) LR fR

Rearrangement of the above gives the following terms.

[ Ba=—my (02572 + 02557 ) — omy

Ks = +3m; (=027 + 027 + 02557 — 0233 ) =0
K, = +6Zl/ 2+ 521/2
Ks, 521/2 +5Zl/2

For the Higgs one-point function, we have the contribution shown in Fig.4. The loop term
(a) is T'° and the counter term (b) is 67. The sum is T = T + §T.

Now, we introduce the renormalization conditions. Those for ghost particles are skipped by
the same reason as before.
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H <>A H

(a) One O(e) vertex (b) 6T

Figure 4: One point functions

1. Tadpole
This is to cancel the tadpole. 3
T=0 (208)
Then
6T = —T'ooP, (209)

2. Charged vector

The conditions specify that the pole-position of the propagator is M&V, and that the residue
of the propagator at the pole is 1.

- d -~
07 (M) =0, ——IIY (ME) =0 (210)
This gives the following relations.

1/2
SMPy, = —TOY (M3,), 6247 = ———TI¥ (M%) (211)

3. Neutral vector

The conditions same as W is given for pole-positions and residues of both Z and A. Also
we have the condition that there is no mixing between Z and A at ¢ = 0, M%

d

[G7(M) =0, - TF7 (M) =0 212)
TAA d =44
74 0) =0, TF' (M) =0 (214)

Among the 6 conditions, 1:1?‘4(0) = 0 produces nothing (except for the check of loop
calculation to show I1£4(0) = 0). These give the following relations.

192 1d

SM% = —TIZ% (M%), 07/, = §d—q2H%Z(M§) (215)
12 1 d
0735 = §d—q2H%A(0) (216)
1/2 1/2
SZY2 = —TZA0)/M3, 6Z%Z = TIFA(MZ) /M (217)
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4. Higgs

The conditions specify that the pole-position of the propagator is M 12{, and that the residue
of the propagator at the pole is 1.

s d ~
f17(0f) =0, 117 (01F) =0 (218)
This gives the following relations.
oT 1d
sMy =T (M%) + —3U , 0z = “3771" (M%) (219)

5. X> X3
There is no physical condition for unphysical scalars. However, we are to define v/Z x and
\/ng. Since the counter term is ~ 2¢°v/Z y» the so-called MS scheme is used in the linear
gauge case:

1 2
\/ZX = _ﬁ HX(q

1 3,2
\/ZX3=—2—(]2HX (Q)

(220)

Cuv part’ Cuyv part

Thus the counter term is defined just to erase the divergence. In the linear gauge case,
the Cyv part is proportional to ¢° as

Hx(qz) = cq*Cuyv + (finite terms)

so that Eq.220 works well. In the non-linear gauge, the Clyy part is no more proportional
to ¢2, though we still keep the above definition as working hypothesis.

6. Fermion

The conditions for pole-positions and residues are the same as other physical particles.
Also the vanishing of v5 and v#~v5 terms at the pole is required.

. - d -
)+ Ba(m) =0, o7 (4R () + Ealg?)| =0

Ks(m%) =0, Ks,(m%)=0. (222)

From the condition for K5, we obtain
2Ks(m?) = (62317 — 8277)) — (6Z4y5 — 0Z5j) = 0. (223)
When we respect the CP invariance, Ks = 0 holds. In this case, we can define that (5Z 1/ 2

and 07 fg are both real using the freedom of phase of the field. Under this situation, we
obtain the following relations.

dmy = myK,(m%) + Ki(m?)

1/2
5Zf£ = 2(K5’y(mf) Kv(mf)) - m?‘ﬁsz(mﬁ) - mf%zKl(mic) (224)

1/2
325 = —3(Kes (m) + I () — i e Ky (m) — oz K (m)
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7. Charge

While there are many vertices in the theory, if the charge e is properly renormalized, we
do not need any further renormalization conditions.

The condition can be imposed to any vertex. The most natural one is to fix the eeA
vertex. The counter term is already defined in Sec.7.4 and the condition requests that the
coupling is —e when ¢, the momentum of photon, is 0.

(eeA one loop term + eeA counter term)| _o =0 (225)

From this, we obtain Y.

8 One-point functions

The one-loop diagram for (a) in Fig.4 is integrated by the following formula.

d™e 1 1 5 2

/ iem) 2 —m? ~ 16n2 A (Cov —logm? + 1) (226)

Calculation is done by the dimensional regularization with n = 4 — 2. Here and in the
followings we use the notation,

1
Cuv = E —vg + log 4. (227)

In the followings, the summation over fermions Z, Z implicitly includes the sum
f doublet
over color for quarks.

The T is calculated by the diagram (a) in Fig.4 where A = W, Z, x, x3, H,c,c?, f. The
result is as follows:

e

Tloop —
167T28WMW

1
|(Cuv — log My + 1) My (3Mfy + 5 M) — 2(Mfy)?
2 2,302 1. 5 212
+(Cuv — log M7 + 1)Mz(§MZ + ZMH) - (M3z)
(228)

3
+(Cyv — log M + 1)1(M12q)2

- Z 2m?«(C’UV — log mfc + 1)}
!

Some of diagrams depend on € or 6. However the dependence on non-linear gauge parameters
is canceled between scalar loops and ghost loops, so that §7 is the same as in the linear gauge.
The tadpole counter term is simply obtained by this formula.

T o Ty +dd +3 j—2m§‘ (Cuv + 1 — logm?) (229)
= uv 0 uv — logm
v 8msdy M2, f
3 M% 11 3 (M%)?

T = —3Mz — =2 — | =+ —— | M4 — X 230

oo \2 * 4c%, 4 M2, (230)
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1
d¥ = (log M3, —1)(3M3%, + §Ml,%() + 2M3;

1 Mz 3 (M%)?
M+ S Mp) + —% + i)

1 2 3 2
+—-(log M7z — 1)( 2, ZM—‘%V(IOg My —1)

2, 2
9 Two-point functions

In this section f’ stands for the partner fermion in the weak doublet. If f = U(D), f’

9.1 Integrals

(231)

D(U).

In the calculation of two-point functions, we deal with the integral for the diagrams in Fig.5.

The integral for (b) is the same as in the last section for one-point functions(Eq.226).

t—q

My

(b)

Figure 5: Loop integral for two point functions

The integral for the diagram (a) becomes

/ dne N
i(2m)" (2 — M3)((€ — q)? — Mj)

/ dme /1 N p
= .
i)™ Jo [(1—2)( — M) +2((€ - q)? — M)J?
Then the shift of momentum /¢ is done by

{ = (+xq

(232)

(233)

in the numerator N and the terms in odd power of ¢ are discarded. The contraction of loop

momentum should be done by

1 €
Hpv . —p2 pv <
o = 242 <1+2>.

The integral by the loop momentum can be done by the following formulas:

Dy =(1—x)Mi+2M5 —z(1 —x)s, (s=q°)

e 1 1
- _logD
/ 2 =Dy~ Ton2 (Cov ~los D2)
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dne 02 1 1
— 2D = _logD 2
/ i(2m)" (2 —Dy)? ~ 1672 2<C“V+2 o8 2> (27)

e e 1 D
/ ( Z2 (Cuyy + 1 —log D3) g (238)

i(2m)" (02 — D7) ~ 1672 2
The integral by the parameter z is done by the following formulas:

1 1 1
/0 Dada = 5 (M5 + MB) — s (239)

1 1
F.(A,B) = /0 z" log Dydx = /O z" log {(1 —)M3 + aME — z(1 — x)s} dx (240)

The integral of F), is elementary though its explicit form is not shown here. We only encounter
the integrals up to n = 2. The notation Fi2(A,B) = Fi(A,B) — F2(A,B) = Fi2(B,A) is
sometimes used.

F(A,B) / Dy log Dadz
(241)

= M3 (Fo(A, B) — Fi(A, B)) + M3F1(A, B) — sF12(A, B)

We have several relations for F;, functions as shown below. By use of reduction rules, we
can convert all F},’s into Fp.
Exchange of A and B

Fy(B,A) = Fy(A,B)
Fi(B,A) = Fy(A,B) — Fi(A, B) (242)
Fz(B,A) = Fo(A,B) —2F1(A,B)—|—F2(A,B)

Reduction into Fp, A # B

1 M3 — M3 1
Fi(4,B) = 5 (1 + %) Fo(A, B) + - (Mé log M3 — M3 log M5 — M3 + Mf,) (243)

2
Fz(A, B) = % (1 + M) Fl(A, B) - %F@(A,B)
s s
(244)
1 1 1
<MB log M3 + = (MA - M123)> -0
s 18
Reduction into Fy, A =B
1
Fi(AA) = §F0(A,A) (245)
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1 M? M?2 1
Fy(A A) = S ( - TA> Fo(A, A) + 3—;‘10gM§ -3

G functions (Derivative of F)

1 _gn. (] —
G(A, B) = %FH(A,B):/O %dz

F and G at special energy

Fu(A,B,C) = Fu(A,B)|;=pp2
Fn(A; B, 0) = FH(A? B)’s=0
Gn(A7B7C) = Gn(A’ B) SZMCZ:
Gn(A7B7O) = Gn(Av B) s=0
Fofors=0
logMi (A= B)
Fo(A,B,O): MélogMé—MilogMi_
M?% — M3

1 (A#B)

9.2 Z-Z

(246)

(247)

(248)

(249)

(a) | (4,B) =W, W), (W,x), x. W), (x, x), (H,x), (H, Z), (c*, "), (¢”, ™), (f, f)

(b) AZVV? ,X3,X,C+,C_

The second lines of H%Z and H%Z show fermionic contribution.

« 27, T 27,T 27,T
127 (s) = prs e C?2TOyy + iy Fo(W, W) + dyyy Fo(H, Z) + dg

_% zf: {2l —4Qps2)? +1} (%Cuv — Fia(f, f)> s
—m? (Cuv — Fo(f, f))H

1 1 ~
o2aT _ (30% b E) 5+ 4y M2y — 2M2, — M + 48y (s — M2)

JZ5T _ 1, 8 5 5

(250)

(251)

1 N
= (—scﬁv -3 + E) s — dcy M, — chMVZV + §M§V + 4cy B(—chys + ME,) (252)

77T 1 1 1 5
122, M2 — M2)2 M2 M2
128( H Z) 128 6 H 6 z

48

(253)



4 1 M2 — M%) 1
ng’T = M%V logMI%V <4C?,V — gc%,v + §) + MI%I logMIZJ <——( H z) + —)

12s 6
(254)
ME —M2) 1 (M% — M2)? /2 1
M21oo M2 (Mg Z L H Z <_2__>
Mz e Z( s 6) T 12 T\ g’
4% (s) = m CZ2LCyy + d2EE Fo(W, W) + d25  Fo(H, Z) + d2 %"
(255)
1 2
+5 > {mf (Cuv — Fo(f, f))}
f
. 1
C?2L — 42 M2, — 2M3, — M2 — 43¢5, M?, + 1523 (256)
dFPl = — 42, M2, + 2ME, + 432, M2, (257)
M2 —M2 2 = ~2
dZ5" = My =Mz M2+ S(—M% + M2) — s (258)
4s 2 4
ZZ,L 2 2 (Mlgl — M%) 3
dO = (IOgMH—l)MH 4—5+§
(259)

(Mf —M3) &
4s 2

+(log M3 — 1)M% (—— —

(a) | (A,B) = (WW) (W, x), 06 W), (6 x),s (¢, ¢h), (e7,¢7), (f, f)
(b) | A=W,x,c",

The second line of H%A shows fermionic contribution. No fermionic contribution appears in
#4

ac
74 (s) = MSVVVV CEATCYy + difit Fo(W, W) + dg T
(260)
1
_TZ (2[3 —4Qf‘9§u) <ECUV — Fio(f, f)) 3]
‘w ¥
1 ~
CZAT _ <—602 +3> s+ 2M2 + 2a(s — M2) + 28s (261)
w
dzZaT L 3 02— aM2, — 2a(s — M2) — 23 262
ww =\ gz )T gMz M - a(s — Mz) —20s (262)
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2
dZAT = log M3, <——M§ + 4M5V> +—s (263)
3 ey
acC -
M7 (s) = 7 —-2(1 — &)MZ (Cuv — Fo(W, W) (264)
w

(a) | (A, B) = (W, W), (W,x), 0. W), 06, x), (¢, ¢), (¢, ¢7), (f, f)
(b) | A=W, x,c", ¢

The second line of H’%A HfA

shows fermionic contribution. Longitudinal part is exactly 0.

(6%
Mph(s) = |44 Cuv + digyf Fo(W, W) + dg ™"
(265)
1
—8% Q% (ECUV — Fio(f, f)) 3]
!
CAAT = 35 + 4as (266)
At = —3s — 4AM%, — 4ds (267)
ditT = aM3, log M, (268)
34 (s) =0 (269)

(&) | (4, B)=(2Z,W),(Z,x), (A, W), (A, x), (H,x), (H, W), (x3,x),
(¢, ¢"), (% e), (A er), (¢ ), (f, )
(b) | A=A, Z,W,H, x3,x,¢",c”

The last lines of HIVY W and HEVW shows fermionic contribution.
YW (s) =

O [CWWTCU + VW (2, W) + dYIT By (B, W + 4T Fo(A, W) + dVWT
TSy

-5 Z { ( Cuv — F12(f7f)>

doubl et

(£ m?)Cuy + 202 By (F', ) + 2R, f’)H
(270)
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19 -
CWWT — 55t IM2, — M% + 2as%, (M2, — s) + 2B¢%, (MZ, — s) (271)

1+ 8cd,)(MZ — Mg, )? 1 1 4
dEVWI/I//,T: (1 + 8cpy) (M7 iv) +<——?0c%/)s——c€VM;%/—gM5V+§M%

-, 12s ) 12 3 2 6 (272)
+208ciy (s — M)
M?% — M3)? 1 1 5
dWWT:( H w e M2 422 2
HW s 10§ AT (273)
WW,T 23%{/(M5V)2 10 , 45 .02 ~ 2 2
dAW = T — ESWS — gSWMW ‘I‘ 2OZSW(5 — Mw) (274)
AW _ oo a2, (22, 4 M, (Mg + M% — 2M§,)
M?% — M )M?% 1
loo M2 _( H w)H | a2
+log H( 125 et
(275)
2 2 2 2
o [ (M7 — My,)(Mz+8My,) 4., 1.,
+10gMz< 125 +3MW+6MZ
JME - MENOMEETME) | (ME-MEP 1
12s 12s 9
YWY (s) =
(6]
e [ OV A2, )+ R W)+ A R,
w
1 2 2 (gt 2 /
5 X -} mP)Cuy + 23 )+ 2m PR )
doublet

(276)

N . 1, 1
CWWoLr — 9ME, — MZ + 2as%, M3, + 2B, M§, + 53°s%,s + 50°chys + Z5zs + Z/%zs (277)

(1 + 8cfy) (M7 — M)

dgw" = — 1 — 3M3, + M2
S
(278)
; 1 5 1
+B(4cky, — 6) Mg, + EH(MI%/ — M3) + B?(ME, — &y M3, — 5c8ys) — Z,{Lzs
M2 — M2)2 1. 1.
4L _ _(H4—W) + My + S50 — 1) — L% (219)
S

o1



2 2 (M2.)2
dWWL s (Myy) + dasy ME, — 6255, (M2, + 5s) (280)

- > - > 1. 1.
+ (—6043%[, — 68c%, + a%s%, + B2, — 56 — = ) MEV)

M2 — M2 M? 1-
+logM§I<( ir = Miy) H+§5M§I>

[\V)

4s

M2 — M3,) (M3 + 8M3 5 = 1
+log M2 <( Z WZ(S 7 +8My) +63M32, — 32M3, + §RM§

(ME — M{)? + (M5 — M§,)(MZ + M)
4s

+ 6ass, M3, — 6352, M3,

R(Mf — M3)
(281)

N =

- ~ 1=
—azs%V(Qs -+ M%,) + ﬁz(s%/M%, — QC%VS) + 5(5(M5V — Mé) +

(a‘) (Aa ) (W W) (W7 )7(X7W)a(X?X)v(Z7X3)7(X37X3)7(Zaz)7(HaH)7
(", eh), (¢, ¢7), (7, cP), (£, f)
)| A=W, Z, H,x,x3,c",c,c?

The second line of IT¥ shows fermionic contribution. Since the tadpole contribution appears
with I we present the formula for the sum.

36T
I (s) + — = 4m [C’HC’UV + di Fo(W, W) + d2,Fo(Z, Z) + di y Fo(H, H) + dif
w

2
'y J\Zl—é; {gCuv +2m3(1 —logm}) - %(s —Amp (7, f)}]

(282)

2\2 -
CH:_<L2+1>S—LM2+§(MH) MG+ S(M — ) + - E(ME —5) (283)

22, 4z, T4 Mg 2 22,
1 (M2 )2 N
A =5 — 3M3 — i Mfg +6(s — M%) (284)
w

——&(s — M%) (285)



dd, == (286)
8 M3,
1 3(M%)?
dif = log MZ, <§M,§ +3M5V) + log M% ( Eleg) )
w
(287)
M?2 M2 M2 M2 M2)2 1
vlogaep (104 2 ) - 3 S SOE Lag-aa
4CW 2CW 4CW 26W 4MW 2

9.7 x-—
(

X
A, B) = (HW),(H, x), x3,W),(Z,x),(Z, W), (A, x), (A, W), (Z, "), (%, ), (f,. [)
(b) A= A727WH7X37X7C+7C_

The second line of ITX shows fermionic contribution. Since the tadpole contribution appears
with IIX, we present the formula for the sum. It is observed that CX, coefficient for the divergent
part, is proportional to s in the linear gauge.

HX(S) + o = m [C Cuv + d Fo(Z, W) + d)éWFo(H, W)+ dileFo(A, W) + d%c

2
+2S; E—é/ (Cuv — 2F1(f, f))]

(288)
< +4)s— 32asWMW + 32ﬂ8WMW +166°s MI%V + 16@26‘2/VM2 (289)
+20(s + M3) + 362 M3, + 2ks — k2 M,
o= (2-82 + 2 ) s— 162 2 M2 6MZ—LM — 852, M, + 23M?
W — ] W CIZ/V ) w = CW w CIZ/V w w (290)
—3203s%, M3, — 163%c3, M3, — 2fs + K> MF,
By = 25— 3 + 200y — Y o5 o 02 s (201)
HW — w H = 2 H w
w
ANy = 85% (s — M3,) + 32asy, M3, — 166257, M3, (292)
2 2 2 2 2 [ (MF)? 2
dX = log M2, (—MH +2M3E, — Mz) +log My | 57— — My
w
M2 M2 M 293
+logMZ< 2 + 852, M2 — M§> — (MZ) +2M% + 6 M3, — 72 — 6M% (293)

+16Gs%, Ma, — 16355, M2, — 8&2s%5, Ma, — 8(%c3, M3

53



9.8 x3—xs3

(a) | (A, B) =W, x), 0, W), (H,Z), (H, x3), (C+,C+), (ce) (£, )
(b) | A=W, Z,x3,x,H,c",c",c

The second line of ITX® shows fermionic contribution. Since the tadpole contribution appears
with IIX3, we present the formula for the sum. It is observed that CX3, coefficient for the
divergent part, is proportional to s in the linear gauge.

oT
() + 2L = [CX Cov + &2 Fo(W, W) + &2, Fo(H, Z) + d)°
v 167T8W
. (294)
+232 M2 (Cuv — Fol(f, f))]
2 3
ox3 — <T+4> T(]\/[H—|—5)—|— ZTM%—4E;5 (295)
w ‘w w
A3, = 4s + 4fis (296)
X3 1 2 2 (ME)* 2 =212
dHZ:T QMH—MZ+28——2—25(MH+S)_35 MZ (297)
Cw Z

1 M})? Mj)?
d6<3:CTllogM12{<(]\;) —M§)+1ogM§(—M§I+M§)—(Af) +2M7 — Mg | (298)

W 7 Z
9.9 Z—xs3
(a) | (4,B) = W, x), 0, W), (H, x3), (H, Z), (c*, "), (c",c7), (£, f)
(b) | None

The second line of TI4X3 shows fermionic contribution.

aMy 3 Zx3
193 (s) = S CPCCyy + dEXS Fo(W, W) + d, Fo(H, Z) + diX
w=w
, (299)
m
+> MJ;(CUV — Fo(f, f))]
f Z
L. M?
CP3 = <—§ — 3¢ + 4c‘v‘v) —4Bcly + sE 1+ =2 ) + &2 - kel (300)
2 2° M2
d2x3 = 3¢k, — Ach, + 4Bcty + Ry (301)
2 2\2 2 2 2
ZX3__(MH_MZ) § = _(MH—MZ)_E_MH =2 9
Uiz =gz T3¢ 25 2 amz) € (302)
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MZ (M — M
dgxsz (log M% — 1) H(( H Z)_|_5>

2s M%
(303)
2 ME [ (MR -ME)
+(log M5 — 1) 5 2 5
9.10 A-— X3
(a) | (A,B) = (W,x), x, W), (c",c"),(c,c7),(f, f)
(b) | None
There is no fermionic contribution.
Ax3 oMy ~
II7°X°(s) = -——(1 — &) (Cuv — Fo(W,W)) (304)
2w sw

(a) (AvB): H7W)v H, ),(Z,X),(Z,W),(A,X),(A,W),
(ch,0), (?, "), (Fe), (f f)

The second line of TTI"X shows fermionic contribution.

aM
Ix(s) = ﬁ [CWXCU\/ + Ay S Fo(Z, W) + Sy Fo(H, W) + d5 Fo(A, W) + dg X
2 2
1 m5 +m
43 { L—L 0w — (mFR(f, £) + (m§ —mP)E(F, f) H
doublet w
(305)
CWx = —% + 2
C
w
—12as%, + B(16 — 12c¢%,) + 18a2%s%, + 183%c%, (306)
(1M s
+0 |11+ YR + K+ 28
MW
1 2 2 MZ _ MZ 2
e = ASan)sy My = Miy) 2y g5 ga 4

Cyy S Sy

_ M2 _ M2 B MZ o MZ
+6 (—1%@% — 16 + 12c%v> + (26%% — 18¢%, (307)

_ (M2 — M3,
+/€<T—1
w
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M2 — M2 )2 B M2 — M2 M2 B
= M = Miy)” o5 (CMp = My My ) o5 308
HW sMZ, +o+ S 7, (308)

2 M3 M? 2M?
iy = —SSWTW + 4%, + 12a7; (1 - TW> + &%y (—18 — 3W> (309)

M2 + M? — 2M?2 B -, M? B - M2
2= W 1o(asy + k) =+ 2ashy + B2y =L

dgVX = logM‘%V <— .

8s2 M2, + s2. M2 ~ M? M2, M?2
Z(WW w2z SW_2628W_|_K;_Z

MR EME (M MEY MM MP-oMG
s Cy s sM&V s s

M2 B M2 M2 _ 2 N2
4652, <3TW + 2) — 45s%, <3TW + 2) — 2322, (TW + 4) + 232 (‘”VTW —4c%,
(310)

912 H—Z,A xs

H-Z

(a) (4, B) = (W, W), W, x), 06 W), (x; x), (¥, "), (™, ™), (£, f)
(b) None

H-A

(a) (4, B) = (W, W), (W, x), 0, W), (x; x), (™, "), (¢, ™), (£, f)
(b) None

H—xs

(a) (A4,B) = (WX)’(X?W)7(C+7C+)7(6_70_)7(f7f)

(b) A=c",c”

For these two-point functions, there are some diagrams as in the above table. However, the
explicit calculation shows that the total result is 0 for these 3 two-point functions. This holds
for both in the linear gauge case and in the non-linear one. Contribution of fermion loop is 0 by
itself.

The vanishing of these functions can be understood as follows. The higgs field H can acquire
the vacuum expectation value. Since the vacuum is scalar, these functions should be 0 in order
to avoid the case where a vector or pseudoscalar field has non-zero vacuum expectation value.

913 f—f

(a) | (A,B) = (,4),(f,2), (f\ W), (f, H), (f, x3), (", x)
(b) | None
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By the CP-invariance condition Kg = 0 holds.

fray @ lh2pa . 122020 1 16 1 203
Kj(s) = o [Qij + %Qfszj + EQij + SSfUcquj
+Q i 4522 M2 Kj (J=1,7,57)

Kt = my[—4Cyy + 2 + 4Fy(f, A)]

K& =Cyv —1-2F(f,A)

K& =0
KZ® = m[—4Cyv + 2+ 4Fo(f, 2)], K{P =KD K/® =9
KZO _ oy —1—2F1(f,2), KZ® — (7O gZO) _ 20

KZO _

Z(2) Z(1) Z(3) Z(1)
5y 0, K =—-K;", K57 =—-K;

5y
KV =0
KW =Cuyv —1-2FR(f",W)
Kl = K

S m}z /
Ky =my |—Fo(f,H) + Fo(f,Z) — 2—5(Cuv — Fo(f',W))

m}
1 m//2
KS = Cov — Bu(f.H) ~ Fi(£.2) + & (1 + m—f;) (Cov — 2R ()
f
1 m//2
kS = +1 <1 . —J;> (Cov — 2R (. W)
my

o7

(311)

(312)

(313)

(314)

(315)



10 Renormalization constants

10.1 Vector part

5752
1/2 (0%
5ZA/A ~ in
572

3
(2o

04

/2 _
ZA T

acy

4 sy

(No fermion term appears in (5Zé/: )

5752
575/

1/2

5ZAZ,fin -

572

6277 =

4 sy

acy
4 sy

acy

1

— +
2
Geyy

5+25’> —

[FO(W, W, 2) <—4c

f

3
) Cuv — <§ + 2@) log M, +

3 2@y (20— 40y

1 2

373 > QF (Cuv - 10gm§f)

f

{(~242a) Cuy + (2 - 24) log M}, }

1
+% —|—2¥Qf (2]3 —4Qf8120> FlZ(fa f7 Z):|

«
2
4w sy iy

2

1/2

+02%7 tinp

3
cﬁv—i-—c%/v—

2

+0Z2

6

1/2
ZZ,fin,f

12

1 -
+ 2688 —

o8

24

: ) {(213 —4Qys5)? + 1}

f

Cov + 823 in

Cuv

(316)

(317)

(318)

(319)

(320)



1/2 -
5ZZZ,fm,b =

1% 3 4 1 2 1 4 7
prr, [FO(W, W, Z) (——cw — gl + 57— 2ewp
17
+%wwmzw}%%——2
1 M% 1 M3
Fo(H,Z,2) (- + ——IL
1 M
—|—G0(H,Z,Z)

(321)
LM% 1\ .,
el el | A N Vs
24 M} 6M§+> 7

2 1
T ) V-
6CW+3+24C§V>

w

2

1 M2 1 (Mf — M})
H H 2 H Z
—_-H - "H log M7 | ——
24 M3 24M§> e Z( 24 Mj
1My 1ML 1, 7
ik T s T oW~ )
24 M3 T 12M2 T 9 72
2 a 1
N (__> S [{B - 4@sst ) + 1} (<Fia(f. 1, 2) - MEG2(1. £, 2)
drsiyey \ 4/ 5
+m3Golf, f,2)|
5Z?

(322)
12« 9O 25 2. 1 1/2 12
A= s, KE Tl sva g dwzb‘;et V) Cuv| + 02y 5iny + 023,y (323)
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1/2 a 2 L 1 2 25
02y binp = P [Fo(Z,W,W) <_20W_4CIZ/V —24C%+§+0Wﬂ
2 1 17
Go(Z, W, W) | —2cy + = + 5 — — | M}
+Gol )( Cw+36%/+24czvxv 6) w

1 My 1 ME
24 Mj, 12 M3,

1 M4 1M%E 1
+Go(H,W,W)<——H— 5 )2

4 6 N2 w
24 My, 6My 2 (324)
+Fo(A, W, W) (—28124/ + S%V&> + Go(4, W, W) (_2512/VMI%V)
+log M3 —1M12'I— = +1
WAz, T ud, T 12
+log M} LMy 1My Flog M2 o 4 = —
SVH\ 240t~ 24, 8¥7\2acz, T ud, 3
1 My 1My 1 1 11
Tk T2 T id, T ud +%]
w w W w
a 1
I = T <‘Z> S [F4UPulf £ W) + Gualf, £, W) M)
TSy doublet (325)
+2m3G(f', £, W) + 2mFGa(f, f', W)}
SM%
SMZ = SMB, + M3 (326)
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5M§,b ==

6M%7f -

SM?,

6M5V,b —

« 5 7
M2 _74 v 2 —)C
74773%4,%4, Z[( Cw+3cw+6 uv
17 4 1
6 -4 =2 -
1 My 1M3
Fo(H,Z,7) | ———-H 4 ~22H
TR 22\~ T3z ) (327)
+1 M2(46+44 12>+1 w2 (LM 1My
0 —4c —Ciy — =C 0 B
SMw A TRw T T gw ) TR\ 1o T a2
1 M5 1 1 My 1MZ 2 1
a2 (oLt My Ly 1My 1My 2, 1
e Z( 12 M2 12) 12 M} " 6 M2 3% + 35
a oo (1 B 22 1 _
4WS%VC%VMZ (+2> Z{{(Qfg 4Qf8w) =+ 1} <GCUV F]_z(f, f, Z))
7
(328)
" (v~ o1, )
=i uv — Lo\J,J,
M
2 2 2
SMBy, = SMPy, + 5MB, (329)
a 31 1)
2 My <——+— Cuv
471'8‘2/1/ { 6 C%V
17 4 1
Fo(Z, W, W) |4cs + — — — —
Th(ZW, )<CW+3 332, 12C§V>
+Fo(H, W, W) L My | 1M + Fo(A, W, W) (45 )
0 9 } 12M{}V 3M5V 0 9 9 SW
1 M3 3 1 1 M}y 1M3
log M2, (228 2 % )\ yoom2 (2228 2 ME
e W( 12MZ 2 12c§V)+°g T\ T2 ME ~ AME,
tloe M2 (2 24 1M§+1M§,+7 1 1]
&z 122, " 12d, ) T2ME T6ME 18 23,  12df,
(330)
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2 _ a1 1 B / )
OMiyp = 4%5%VMW <+2) do%b:let[‘l (6CUV Foo(f, f', W)
331
2 ( )

C 2m§F T e Wi YT
UV+M_5V 1(f7fa ) M_‘%V 1(faf7 )]

2 2
_mf +2mf
MW

10.2 Higgs part

577/
2
1 1 1 . 1. 1 m 1/2 1/2
6z = 2 || - 4c+—e+5--Y—L|c §ZH2 4572 (332
H =, (12, 7271377 2 4;Mﬁ, v |+ 05 finy + 024 fin g (332)
572 = Fow,w, ) (—+ — 15
H,finb — 4775%4/[0( » Vs ) —5—5
+Go(W, W, H) LMy 1, 3My M?
AT\ 8 MR, 2 T2y ) A
1 1
Fo(Z,Z,H) | —— — —5-¢
(2,2, )( 1213, e) (333)
+Go(Z,Z,H) 1My 1 ;3 M M?
O TI\16 M2, 4k, A, M)
+Go(H, H, H) 9 Mp M|
O\ 5 1602, )
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6ZH,fin,f: 47TSIZ/I/Z4M[%V FO(f7f7H)+MH 1- M]%[ GO(f7f7H) (334)
f
SM?
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10.3 Charge renormalization

(a) Aa Z,H, X3 (b) w, X
() A ZHxs (b)
Fe(qz)_ T 4 Y
q, K
q, K

Figure 6: Electron self energy and eeA vertex

In order to calculate the charge renormalization constant JY, we calculate the eeA one-loop
vertex I'#(0). Here, the momentum of A is 0 and electrons are on mass-shell.
The diagrams are shown in Fig.6. Due to the identities

0 -1 -1 1
3—m(1)+/—m):p+/—m7u/p+/_m (338)

and
0 —2(p+ O+

1
% ((p+g)2 —M2> - ((p+g)2_M2)27 (339)

63



The major part of terms in I'¥(0) can be calculated by the corresponding fermion self energy.
Using the notation in Fig.6,

@AZHxs  THO) = (~0) 5-207) (310
O 2
W, x  Te(0) = (—¢) 5 =207 +G¢. (341)
Opu s
We write the (b) terms for I'#(0) explicitly.
2
e -1 N
B A 342
6<\/§sw> N R (- VBT (342)
B =L, A=~,L, N =2gftr — (1 —a)((>gP + (Pg*) WW
B = (1me/Mw)L, A = (me/Mw)R, N = 20+ XX
VTN B = 5L, A= (me/Miw)R,N = (1— &) Miyg™ wy O
B = (me/Myw)L, A = 7oL, N = (1 — &) My g®* W
The terms proportional to (1 — &) contribute to G¥ term.
2 mn
w_ e ) . d / d*e 1
Ge ¢ (\/58{/[/ (1 a) dMVZV i(271')” 2 — MI%/
(344)
['y”L 1 AL+ LL 1 ML — AL 1 meR — meL 1 'y“L}
b=/ b=/ =1 T

In the handling of the numerator, we can use the mass-shell condition to replace leftest(rightest)
P by me. After the integration by ¢ and differentiation by MI%/,

2 1
MZL(L> 1_~/ [2< 1_1 D> 9D, % 22__9”} _9~E],
G* 1672 \ o ( Q) Odm T C’UV+2 ogDy | + 2D2+meaj D, (—29*L)
(345)
where Dy = x M3, — x(1 — z)m?2. After the integral by = we obtain
Gl =~ (1—&)(Cuy — log M2,y L (346)
4m sy,
Here it should be noted that the final result is independent of the electron mass me..
As defined in Sec.7.5,
S(p?) = K1l + Ky p+ Ksy pys (347)
where we have dropped Ksvs5. Then
0
—%(p%) = 2p*(K1l + Ky p+ Ksy py5) + K-y* + K57y (348)
Opy
Using the identity 2p* = py* + v* p and the mass-shell condition, it becomes
0
7o 2") = (2meK7(mg) + 2mZKL (mg) + Ky (m2))y" + Ksy (ml)y"ys
a p=m (349)

= 267124 L — 26 72" R
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Here Eq.224 is used. We obtain
T4(0) = (—e) [~20Z2° 4" L — 2027 4" R + G (350)

The counter term for eeA vertex, I'#(0), is defined in Sec.7.4.8. The sum of loop term and
the counter term is as follows.

T4(0) =T#(0)+I%(0)

[

(351)

= (—ey™) <5Y N S—Waz;@ + [— ©  5ZYPML 4+ GE
cw 2swew

The second term ([- - -]), which is proportional to 1 —a and 4*L becomes 0 by Eq.346 and Eq.317.
By the renormalization condition (Eq.225) I'#(0) = 0,

5V = —62Y2 + W72 (352)
cw
By Eq.316 and Eq.317,
a | 7 12
§Y = — ¢ —=(Cuv — log M%) — = + 2 > Q3(Cuv — logm?) ¢ . (353)
47 2 3 3 7
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