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Abstract

We present the full O(α) electroweak radiative corrections to single Higgs production in e+e− .
This takes into account the full one-loop corrections as well as the effects of hard photon radia-
tion. We include both the fusion and Higgsstrahlung processes. The computation is performed
with the help of GRACE-loop where we have implemented a generalised non-linear gauge fixing
condition. The latter includes 5 gauge parameters that can be used for checks on our results.
Besides the UV, IR finiteness and gauge parameter independence checks prove also powerful
to test our implementation of the 5-point function. We find that for a 500GeV machine and a
light Higgs of mass 150GeV, the total O(α) correction is small when the results are expressed
in terms of αQED. The total correction decreases slightly for higher energies. For moderate
centre of mass energies the total O(α) decreases as the Higgs mass increases, reaching −10% for
MH = 350GeV and

√
s = 500GeV. In order to quantify the genuine weak corrections we have

subtracted the universal virtual and bremsstrahlung correction from the full O(α). We find, for
MH = 150GeV, a weak correction slowly decreasing from −2% to −4% as the energy increases
from

√
s = 300GeV to

√
s = 1TeV after expressing the tree-level results in terms of Gµ.
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1 Introduction

Uncovering the mechanism of symmetry breaking is one of the major tasks of the high

energy colliders. Most prominent is the search for the Higgs particle. Although the LHC

should not miss this particle even if it weighed up to 1TeV, precision measurements on

the Higgs properties will only be conducted in an e+e− collider. There are two important

mechanisms for Higgs production in e+e− . The Higgsstrahlung process, e+e− → ZH and

the W -fusion process, e+e− → νeν̄eH . The former is the dominant one at small (in the

LEP2 range say) to moderate energies but decreases rather fast with energy. At TeV ener-

gies the W -fusion process dominates by far for Higgs masses up to 1TeV. Even at 500GeV

this t-channel process is dominant for Higgs masses in the range preferred by the indirect

electroweak precision data[1] and remains an important component for all Higgs masses at

energies of the linear collider. Tree-level computations of Higgs production are rather well

under control[2, 3], including interference of the W fusion process with the Higgsstrahlung

process. Note however that the complexity of the process e+e− → νν̄H precludes a

full analytic result for the total cross section even at tree-level, although the differential

cross section can be cast in a very compact form[2, 3]. Full radiative corrections for

Higgsstrahlung have been considered by a number of groups[4], while a proper one-loop

treatment of the fusion process is still lacking despite the importance of the process for

the linear collider physics program. Some recipes have been suggested[5, 6] to include

parts of the radiative corrections to the fusion process but considering the domain of va-

lidity of these approximations
√

s,MH ¿ 2mt, they are expected not to be precise for the

interesting range of Higgs masses(preferred by the latest precision measurements[1]) and

next collider energies. One-loop contribution to the HWW vertex has been considered on

the basis that it might constitute a good approximation for the fusion process[7], but it

rests to see how well this approximation fares in comparison of the full calculation. Very

recently one-loop radiative corrections to this process have been investigated within the

minimal supersymmetric model but again by only taking into account the contribution

of the fermions and sfermions to the H/hWW vertex[7, 8]. It is the aim of this letter to

summarise the results of the full radiative corrections to single Higgs production in e+e− ,

including both the fusion and Higgsstrahlung processes in the SM (Standard Model).

We include both the virtual and soft corrections as well as the hard photon radiation. A

longer paper will detail our computation and results and will look into the issue of finding

approximations to the full result1.

1Preliminary results have been presented at the Workshop RADCOR2002[9]. At this meeting the
FIRCLA[10] group exposed their plans and techniques, different from ours concerning Feynman integration,
for tackling the calculation of this process. While finalising this letter we also learnt of a calculation by
A. Denner, S. Dittmaier, M. Roth and M. Weber, in preparation.
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A standard hand calculation using the usual techniques could hardly be attempted for

such 2 → 3 processes at one-loop. Considering the ever increasing power of computers, the

possibility of parallelisation and the fact that the whole procedure of perturbation theory

consists of algorithms that can be directly translated on a computer it seems that most, if

not all, complex calculations in high-energy physics can be automated. This is especially

true for electroweak processes where various scales and masses enter the calculations.

GRACE-loop [11] from which our results are derived is such a program. GRACE [12], the

tree-level component of the system, has been tested and heavily used for tree-level cross

sections up to 6-fermions in the final state[13]. GRACE-loop has been exploited and

checked thoroughly for a variety of 2 → 2 processes in the electroweak theory [14]. The

system which requires as input, a model file that describes all the interaction vertices

derived from a particular Lagrangian can generate all the necessary Feynman graphs

together with their codes so that matrix elements can be generated before being processed

for the calculation of the cross section and event generation. For loop processes, there is

a symbolic manipulation stage (either FORM[15] or REDUCE[16] ) that handles all the Dirac

and tensor algebra in n-dimension for all the interference terms between tree-level and

1-loop diagrams and automatically applies the Feynman trick for the propagator. This

is then passed to a module that contains two libraries for the loop integration containing

the FF package[17] as well as an in-house numerical code. The system together with the

one-loop renormalisation program is described in detail in [14]. As far as the calculation

of one-loop processes is concerned, a series of powerful tests are implemented in the code

as described in [14] and as will be presented below for e+e− → νν̄H .

2 Tree-level results, setting-up the loop calculation

Our input parameters for the calculation of e+e− → νν̄H are the following. Throughout

we expressed our results in terms of the fine structure constant in the Thomson limit

α−1 = 137.0359895 and the Z mass MZ = 91.1876GeV. Our on-shell renormalisation

program uses MW as input parameter, nonetheless our numerical value of MW is derived

through ∆r[18]2. MW thus changes as a function of MH . For the the lepton masses we

take me = 0.510999MeV, mµ = 105.6584MeV and mτ = 1.777GeV. For the quark masses

beside the top mass Mt = 174GeV, we take the set Mu = Md = 58MeV, Ms = 92MeV,

Mc = 1.5GeV and Mb = 4.7GeV. With these values we calculate ∆α(MZ) = 0.059258.

With this we find for example that MW = 80.3767GeV for MH = 150GeV and MW =

80.3158GeV for MH = 350GeV. Especially for the Higgsstrahlung subprocess we require

2We include NLO QCD corrections and two-loop Higgs effects. We take αs(M2
Z) = .118 together with

Gµ = 1.16639× 10−5GeV−2.
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a Z-width in order to regulate the Z → νν̄ resonant contribution. We have taken a

constant fixed Z-width, ΓZ = 2.4952GeV and applied it to all Z propagators. This

implementation of the Z width will also be carried over to the one-loop case, see below.

Unless when otherwise stated our results refer to the full e+e− → νν̄H , summing over

all three types of neutrinos with, for electron neutrinos, the effect of interference between

fusion and Higgsstrahlung.

We have checked that our tree-level results are in very good agreement with those in

[2] after expressing them in terms of Gµ. However since we are considering the effect of

radiative corrections, within our scheme we prefer showing all our results using α. We will

only comment on the Gµ scheme at the end of this letter. We find for example for
√

s =

500GeV and MH = 350GeV that σtree,total = 4.603fb at tree-level for the contribution of

all three neutrinos. In an attempt to separate the different contributions to single Higgs

production, we will refer to the s-channel as given by σs = 3 × σ(e+e− → νµν̄µH). The

bulk of this contribution is given by σ(e+e− → ZH)×BZ→inv. , BZ→inv. ' 20%. We will

define the t-channel as σt = σtotal− σs, this implicitly means that the interference term is

included in this contribution. These definitions will be carried over to the one-loop case

as well.

In Fig. 2 we have also included the tree-level cross section. They are shown as a

function of the centre-of-mass energy for a light Higgs of mass MH = 150GeV as well as a

function of the Higgs mass at a centre-of-mass of 500GeV. All integration over phase space

are done with the help of BASES, see[12]. These figures clearly show the importance of the

t-channel contribution pointed out in the introduction. For a low Higgs mass of 150GeV,

although the s-channel still dominates at
√

s = 300GeV, very quickly at
√

s = 500GeV

it is the t-channel that dominates. For the latter energy as the Higgs mass increases,

the t-channel contribution drops much quickly than the s-channel, where both merge

around MH = 380GeV to MH = 390GeV, but very quickly around the ZH threshold

for MH ∼ 408GeV, the s-channel drops precipitously leaving the t-channel as the sole

contribution for the whole process.

Neglecting all Goldstone-electron coupling (proportional to the electron mass), one

has at one-loop 249 diagrams (for νeν̄eH, and 146 for νµν̄µH) including 15 pentagons

(5-point functions) compared to only 2 diagrams at tree-level, one for the fusion process

and one for the Higgsstrahlung. Keeping the electron Yukawa coupling one has a total of

1350 diagrams (98 pentagons corresponding to 5-point functions) at one-loop. In running

our program to derive cross sections we only use the set of 249 diagrams, we nonetheless

keep the electron mass for a proper handling of the collinear singularities. To perform

our extensive checks especially those of gauge-parameter independence, at the level of

the differential cross section, we keep the full set of 1350 diagrams. It is impossible to
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Figure 1: A small selection of different classes of loop diagrams contributing to e+e− →
νν̄H . We keep the same graph numbering as that produced by the system. Graph 1312

belongs to the corrections from self-energies, here both the virtual and counterterm contri-
butions are generated and counted as one diagram. Graph 87 shows a vertex correction.
Both graphs can be considered as resonant Higgsstrahlung contributions. Graph 249 rep-
resents a box correction, it is a non resonant contribution but applies also to the νµ, ντ

channels. Graph 486 is also a box correction which is non resonant and applies only to νe.
Graph 541 and Graph 565 are typical bosonic and fermionic corrections to the WWH
vertex for the fusion process. Graph 846 shows a pentagon correction that also applies to
µ and τ neutrinos, this again can be considered as a non-resonant contribution. Graphs

827 and 828 are pentagons that only contribute to e+e− → νeν̄eH .
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show all the contributing diagrams here. They may be downloaded or visualised at this

location[19]. All these diagrams are generated and drawn by gracefig the Feynman

diagrams generator of GRACE . A representative selection of diagrams is shown in Fig. 1.

The results of the calculation are checked by performing three kinds of tests at some

random points in phase space. For these tests to be passed one works in quadruple

precision. We first check the ultraviolet finiteness of the results. This test applies to the

whole set of the virtual one-loop diagrams. In order to conduct this test we regularise any

infrared divergence by giving the photon a fictitious mass (we set this at λ = 10−15GeV).

In the intermediate step of the symbolic calculation dealing with loop integrals (in n-

dimension), we extract the regulator constant CUV = 1/ε−γE+log 4π, n = 4−2ε and treat

this as a parameter. The ultraviolet finiteness test gives a result that is stable over 30 digits

when one varies the dimensional regularisation parameter CUV . This parameter could

then be set to 0 in further computation. The test on the infrared finiteness is performed

by including both loop and bremsstrahlung contributions and checking that there is no

dependence on the fictitious photon mass λ. The soft bremsstrahlung contribution is

calculated analytically where the radiator function factorises as is standard. We find

results that are stable over 23 digits when varying λ.

Gauge parameter independence of the result is performed through a set of five gauge

fixing parameters. For the latter a generalised non-linear gauge fixing condition[20] has

been chosen.

LGF = − 1

ξW

|(∂µ − ieα̃Aµ − igcW β̃Zµ)W µ+ + ξW
g

2
(v + δ̃H + iκ̃χ3)χ

+|2

− 1

2ξZ

(∂.Z + ξZ
g

2cW

(v + ε̃H)χ3)
2 − 1

2ξA

(∂.A)2 . (2.1)

The χ represent the Goldstones. We take the ’t Hooft-Feynman gauge with ξW = ξZ =

ξA = 1 so that no “longitudinal” term in the gauge propagators contributes. Not only this

makes the expressions much simpler and avoids unnecessary large cancelations, but it also

avoids the need for high tensor structures in the loop integrals. The use of five parameters

is not redundant as often these parameters check complementary sets of diagrams. For

example the parameter β̃ is involved in all diagrams containing the gauge WWZ and their

Goldstone counterpart, whereas α̃ checks WWγ and δ̃ is implicitly present in WWH. For

each parameter of the set ζ = (α̃, β̃, δ̃, κ̃, ε̃) the first check is made while freezing all other

four parameters to 0. We have also made checks with two parameters non-zero. This not

only checks cross products between tree-level and loop diagrams and cross products of

two vertices within the same diagrams, but also because products of the gauge parameters

(like α̃× β̃) occur in the definition of some vertices. In principle checking for 2 or 3 values

of the gauge parameter should be convincing enough. We in fact go one step further and
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perform a comprehensive gauge parameter independence. To achieve this we generate for

each non-linear gauge parameter ζ, the values of the loop correction to the total differential

cross section as well as the contribution of each one-loop diagram contribution for the five

values ζ = 0,±1,±2. We will show here explicit checks performed on one single parameter

at a time, keeping the other four parameters to zero. We have also made checks by giving

different values to the latter four parameters, obtaining essentially a similar precision on

these checks as the ones shown below.

The one-loop diagram contribution from each loop graph g, is defined as

dσg = dσg(ζ) = <
(
T loop

g · T tree †) . (2.2)

T tree is the tree-level amplitude summed over all tree-diagrams. Therefore the tree-level

amplitude does not depend on any gauge parameter3. T loop
g is the one-loop amplitude

contribution of the one-loop diagram g. A rapid look at the structure of the Feynman rules

of the non-linear gauge leads one to conclude that for e+e− → νν̄H each contribution

is a polynomial of (at most) third degree in the gauge parameter and thus, that each

contribution, dσg may be written as

dσg = dσ(0)
g + ζdσ(1)

g + ζ2dσ(2)
g + ζ3dσ(3)

g , (2.3)

For each contribution dσg, it is a straightforward matter, given the values of dσg for

the five input ζ = 0,±1,±2, to reconstruct dσ(0,1,2,3)
g . This is what we do. In fact for each

set of parameters we automatically pick up all those diagrams that involve a dependence

on the gauge parameter. The number of diagrams in this set depends on the parameter

chosen. In some cases a very large number of diagrams is involved. For the process at

hand this occurs with the parameter δ̃ where about 500 diagrams are involved in the

check.

We then verify that the differential cross section is independent of ζ

dσ =
∑
g

dσg =
∑
g

dσ(0)
g , (2.4)

and therefore that

3Note that in the process at hand, some individual tree diagrams depend on the gauge parameter δ̃
and ε̃ giving extremely small contributions proportional to the electron mass. After summing all tree-
level diagrams, the gauge parameter independence at tree-level for this process is exact within machine
precision.
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# graphs sum3 sum2 sum1

α̃ 149 − 10−28 10−30

β̃ 314 − 10−31 10−23

δ̃ 477 10−20 10−20 10−26

κ̃ 122 − 10−23 10−23

ε̃ 128 − 10−21 10−30

Table 1: Numerical size of sumi for each non-linear gauge parameter. ’# of graphs’ means
the number of loop graphs that contributes to each sum depending on the gauge parameter.
− means that no diagram is involved. ΓZ = 0 for this test.

sumi =

∑
g dσ(i)

g

Maxg(|dσ
(i)
g |)

, i = 1, 2, 3 , (2.5)

vanishes. We must point out that for this high precision test to be passed we set ΓZ = 0

so that no extra gauge breaking due to the introduction of a width is generated. We thus

choose a non-singular point in phase space for this check on the differential cross section.

As seen from Table 1 agreement within 20 to 30 digits is observed. This agreement

gets better if one gives the electron mass a higher value, say 1GeV. The gauge parameter

dependence check not only tests the various components of the input file (correct Feyn-

man diagrams for example, even finite parts of many counterterms) but also the symbolic

manipulation part and most important the correctness of all the reduction formulae for all

the tensor integrals including those of the pentagon. It is known that the tensor integrals

especially those of high rank are the most difficult to compute. The (complicated) tensor

reduction of these integrals to the basic scalar integrals is tested to a very large extent

through the 5 gauge parameters we have introduced. We stress that this test is done nu-

merically after the reduction formulae have been performed and all scalar integrals have

been evaluated.

Talking of parametric integrals, all tensor reductions are done following the standard pro-

cedure and then passing the scalar integrals to the FF package[17] or to our own specially

optimised routines when photon exchange is involved. The FF package had also been

previously checked against other routines that we have at our disposal. The pentagon

integrals are expressed in terms of boxes as is now standard[21], our procedure for both

the scalar and tensor parts is outlined in the Appendix. Note that the decomposition of

the scalar part is also indirectly checked through the infrared finiteness test. Indeed the

scalar part of the photon exchange pentagon, Graph 828 of Fig. 1, contains an infrared

factor.

We work in the on-shell renormalisation scheme closely following [22]. Apart from masses
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and couplings, renormalisation is also carried for the fields. In particular we also require

the residues of the renormalised propagators of all physical particles to be unity. As

known[4], this procedure leads to a (very sharp) threshold singularity in the wave function

of the Higgs at the thresholds corresponding to MH = 2MW , 2MZ . Solutions to smooth

this behaviour[23], like the inclusion of the finite width of the W and Z, do exist but

we have not implemented them yet in the present version of GRACE-loop . Therefore

when scanning over MH it is sufficient to avoid these regions within 1GeV around the

thresholds.

As a separate check on our implementation we have also computed H → WW

and e+e− → ZH, after tuning our parameters we find excellent agreement with the

literature[4, 5].

3 Results

3.1 Full O(α) results

The results we show here include all 3 neutrino species. We first discuss the full O(α)

which includes the hard bremsstrahlung part. At this stage we test the stability of the

result of the full O(α) correction against a change in the value of kc. kc is a soft photon

cut parameter that separates soft photon radiation and the hard photon performed by

the Monte-Carlo integration. The hard bremsstrahlung part, that is the radiative process

e+e− → νν̄Hγ with a hard photon, has been calculated with exact matrix elements

(keeping the electron mass) by Grace and the integration over phase space is done by

BASES. We do not, in this paper, rely on a structure function approach. The results with

kc = 0.1GeV and kc = 0.001GeV are in agreement within the precision of the Monte Carlo

integration package BASES, namely 4 digits.

The separation between the s-channel and the t-channel is done in the same way as with

the separation done at tree-level. As mentioned earlier when discussing the tree-level

part, because of the resonating Z that couples to the final νν̄, one still needs to regulate

this behaviour by the introduction of a width. For the one-loop diagrams this is our

procedure. Although it is only the resonating Z which couples to νν̄ that needs a width

in order to regulate the cross section, we in fact, in a spirit of uniformity and consistency,

apply a constant width to all Z propagators not circulating in the loops. For example, at

one-loop, it is only the Z appearing in graph 87, 249 and 1312 of Fig. 1 to which we apply

a constant width. Note also that for those one-loop diagrams with a self-energy correction

to any Z propagator, an example of which is shown in graph 1312 of Fig. 1, we follow a

procedure along the lines described in [24]. In these instances the propagator writes as a
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tree-level propagator with the constant width, times a correction factor calculated from

the renormalised two-point function. Suffice to say that this correction is regular at the

Z pole. More details will be described in[14]4. It should be noted that in the one-loop

diagrams that contribute to e+e− → νµν̄µH, and which we classify as s-channel, there

are diagrams which can not be deduced from the one-loop corrections to the s-channel

2 → 2 process e+e− → ZH. Graph 249 in Fig.1 is one example. The relative correction

for all three (s-channel, t-channel and total) contributions is defined as δO(α) ≡ σO(α)

σtree
− 1

and will be referred to as the full one-loop O(α) correction.

One important remark is that the overall correction in the s-channel and t-channel

are quite different. For a light Higgs of mass 150GeV the correction to the s-channel

Higgsstrahlung contribution is positive for practically all centre of mass energies of the

next linear collider, see Fig. 2. It rises rather sharply to reach about +20% for a centre-of

mass energy of 1TeV, however as will be argued below, the bulk of these large corrections

are due to virtual and real QED corrections. Moreover in regions where these corrections

are large, the Higgsstrahlung contribution is rather small. On the other hand the total

correction in the t-channel for a small Higgs mass of 150GeV is negative throughout the

range
√

s = 350GeV to 1TeV, and is almost constant past
√

s = 500GeV, reaching about

−2%. Combining these two contributions, we see that the full correction to the whole

process also remains small for a small Higgs mass. In fact at 500GeV it is almost at

its lowest of about 0.2%. This is an accidental cancellation between the contributions

of both the t-channel and the s-channel at this energy. We have also studied the Higgs

mass dependence of the corrections. First of all note that all our results capture the sharp

spikes for MH = 2MW , 2MZ , the top threshold is also visible when we plot the relative

corrections. For 500GeV the s-channel O(α) correction decreases for higher Higgs masses,

eventually turning negative with a value −6% for MH = 350GeV. It then drops rather

sharply to reach as much as −30% at the ZH threshold, past which this cross section is

completely negligible. This behaviour is largely due to QED corrections and is driven by

the kinematics of the two-body e+e− → ZH. At 500GeV the correction in the t-channel

contribution remains negative for all Higgs masses that we considered, i.e. in the range

115 − 450GeV. It drops steadily from about −2% for MH = 115GeV to about −10% at

350GeV close to the top pair threshold. It then increases up to the ZH threshold before

dropping sharply around the ZH threshold. Most of the large corrections are due to QED

corrections.

4There has been no definite and completely general and satisfactory implementation of the width of an
unstable gauge particle in loop calculations. Many comparisons with different implementations [25, 26]
have been made. The “constant Z width” is more appropriate than the running width and reproduces
the result of much more involved schemes (like the ‘fermion scheme”[25]). For this s-channel neutral
gauge boson implementation of the width, the different implementations should have a negligible effect.
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Figure 2: The two figures in the first row show the cross section as a function of centre-of-
mass energy for a light Higgs of mass MH = 150GeV. We show the s-channel, t-channel
and the sum of these (total) cross sections as defined in the text. Both the tree-level
(dashed lines) and the full one-loop correction (full lines) are shown. In the second panel
we show the relative correction in per-cent. In the second row, the dependence of the cross
section as a function of the Higgs mass at a centre-of-mass of 500GeV is shown.
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3.2 Extraction of the QED corrections

As is known large QED corrections require a higher order treatment. In order to quantify

the effects of the genuine weak corrections, one could try subtract these QED corrections.

This can be done rather easily for the s-channel contribution, where the correction can

be readily extracted from the electromagnetic correction to the eeZ vertex and the soft-

photon bremsstrahlung part. Indeed our computation produces at an intermediate stage

the result including the soft bremsstrahlung correction, that is before the inclusion of hard

photons. The cut on the photon energy, kc, has been taken sufficiently small, kc = 0.1GeV.

These corrections without hard bremsstrahlung include thus the QED virtual and soft

bremsstrahlung (which depend on kc) as well as the genuine weak correction to the process.

For this s-channel process the latter QED corrections are given by the universal soft

photon factor that leads to a relative correction

δQED
V +S =

2α

π

(
(Le − 1) ln

kc

Eb

+
3

4
Le +

π2

6
− 1

)
, Le = ln(s/m2

e) . (3.6)

where me is the electron mass and Eb the beam energy s = 4E2
b . Subtracting this contri-

bution from our kc dependent (numerical) result reproduces the genuine weak correction,

δW,s−channel.

To quantify in an unambiguous way the effect of the weak correction in the t-channel

we have also subtracted this universal factor δQED
V +S from the full O(α) correction. It can

be shown that the leading (infrared and collinear) contributions are given by the universal

factor, Eq. 3.6[14]. This procedure also paves the way to a resummation of these large

QED factors for the full process which is conducive to a Monte-Carlo implementation

as could be done for instance through a QED parton shower[27]. This will be treated

elsewhere. Coming back to the weak corrections, we will denote by δW,t−channel and δW,total

the weak correction for the t-channel and the full process based on the subtraction of the

universal QED factor in Eq. 3.6.

For a light Higgs mass (MH = 150GeV), the weak correction for the s and t-channels

have a different behaviour as the energy increases, see Fig. 3. The former varies from

about 6% at
√

s = 300GeV to −2.5% at
√

s = 1TeV. Past 400GeV where it dominates,

the weak correction to the t-channel varies rather slowly from 7% at
√

s = 400GeV to

about 5% at
√

s = 1TeV. The dependence of the weak corrections on the Higgs mass for

a moderate centre-of-mass energy,
√

s = 500GeV, reveals that up to the ZH threshold

these corrections increase with the Higgs mass (most probably due to M2
H terms from

the Higgs self-coupling as in e+e− → ZH), apart from the clearly visible spikes at the

W,Z and the top thresholds. Apart from the drop in the t-channel contribution around
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the ZH threshold, the weak correction in the t-channel picks up again and as expected

merges with the correction to the full process.

Figure 3: Relative weak corrections as defined in the text, for the t-channel (δW,t−channel),
s-channel (δW,s−channel)and the whole process (δW,total). We also show the full O(α) cor-
rection for the whole process in the first panel. Also shown is the weak correction for the
full process expressed in the Gµ scheme (δG

w,total), see text.

3.3 Expressing the weak corrections in terms of Gµ

Expressing the corrections in the Gµ scheme or in other words had we expressed our tree-

level results in terms of Gµ, thus subtracting some universal weak corrections (essentially

fermionic contributions) affecting two-point functions, we can have a quantitative measure

of the non-universal weak radiative correction specific to this process. We thus define

for the s-channel and t-channel contributions, these weak corrections as δG
W = δW −

3∆r. Let us briefly summarise our findings for MH = 150GeV where with our input ∆r

contributes about 3% (the leading Higgs mass dependence in ∆r is logarithmic). For the

full contribution with all three neutrinos we find δG
W to be slowly varying (with exactly

the same “slope” as δW,total in Fig. 3), from about −2% to about −4% in the energy range

from
√

s = 300GeV to
√

s = 1TeV. These genuine weak corrections remain therefore well

contained in the full process, but in view of the precision of the e+e− machine they must

be taken into account. Applied to the s-channel with MH = 150GeV, the corrections

with Gµ as an input, are moderate for energies up to 400GeV but they quickly decrease

below about −12% at 1TeV. Such behaviour had been observed in e+e− → ZH[4].
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This is another manifestation of the failure of the Gµ scheme to properly describe the

weak corrections for such processes at high energies. For example it is known that in

e+e− → ZH the contribution of boxes is important. We do not attempt in this letter

to make a thorough investigation of the different loop contributions to e+e− → νν̄H, for

example the fermionic and bosonic contributions. We leave this to a further study. This

could be interesting in order to devise reliable approximations based on a small subset

compared to the large number of contributions for such a complex process. For example,

very recently, the fermionic contributions and especially the effect of the third generation

have been investigated in [8] and [7] with differing results. It could be interesting to see

how well these contributions can reproduce the full result. We also do not report here

on how the distributions in the Higgs variables are affected by the radiative corrections.

We have briefly discussed this in a previous note[9] and leave the full discussion for a

forthcoming paper.

4 Conclusions

We have calculated with the help of GRACE-loop the full radiative corrections including

hard photon radiation to the important Higgs discovery channel at a future high energy

e+e− machine, e+e− → νν̄H . Apart from the usual checks on the ultraviolet and infra-

red finiteness of the result, we have performed tests on the gauge parameter independence

of the results. To this end we have relied on a generalised non-linear gauge fixing con-

dition where one has control over five independent gauge parameters. For a light Higgs

of mass 150GeV for energies ranging from 300GeV to 1TeV we find a modest total O(α)

correction which is within ±2%, being negligible at 500GeV (2 per-mil). We have also

studied the Higgs mass dependence at
√

s = 500GeV. For example with MH = 350GeV

we find a larger O(α) negative correction of about −10%. In order to quantify the weak

correction we have subtracted the universal QED virtual and bremsstrahlung corrections.

In the energy range
√

s = 300GeV to
√

s = 1TeV we find, for MH = 150GeV, that for

the full process the correction ranges from +7% to +5% when the tree-level is expressed

in terms of α. Further investigations and details on this important process are left to a

forthcoming publication.
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A Appendix

Five point functions are calculated as linear combinations of four point functions[21]. Our

method is based on an identity suitable for the Feynman parameter integration, which is

similar to the one described in[28].

A five point function is expressed as

I5 =
∫ d4l

(2π)4

N(l)

D0D1D2D3D4

, (A. 1)

where l is the loop momentum and N(l) is a polynomial of l2 and inner products of l with

other four-vectors. The denominators of propagators are defined as

D0 = l2 −m2
0 = l2 + X0,

Di = (l + ri)
2 −m2

i = l2 + 2l.ri + Xi, i = 1, ..., 4. (A. 2)

We take a set ri (i = 1, ..., 4) of linearly independent momenta. The latter form a

basis for vectors in 4-dimensional space. Therefore with the Gram matrix Aij = ri.rj one

has the following identity

gµν =
4∑

i,j=1

rµ
i A−1

ij rν
j =⇒ l2 =

4∑

i,j=1

l.riA
−1
ij l.rj. (A. 3)

Combining this identity with Eq.(A. 2) we obtain

1 =
4∑

α=0

[aα +
4∑

i=1

l.ribα,i]Dα, (A. 4)

where

ai =
1

∆

4∑

j=1

A−1
ij (Xj −X0), (A. 5)

a0 =
4

∆
−

4∑

i=1

ai, (A. 6)

bi,k = − 2

∆
A−1

ik , (A. 7)

b0,k = −
4∑

i=1

bi,k, (A. 8)

∆ = 4X0 +
∑

i,j

(Xi −X0)A
−1
ij (Xj −X0). (A. 9)
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This immediately shows that the five point tensor integral can be reduced to 5 box inte-

grals.

Now we introduce the Feynman parameters. It is easy to see that

I5 =
∫ d4l

(2π)4

∫ 4∏

λ=0

dxλδ(1−
4∑

β=0

xβ)
N(l)

D4

∑
α

(
aα +

4∑

i=1

l.ribα,i

)
δ(xα). (A. 10)

Making a shift in the loop momentum , l → l − t t =
∑4

i=1 xiri, so as to eliminate

linear terms in the loop momentum in D, we obtain our reduction formula

I5 =
∫ d4l

(2π)4

∫ 4∏

λ=0

dxλδ(1−
4∑

β=0

xβ)
N(l − t)

D4

4∑

α=0

(
āα +

4∑

i=1

l.ribα,i

)
δ(xα)

ā0 = a0 − 2/∆ , āi = ai , D = l2 +
4∑

α=0

Xαxα −
4∑

i,j=1

Aij xixj. (A. 11)

For the scalar pentagon, N(l) = 1, only āα in the previous equation contributes.
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