scminami group Automatic Feynman Amplitudes Computation and its Application to High Energy Physics (HEP)

Review Committee Meeting of KEK Large Scale Simulation Program December 12 - 13, 2002

scminami group

- Head : prof.Y.Shimizu
- members : KEK and Universities
- members : theorists, experimentalists, computer-scientists
- International collaboration : France, Russia, Poland, Italy,
- Systematic development for tools and systems for HEP

Introduction

- Systems for Automatic Computation of cross sections essential tools in HEP
- Complicated calculation
 EW, susy : many particles and vertices
 SM: particles=24, vertices=139
 MSSM: particles=55, vertices=3553
 final states: multi-body
 high statistics: higher-order(loops)

Beyond man-power

Sugawara, ICHEP2000

Automatic Computation

- \Rightarrow Automatic calculation of cross sections in HEP.
- \Rightarrow Large scale computation beyond man-power.
- \Rightarrow Essential tools for current and future HEP.
- Automatic computation systems working in the world ALPHA(Italy), CompHEP(Russia), FDC(China), FeynArts/FeynCalc series(Germany), GEFICOM(Germany/Russia), GRACE(Japan), MadGraph(USA), NIKHEF setup(Holland) ...

2. Examples of Achievements

- 4-fermion generators(76 processes) for LEP-2 experiments(ALPHA, CompHEP, GRACE).
- $e^-e^+ \rightarrow 6$ -fermion(ALPHA,GRACE), $e^-e^+ \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 q_1 \bar{q}_2 q_3 \bar{q}_4$ (GRACE), $\gamma \gamma \rightarrow 4$ -fermion(CompHEP).
- $ep \rightarrow el^+l^-X(\text{GRACE}).$
- $p\bar{p} \rightarrow Wb\bar{b}j(CompHEP), pp \rightarrow W^+W^-b\bar{b}j (MadGraph), gg, q\bar{q} \rightarrow 8g(ALPHA).$
- 1-loop calculation for e⁻e⁺ → W⁻W⁺, γγ → W⁺W⁻, W⁺W⁻ → W⁺W⁻ (FeynArts/FeynCalc,GRACE), e⁻e⁺ → W⁺μ⁻ν_μ (GRACE).
- Hadronic Higgs decay in O(α²_s), O(αα_s) corrections to Z → bb̄, etc. (GEFICOM).
- 4-loop β-function(~50,000 diagrams) (NIKHEF setup).

system components

- Diagram generation for the input process
- Amplitude/Matrix element generation
- Kinematics and Integration (efficiency)
- Event generation (efficiency & weight)
- Peripheral tools: rule generator, diagram selection, QED radiation, PDF, loop integral library, multi-process, color flow and interface for hadronization, etc.

GRACE 1-loop

Many 2 to 2 processes have been checked.

Recent Progress

$$e^+e^- \rightarrow vvH$$

tree:2(12) 1-loop:249(1350)

... includes pentagon diagrams

$e^+e^- \rightarrow v \overline{v} H$

tree diagrams and

first 8 one-loop diagrams

produced by GRACEFIG

$e^+e^- \rightarrow v v H$

... and

some one-loop diagrams

(pentagons)

produced by GRACEFIG

GRACE SUSY (tree/1loop)

- many particles and vertices
- system check: ALL 6-external-particle 582,102 processes are examined by gauge invariance.
- 1-Loop
 - ee tt : MSSM 540×2 , SQCD 20×2
 - ee WW: MSSM 936×3
 - ee h⁰Z : MSSM 1265 × 1
 - ee H^+H^- : MSSM 732 × 3

Higher Loops

• 1-Loop, 2-Loop,...

Huge number of diagrams CPU power, memory size, disk size, ...

 For the check of system, quadruple precision is very important. (Indispensable feature of super computer)

Multi-particle final states

- cross sections ... phase space integral
- event generation ... weight=1 generators are favored
- singularities
 resonance pole, t-channel
 soft singularity, collinear singularity

loop integrals

Monte Carlo Integral

MC integral : VEGAS, BASES importance and stratified sampling

only effective if each singularity is factorizable

singular numerical integral

- VEGAS, BASES ... requires expert technique to choose integral variables
- Existence of "good" variable set is unknown.
 Kinematics database, division of phase space ,... etc.

Numerical integral package for a general singular integrand is WANTED.

DICE, MILX, FOAM, ParInt,...

DICE

• Basic idea

iteratively divide the hypercubes only those give dominant contribution to the integral

DICE vs ParInt

DICE vs ParInt

$$I_{2} = \iint_{-1 < x, y < 1} dx dy \frac{\varepsilon y^{2} \theta (1 - x^{2} - y^{2})}{(x^{2} + y^{2} - a^{2})^{2} + \varepsilon^{2}} \qquad a=0.8$$

	ParInt 1.1	DICE v1.3	Exact
10 ⁻¹	2.6436 ± 0.0018 0.66s 4E5	2.6440 ± 0.0002 2.36s 6E6	2.6436
10 ⁻²	3.1056 ± 0.0006	3.1058 ± 0.0003	3.1056
10 ⁻³	3.1530 ± 0.0001	3.1532 ± 0.0003	3.1530
10 ⁻⁴	3.1577 ± 0.0003	3.1578 ± 0.0003	3.1577
10 ⁻⁵	3.1582 ± 0.0002	3.1583 ± 0.0003	3.1582
10 ⁻⁶	3.1583 ± 0.0001 243s 2E9	3.1578 ± 0.0003 2058s 6E9	3.1583

CPU Time, Sampling points

DICE

$$e^+e^- \rightarrow \mu^+\mu^-\gamma$$
 $\sqrt{s} = 70 \,\text{GeV}$ $k_{cut} = 0.1 \,\text{GeV}$

KECSC : Naive Kinematics, 4-dim integral for DICE 0.1% Acc. required vu-user/user =98.22 %

DICE 0.1% naive kin.	2.9106 ± 0.0029 E-2 nb	171d 2h
DICE 1% naive kin.	2.8517 ± 0.0256 E-2 nb	1d 20h
BASES 1% good kin.	2.9203 ± 0.0016 E-2 nb	5m47s / hp9000
ParInt 1% naive kin.	2.9140 ± 0.0291 E-2 nb	1h59m/AMD800MHz

conclusion

If we require the precise understanding of the present and future HEP, the large scale computation is unavoidable.

Combination of the automated systems and the computational power is one of the essential element of the HEP.