物理学C

剛体の運動エネルギー 慣性モーメント

目標(初回のスライド:再)

質点(物理学A, B)

大きさを持たない。

属性: 質量

記述: 時間

位置

速度

:

直進運動

剛体 (物理学C)

大きさ・形がある(よりリアル)。

変形は考えない。

属性: 質量、それと?

記述: 時間

位置

速度

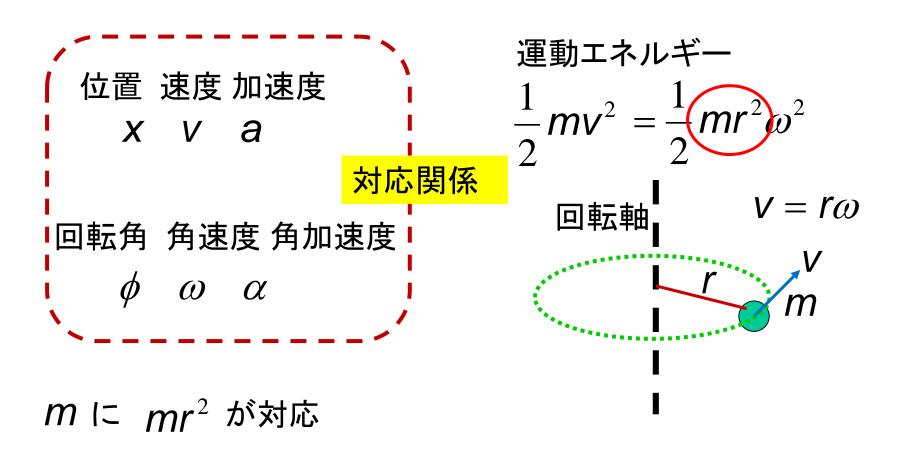
:

並進(直進)運動+回転運動

慣性モーメント

- 剛体の運動 並進運動+回転運動
- 質量:「並進運動」での動かしやすさ、動かしにくさ
- 「回転運動」での動かしやすさ、動かしにく
 - ⇒ 剛体の慣性モーメント I
 - ⇒ 剛体の形や構造を力学的に記述

並進,回転



慣性モーメント /

剛体の運動の対応(p.82表5.1)

並進運動

 $V = \frac{dx}{dt}$ $a = \frac{d^2x}{dt^2}$

回転運動

$$\omega = \frac{d\phi}{dt} \quad \alpha = \frac{d^2\phi}{dt^2}$$

角速度 角加速度

質量

/ 慣性モーメント

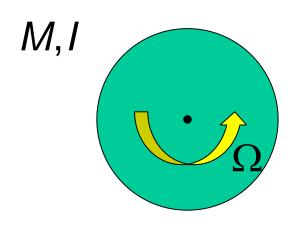
$$p = mv \leftarrow \rightarrow$$

運動量 $p = mV \leftarrow L = I_{\omega}$ 角運動量

運動方程式
$$F = ma$$
 \longleftarrow $N = I\alpha$ 運動方程式

運動エネルギー
$$\frac{1}{2}mv^2 \longleftrightarrow \frac{1}{2}l\omega^2$$
 運動エネルギー

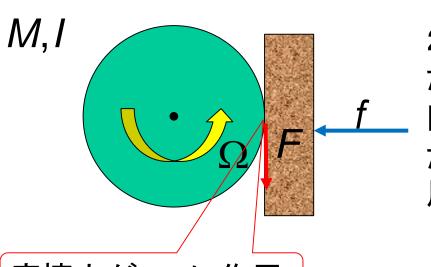
練習一1



質量M, 半径r, 中心のまわりの 慣性モーメントI の円板が一定の 角速度 Ω で自由に回転している。

1)この円板の運動エネルギーを答えよ。

$$\frac{1}{2}I\Omega^2$$



2)この円板に板を力fで押し付けた。動摩擦係数を μ とする。 円板が止まるまでどれだけ回転したか、仕事とエネルギーの関係を用いて答えよ。

摩擦力がここに作用

仕事を表す関係式 (p.51)

$$W = Fs$$

摩擦力 $F=\mu f$

円板の外周が 回転した距離

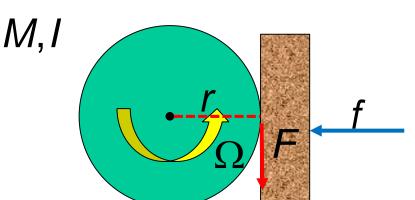
S

円板は止まる

$$\frac{1}{2}I\Omega^2 = \mu f s$$

$$s = \frac{I\Omega^2}{2\mu f}$$

時刻 *t* に ここで停止、 Sの距離だけ円板 の周が動いた $s = r\phi$



3)この円板に板を力fで押し付けた。動摩擦係数を μ とする。 円板が止まるまでどれだけ回転したか、運動方程式を用いて答えよ。

運動方程式

$$N = I\alpha$$
 $\longrightarrow -(\mu f)r = I\alpha$
「ブレーキ」なのでマイナス

等加速度運動の式を使う (p.29)

$$v = at + v_0$$
 $x = \frac{1}{2}at^2 + v_0t + x_0$

$$\omega = \alpha t + \omega_0 \quad \phi = \frac{1}{2}\alpha t^2 + \omega_0 t + \phi_0$$

初期条件
$$t=0$$

$$\omega = \Omega$$
 $\phi = 0$

 $N = -r(\mu f)$

sの距離だけ円板 の周が動いた

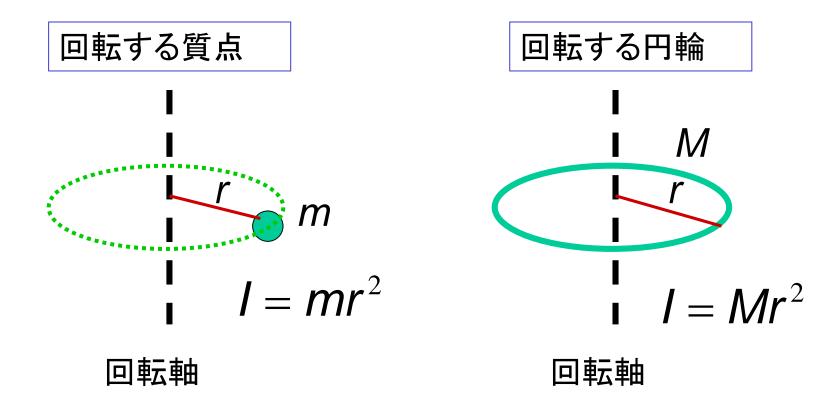
$$s = r\phi$$

$$\alpha = -\frac{r\mu f}{I}$$

$$\omega = \alpha t + \Omega$$
 ⇒ 停止した **⇒** $0 = \alpha t + \Omega$ **⇒** $t = -\frac{\Omega}{2}$

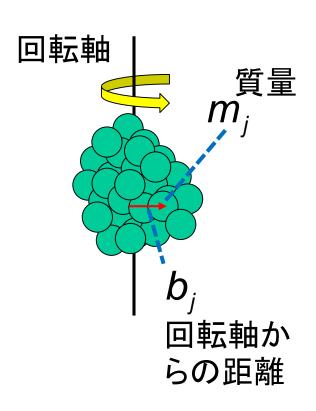
$$\phi = -\frac{\Omega^2}{2\alpha} = \frac{I\Omega^2}{2r\mu f}$$

慣性モーメント



剛体の慣性モーメント

剛体=多数の質点の集まり



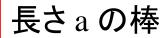
$$I = \sum m_j b_j^2$$

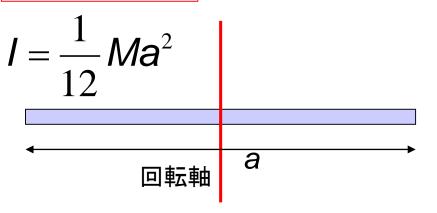
慣性モーメントは剛体 と回転軸で決まる量

解答不能

基本的な立体の慣性モーメント(1)

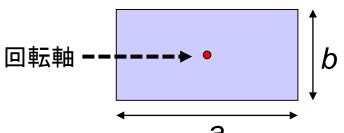
一様な剛体, 質量M, 重心を通る軸 (p.92)





辺 a,b の長方形 の板, あるいは 直方体

$$I = \frac{1}{12}M(a^2 + b^2)$$



13

基本的な立体の慣性モーメント(2)

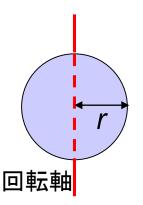
一様な剛体,質量M,重心を通る軸 (p.92)

半径rの球

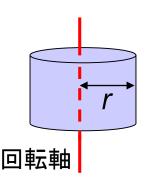
半径 r の円板. 円柱

半径rの円錐

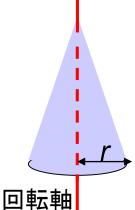
$$I = \frac{2}{5}Mr^2$$



$$I = \frac{1}{2}Mr^2$$

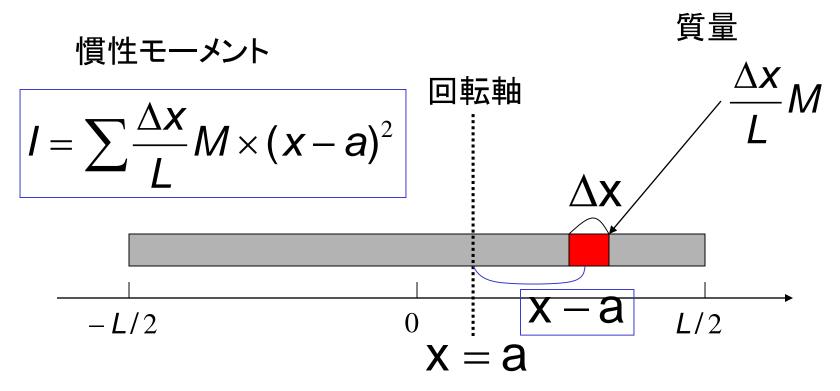


$$I = \frac{3}{10}Mr^2$$



慣性モーメント: 具体例

質量 M, 長さ L の一様な棒



15

慣性モーメント

$$I = \sum \frac{\Delta x}{L} M \times (x - a)^2$$

分割和から積分へ

(p.16:基本パターン)

$$I = \int_{-L/2}^{L/2} \frac{M}{L} (x - a)^{2} dx$$
$$= \frac{1}{12} ML^{2} + Ma^{2}$$

結果の解釈

重心のまわり (a=0 のとき) の 慣性モーメント

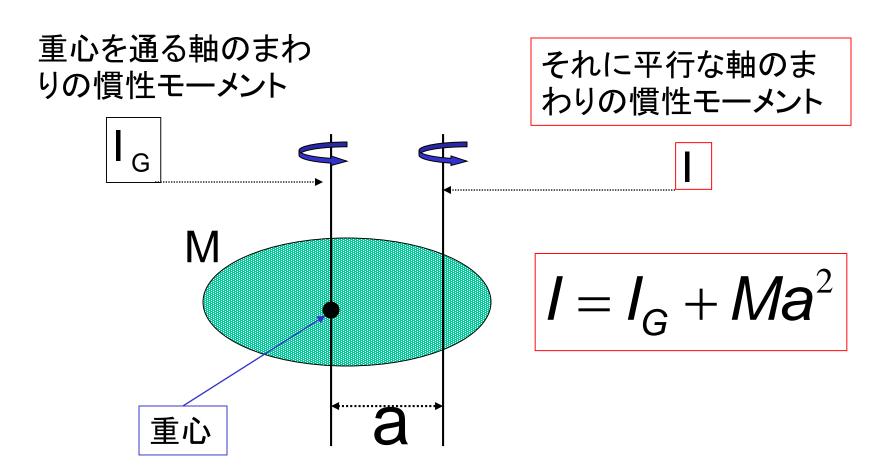
$$I_{G} = \frac{1}{12}ML^{2}$$

左の結果 $I = I_G + Ma^2$

一般化

平行軸の定理

平行軸の定理

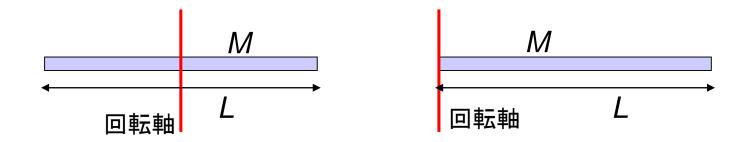


練習一2

一様な細い棒がある。

この棒に垂直で棒の中心を通る回転軸のまわりに ある角速度で棒が回転しているときのエネルギーを E_1 , この棒に垂直で棒の一端を通る回転軸のまわりに 同じ角速度で棒が回転しているときのエネルギーを E_2 とする。 E_2 は E_1 の何倍か。

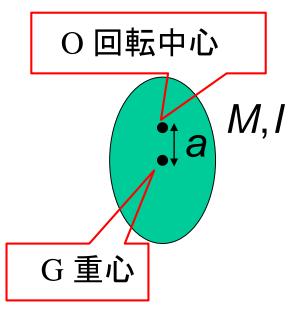
質量を M, 長さを L , 角速度を ω とする。

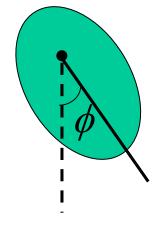


練習一3

質量M, 重心Gのまわりの慣性モーメントがIの板状の剛体が, 図のように, 鉛直面内にあって, 重心Gからの距離がaの点Oで位置を固定されているが, この剛体は点Oを中心として自由に鉛直面内で回転できる(実体振り子)。重力加速度の大きさはgとする。

回転運動の運動方程式を書き、角度 ϕ が 微小であるという近似のもとで、この実体 振り子の振動の周期を答えよ。





練習

辺の長さが a で質量が Mの一様な正方形がある。 正方形の面に垂直で、その1つの頂点をとおる回転 軸のまわりの慣性モーメントを求めよ。

