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Abstract. We are presently developing a document clustering method
to group reference papers based on semantic similarity to support the
writing of scientific papers by organizing the citations more appropri-
ately. Currently, no dataset can be used for clustering experiments and
evaluations for this purpose. In this study, we created two datasets of pa-
pers and corresponding references from PMC, an online medical paper
archive. Then we performed clustering of the reference papers based on
their abstracts using BERT, BioBERT, and SciBERT. In this case, we
input the number of clusters for clustering. Clustering by BERT-based
models trained on the similarity of pairs of references was more accurate
than clustering by embedding the abstracts of references in each BERT
model. Moreover, the trained BERT-based models had a clustering ac-
curacy better or comparable to that of human experts. In addition, we
predicted the number of clusters that used information from the refer-
ences. The prediction accuracy for the number of clusters was about 40%.
Evaluation measures for the clustering results are also discussed.
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1 Introduction

The number of scientific papers continues to increase rapidly. As the number
of authors increases, so does the number of people seeking support with pa-
per writing. As a result, research to support the writing of scientific papers
has become increasingly important [1]. Paper summarization [2], citation rec-
ommendation [3], and generation of citation text tasks [4] have been reported.
Narimatsu et al. [5] were the first to present the big picture on scientific writing
support and summarize the necessary tasks for each research stage.

This paper addresses the “citation categorization task” defined by Narimatsu
et al. [5]. According to Narimatsu et al., tasks to support scientific paper writing
include citation extraction tasks, citation worthiness tasks, citation allocation
tasks, citation recommendation for sentence tasks, and citation categorization
tasks. Of these tasks, the citation categorization task has the highest priority in
terms of being researched because it is related to other tasks and has not yet
been reported. This task facilitates writing related work sections by categorizing
each reference into an appropriate cluster when a set of reference papers is
given so that the citations can be more appropriately organized. This task will
be combined with the two subtasks that follow. There are citation sentence
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generation tasks and citation text generation tasks. This group of tasks aims to
generate related work sections automatically. The citation categorization task
assumes a situation in which a group of citations is given , and support is needed
for beginners writing scientific papers.

To accomplish the citation categorization task, we need a dataset showing
the correspondence between a paper and which references papers are cited in the
paper’s related work section. However, no dataset shows these correspondences.
Therefore, we created two separate datasets for this study and evaluated two
methods with three BERT models. We also compared the clustering results with
those of human experts.

In this paper, we adopted three BERT-based models for the citation catego-
rization task: BERT and two fine-tuned models for scientific vocabulary called
BioBERT [12] and SciBERT [13]. We utilized them to vectorize the abstracts of
reference papers and used their vector similarity for clustering. In addition, we
also fine-tuned the BERT models to calculate the similarity between a pair of
papers by learning whether each pair of reference papers appears in the same
paragraph of the citing papers in a related work section. We then clustered the
references based on their similarity by k-means or hierarchical clustering.

We collected the papers from Pub Med Central (PMC) and listed the ref-
erence papers cited as related work in the “background” sections of the citing
papers. We utilized references cited in one paragraph as one cluster. Specifically,
the clustering problem is defined as performing clustering on all the papers cited
in the background section of one paper based on a similarity measure of the cited
papers. We then evaluated the correctness of the clustering by comparing it with
the actual groups corresponding to paragraphs of the background section. Note
that to perform BERT-based clustering, we use only the abstracts of the refer-
ence papers as the max length of the tokens of the BERT models is restricted.
In this study, the number of clusters was given when clustering the reference
papers. As an additional experiment, we predicted the number of clusters from
the information in reference papers.

Our research questions are as follows.

— RQ1: Does fine-tuning BERT-based models contribute to the clustering per-
formance?

— RQ2: Do BERT models achieve better clustering than humans with abstract
information?

To answer these, we constructed two datasets from the PubMed archive (Sec-
tion IT) and conducted two experiments to evaluate the clustering performances
(Section 1IV).

2 Related Work

Much has already been done to support writing for scientific documentation.
Citation sentence generation, citation context classification, cited text identifi-
cation, citation recommendation, and multi-label classification of scientific doc-
umentation have already been researched [16], [17], [18], [19].Arita’s study pro-
posed citation sentence generation based on sentences in the citing paper and
the cited papers [16]. These studies have been particularly advanced in recent
years.
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For the citation categorization task, TF-IDF-based methods have been stan-
dard [6] for years, but Transformer-based models such as BERT [7] and XL-
Net [8] have recently delivered outstanding accuracy in a variety of NLP tasks.
BERT models have demonstrated excellent performance with document cluster-
ing tasks as well [9], [10], [11]. However, these prior studies have not targeted
scientific documents. Therefore, we conducted a clustering of scientific papers.
In the clustering of conventional methods for scientific papers, the clustering was
performed based on citation networks [20]. The aim of this study is to perform
clustering based on the semantic similarity of abstract in papers. Since datasets
for the clustering of scientific papers have not been constructed, we built datasets
composed of scientific papers. Moreover, we evaluated the clustering performance
for references.

We made the BERT models vectorize the abstracts of the references. We also
let the BERT models learn the abstracts of the references that appeared in pairs
for each cluster. Then, based on the learning, we calculated the similarity of the
pairs of references in papers used for testing. Using that information, we used
k-means or hierarchical clustering to cluster the references. We then predicted
the number of clusters and envisioned what actual scientific documentation sup-
port would look like. Comparisons were also made with the result of reference
clustering done by human experts to demonstrate validity. We also discuss an
evaluation measure for the clustering results. In future work, we will work with
other tasks to support scientific documentation writing.

3 Creation of Datasets

We obtained paper data from PMC, an online medical article archive, to build
datasets with different search queries for the clustering experiments. PMC has
data from many papers. Moreover, we can get that data in XML format. Ac-
cordingly, we can quickly analyze the data. Also, in this archive, there are many
past papers. Thus, we considered it likely that we could obtain all the references
as well.

For this purpose, PMC was selected as the paper archive. First, we col-
lected 194,787 papers retrieved using the query words “artificial intelligence,”
“deep learning,” or “image recognition.” The papers thus collected were set as
Dataset 1.

Second, we collected 137,998 papers retrieved using the query word “echocar-
diography.” The papers thus collected were set as Dataset 2. The reason for the
multiple queries for the first set of collected papers was to ensure that the num-
ber of papers was sufficient. We chose echocardiography because we will use our
laboratory as a model case. In this study, it was necessary to target papers in
the medical field to serve as a model case for the research areas of related topics
being pursued by the authors.

Among these obtained papers, we eliminated papers whose type was “case
report” to extract research articles. Case reports are common among medical
papers. Case reports and other documents were eliminated from the datasets
because they were deemed to have a different structure than the scientific pa-
pers intended for this study. In addition, we extracted those that begin with
the background section (which is supposed to include related work information).
For this reason, papers beginning with an introduction section instead of a back-
ground one were eliminated. For medical papers, the related work section is often
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described in the background section. In addition, we then selected only papers
written in English. This process resulted in 12,178 papers for Dataset 1 and
7,599 for Dataset 2.

Figure 1 shows an example of a background section. We extracted each para-
graph from the reference papers. Table 1 shows an example entry from Dataset 1,
which includes three paragraphs in a background section citing 14 papers.

We obtained an abstract from PubMed for each reference in the papers we
obtained. Unfortunately, not all of these papers could be used for our clustering
experiments because some of the reference papers were missing in PubMed,
and we could not obtain the abstracts. If we eliminated papers with at most one
reference paper missing, the dataset would be too small; therefore, we decided to
allow for two missing references as a compromise. We also eliminated papers with
only one paragraph in the background section because the number of clusters
has to be more than one to perform the clustering properly.

As a result, the final number of papers for Datasets 1 and 2 was 2,752 and
3,890, respectively. This selection process is summarized in Table 2. We generated
768-dimension vectors from the reference abstracts of these papers using the
BERT, BioBERT, and SciBERT models. The tokenizer used during the pre-
trained of each model was used to convert the abstract sentences into tokens.
The BERT models have an upper limit on the length that can be converted into
tokens. Therefore, we entered the longest possible abstract text into the BERT
models. We vectorized the abstract for clustering references.

Background Goto: @

RNA splicing enables efficient gene encoding and contributes to gen ssion variation by alternative

B . Description of RNA splicing and alternative splicing.
implicated in human diseases [3]. Bulk RNA sequencing (RNA-seq) of human tissues and cell lines has | References [1,2,3,4,5,6] are cited.

been applied to identify and quantify different splicing events [6), where in particular exon skipping at

cassette exons, the most prevalent form of alternative splicing [1), has received considerable attention.

Different factors Kave been Tiked to splicing of cassetie exons, mcluding sequence conservation [7] and
genomic features such as the local sequence composition as well as the length of the exon and flanking

introns [3, §]. Although there is some evidence for a role of DNA methylation in splicing regulation, this

relationship is not fully understood and alternative models have been proposed [9-11]. The transcriptional Description of theory.

repressor CTCF has been shown to slow down RNA polymerase IT (Pol I, resulting in increased exon .
inclusion rates. By inhibiting CTCF binding, DNA methylation can cause reduced exon inclusion rate [2] References [5,7,8,9,10,11] are cited.
Altematively, increased DNA methylation of the MeCP2 pathnway has been associated with increased exon

inclusion rates. MeCP2 recruits histone deacetylases in methylated contexts that wrap the DNA more

tightly around the histones. This interplay between MeCP2 and DNA methylation slows down Pol I, thus

leading to an increased exon inclusion rate [10]. Finally, HP1, which serves as an adapter between DNA.

‘methylation and transcription factors, increases the exon inclusion rate if it is bound upstream of the

altemative exon. Binding of HP1 to the alternative exon leads to increased exon skipping [11]. These

altemnative mechanisms point to a complex regulation of splicing via an interplay between DNA sequence

and DNA methylation, both in proximal s well as distal contexts of the alternative exon.

Technological advances in single-cell RNA-seq have enabled investigating splicing variation at a single-
cell resolution [3, 12, 13]. We here leverage recent protocols for parallel sequencing of RNA and bisulfite- . R
NA from the same cell (single-cell methylation and transcriptome sequencing; scM&T-seq [14]) | ¢ Description of recent research and research in this paper.
1 splicing while accounting for cell-specific DNA methylome profiles. We apply our References [8,12,13,14] are cited.
igate the associations between single-cell splicing variation and DNA methylation at two
states of human induced pluripotent stem (iPS) cell differentiation.

Fig. 1: Example of paragraph content and reference groups.

4 Methods

We conducted three experiments in this study. The first and second experiments
used a given number of clusters. The first experiment regarded a clustering
method that utilizes vectors of the abstracts of the references. The second used
the similarity learned from whether each pair of reference papers appears in the
same paragraph of the citing paper. The similarity was defined as the reciprocal
of the distance between references. The third experiment predicted the number
of clusters.
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Table 1: Example of entry in Dataset 1.

Paper ID PMC6371455
Paragraph 1 [1,2,3,4,5,6
Paragraph 2 [5,7,8,9,10,11
Paragraph 3 [8,12,13,14
Reference 12626338, 23258890, 22909801,
1-14 20573213, 25525159, 18688268,

27717327, 28655331, 21964334,
23938295, 25704815, 28673540,
26740580, 26752769
The number in reference represents the PMID.

Table 2: Number of data per condition in dataset.

Dataset 1 Dataset 2
Artificial intelligence
Query OR Deep learning  Echocardiography
OR Image recognition
Number of retrieved papers 194,787 137,998
Articles that are [research-article]
AND Include a [background] section 12,178 7,998
Cluster number > 2 9,752 3.890

AND Missing references < 2

4.1 Clustering method

Four clustering methods were used: k-means, hierarchical clustering, x-means,
and VBGMM (Variational Bayesian Gaussian Mixture Model). In this study,
the k-means method and hierarchical clustering were given a number of clusters.

— k-means method:
The k-means method is a basic clustering algorithm. First, the center of
gravity of each cluster is set randomly. Then, for each dataset, the distance
from the center of gravity of each cluster is calculated and assigned to the
cluster with the closest distance. The above process is performed until the
clusters to be assigned no longer change.

— Hierarchical clustering:
Hierarchical clustering is a basic clustering algorithm. We used bottom-up
hierarchical clustering. First, each piece of data is assigned to a cluster. Then,
data that are close in distance to each other are merged into a single cluster.
The above process is performed until the data are combined into a single
cluster. Then, based on the generated dendrogram, we assign the data to an
appropriate number of clusters.

— X-means method:
The x-means method is an extension of the k-means method proposed by
Dau [15]. This method allows for the prediction of clusters without giving the
number of clusters. This is a significant difference from the k-means method.
First, the k-means method is run with a small number of clusters to predict
the number of clusters. Then, it is performed within the created clusters with
k set to 2, and the clusters are divided. If the Bayesian Information Criterion
(BIC) value increases, the clusters are split, and the number of clusters
increases. The above process involves predicting the number of clusters by
increasing the number of clusters from a small value.
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— VBGMM:
The VBGMM (Variational Bayesian Gaussian Mixture) is a clustering method
for cases where the number of clusters is unknown. This method is an ap-
plication of Variational Bayes to the Gaussian Mixture Model. This method
assumes multiple Gaussian distributions, and clustering is performed by de-
termining which Gaussian distribution each element belongs to. The Gaus-
sian distribution is updated until convergence based on the input data.

4.2 Evaluation measures

We used purity, pairwise F1, and pairwise accuracy to evaluate the clustering
accuracy. Purity is known as a simple and transparent evaluation measure [14].
Equations (1) and (2) were used to calculate the purity, where N is the number
of elements in a cluster, C; are each generated cluster, and A; is the cluster of
correct answers.

In calculating pairwise F'1 and pairwise accuracy, true positive is the number
of correct reference pairs, not the number of elements, of reference pairs belonging
to the same cluster.

purity = Z |]Cv—i|maijrecision(C¢, Aj) (1)
A
Precision(C, A) = |Cg| | (2)

Purity is used in this study as the evaluation measure for clustering. This
is a measure whose value varies depending on the correspondence between the
clusters predicted and the clusters of correct answers. Therefore, when evaluat-
ing the clustering results in this study, all patterns of correspondence between
the clusters created and the clusters of correct answers were calculated. The cor-
respondence of the clusters with the best purity was then used as the clustering
result.

4.3 Experiment 1: Vector-based clustering for abstracts

In Experiment 1, we performed clustering on the dataset of papers created using
the vectors of the abstracts of the references by the k-means method, with the
number of clusters given. In this experiment, clustering was performed using
three groups of vectors generated by BERT, BioBERT, and SciBERT, with each
paper’s abstract. The vectors of the abstracts of the references in this study
came from the CLS token output of BERT.

BERT is a pre-training model with bidirectional transformers using large
datasets [7]. SciBERT is a BERT model trained on 1.14 million scientific papers
from Semantic Scholar [13]. BioBERT is a model trained using 4.5 billion words
from paper abstracts in PubMed and 13.5 billion words from PMC papers.

We utilized random clustering as a baseline for this experiment. Random
clustering in this experiment refers to assigning each element such that each
cluster has at least one element.
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4.4 Experiment 2: Pairwise learning based clustering

In Experiment 2, we used information on whether two references belong to the
same cluster for training the three BERT-based models. We utilized the BERT-
ForSequenceClassification® and prepared every combination of reference papers
and a label, 1 or 0, meaning references belong to the same cluster (paragraph) or
not the same cluster, respectively. BERTForSequenceClassification is a BERT
model transformer with a sequence classification head on top. Figure 2 shows the
sequence classification model. This allows the BERT model to classify sentences.
We used the output of classification as a distance measure for clustering. In this
experiment, we divided each dataset into training/validation/test sets at a ratio
of 8:1:1.

For Dataset 1, 360,834 reference pairs generated from 2200 papers were used
as training data, 45,754 references generated from 276 papers were used as val-
idation data, and 276 papers were used as test data. For Dataset 2, we used
292,972 reference pairs from 3,112 papers for training data, 39,331 references
from 389 papers for validation data, and 389 papers for test data. Among the
training data, 38% in Dataset 1 and 42% in Dataset 2 were labeled 1. Since
there was a slight bias, we introduced class weights in the training process. The
percentage of class labels determined the class weights. This improved the low
amount of data for label 1. Based on validation loss, a model trained for one
epoch was used to predict clusters for the test data.

The value of logit output normalized by a softmax function was used as
the distance between a pair of references. The distance value ranges from 0 to
1, decreasing if the two references are similar. A distance matrix was created
by finding the distance between all references. The distance matrix was used
to cluster the references. The k-means method and hierarchical clustering were
used with the number of clusters given. We evaluated the clustering accuracy
using purity and pairwise F1.

abel C : final hidden vector
T : input token
E : input embedding

—

Output Classifier
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Fig. 2: Structure of BERT for sequence classification model.

3 https:/ /huggingface.co/docs/transformers/model_doc/bert



8 Hosokawa et al.

Human experts’ performance We compared the accuracy of the clustering
results to that of human experts. Collaborators with sufficient medical knowl-
edge read the abstracts of the references and performed clustering, equivalent
to the model in Experiment 2. Ten randomly selected sample papers were ex-
amined, and the average results of the BERT-based methods for the same ten
samples were compared. We recruited three human experts for each dataset us-
ing a crowdsourcing service* under the condition of “licensed physicians or senior
medical school students only.”

The experimental collaborators were told the number of clusters for each
paper. However, we did not give them the original reference numbers in the
sample paper. This is because the referenced papers have a series of numbers,
which we thought would give them a hint about clustering. Instead, we gave
them a new number that we independently assigned to each referenced paper.
They were asked to read the papers’ abstracts and cluster them to reach a
given number of clusters. In this experiment, the experts needed a long time to
consider clustering. Therefore, we did not set a time limit for the clustering of
each sample. They were allowed to do it whenever they wanted, with no time or
order restrictions. These reasons were to confirm the optimal clustering results
by human experts. The clustering results obtained in this way were evaluated
in terms of purity. These samples all contained references, and the number of
clusters was given.

4.5 Experiment 3: Predicting number of clusters

In Experiment 3, we predicted the number of clusters. In the previous experi-
ments of this study, clustering was performed with the number of clusters given.
Here, the number of clusters was predicted using the following two methods. In
this experiment, if the number of clusters predicted and the number of clusters
of correct answers were different, we added empty sets until we had the same
number of clusters.

X-means algorithm For the first condition, the x-means algorithm was used.
To predict the number of clusters in a paper, we used a vector of abstracts
from the references used in Experiment 1, transformed by each BERT model
X-means was used to determine how many clusters the vector was divided into.
The x-means method was run with an initial number of clusters of 2. Hierarchical
clustering was performed using the mode of the number of clusters obtained from
ten runs of the x-means method and, as in Experiment 2, using the distance
between references.

VBGMM algorithm For the second condition, we used the VBGMM algo-
rithm to prediction the number of clusters. Hierarchical clustering was then
performed with the number of clusters obtained using the distance between ref-
erence papers.

5 Results

The results table shows each dataset’s average value of the evaluation results.
The bold type in the table indicates the maximum value of the evaluation for

* https://crowdworks.co.jp/en/
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the dataset for each method. In Tables 9 and 10, bold type indicates the number
of correct cluster predictions.

Tables 3, 4 and 5 show the clustering accuracy in the experiments. We can see
that the clustering evaluation value of any of the BERT models was increased by
learning pairs of references. From Tables 3 and 4, we can see that the clustering
results by BioBERT were evaluated highly. However, we confirmed that SciBERT
was higher in terms of purity for the clustering results of Dataset 2. As we can
see, all the BERT models had a higher purity and pairwise F'1 than the random
clustering result in Table 3 of Experiment 1. We can confirm that the pairwise
accuracy of the BERT and SciBERT models is lower than the random clustering.
In the results by random clustering, the number of elements in each cluster tends
to take an average number. On the other hand, clustering by the BERT model
results in some cases in a concentration of elements in one cluster. Pairwise
evaluation tends to be lower when the cluster sizes are largely biased. As a
result, the accuracy is considered to be lower than that of random clustering.

Table 6 shows the results of the cross-domain accuracy testing for each of the
trained BERT models in different datasets. These results confirm that BERT and
BioBERT had higher purity when trained on Dataset 1 than when trained on
Dataset 2. They also confirm that SciBERT had higher purity for the training
datasets than for the different test datasets. Still, even for the different test
datasets, all BERT-based models had better accuracy for purity than the random
clustering of Experiment 1. The clustering accuracy was improved even when
trained on a different domain than the test dataset.

Tables 7 and 8 show the clustering accuracy in Experiment 3. Table 7 con-
firms that the clustering results obtained with SciBERT had the highest purity
and pairwise evaluation for Dataset 2. Table 8 confirms that the clustering re-
sults obtained with BioBERT had the highest pairwise evaluation. We can also
confirm that both methods’ clustering results obtained with SciBERT had the
highest purity evaluation. Moreover, the results of Experiment 3 had better pu-
rity accuracy than the random clustering of Experiment 1.

Tables 9, and 10 show the number of correct papers and the percentage of
proper papers for the number of clusters.In Tables 9 and 10, C indicates the
number of correct clusters, and P indicates the number of predicted clusters. It
can be seen that the number of predictions was often smaller than the number
of correct answers. The results in Table 9 and 10 also confirm that the VBGMM
method was better at predicting the number of clusters. The results from the
VBGMM method confirm that the prediction of the number of clusters correctly
estimated by BioBERT was better. Still, the purity was lower than the other
BERT models.

Table 11 shows a comparison with human clustering accuracy in terms of
purity, where the human values show the average of the three human experts.
The time required for one clustering task varied from person to person, ranging
from 5 to 90 minutes. We found that there were individual differences in this
task. As we can see, the results of the learned BERT models were better than
the human results for Dataset 1. In contrast, those of the humans were slightly
better than SciBERT and BioBERT for Dataset 2. In the result of Table 4,
SciBERT and BioBERT also have a purity of 0.721 and 0.718, which is better
than the human results. These results are based on a small number of samples,
so it is difficult to say with certainty whether the performance of each domain
is better or worse.
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Table 3: Evaluation of clustering in Experiment 1.
Evaluation Measure DS BERT SciBERT BioBERT Random

Purity T 0573 0581 0.652 0.543

2 0.605 0.618  0.600  0.578

Pairwise(F1) T 0367 0364 0.458 0319
2 0358 0382 0.390 0.354

. T 0504 0506 0.628 0.516
Pairwise(Accuracy) o (Ygs 0470 0.542 0512

DS stands for dataset.

Table 4: Evaluation of clustering in Experiment 2 (purity).
Method DS BERT SciBERT BioBERT
0.693  0.699 0.704
2 0712 0.721 0.718
0.701  0.704 0.710
0.714 0.721 0.723

k-means

hierarchy %

Table 5: Evaluation of clustering in Experiment 2 (pairwise).
Evaluation Measure DS BERT SciBERT BioBERT
F1 1 0.597  0.607 0.615
2 0.601 0.596 0.600
1 0.701 0.711 0.722
2 0.725 0.728 0.729

Accuracy

Table 6: Trained BERT model results per dataset (purity).

BERT Training [SciBERT Training |[BioBERT Training

DS 1 2 DS 1 2 DS 1 2

1 0.693 0.675 1 0.699 0.690 1 0.704 0.685

Test 5 o726 0.712] 2 0.711 0.721 2 0.726 0.712

Table 7: Results of clustering by x-means in Experiment 3
Evaluation Measure DS BERT SciBERT BioBERT

Pt T 0666 0.685 0673
Y 2 0.683 0.701  0.693

. T 0572 0603  0.608
Paitwise(F1) 5 3550 0509 0.583
. 1 0.664 0.657  0.654
Pairwise(Accuracy) o 1693 0696  0.693

Table 8: Results of clustering by VBGMM in Experiment 3
Evaluation Measure DS BERT SciBERT BioBERT

it 1 0.666 0.678 0676
y 2 0.703 0.703  0.692

— 10605 0617 0.623
Pairwise(F1) 5 607 0604  0.613
— 1 0670 0683  0.692
Pairwise(Accuracy) o 'z00 0701 0.708
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Table 9: Number of papers for which number of clusters was correctly estimated
(Dataset1, Experiment 3).

Method BERT SciBERT BioBERT
C<P x-means 74 17 11
VBGMM 45 42 39
¢ — p X-means 74 85 83
~ 7 VBGMM 93 93 103
¢ > p X-means 128 174 182
VBGMM 138 141 134

C stands for number of correct clusters. P stands for number
of predicted clusters.

Table 10: Number of papers for which number of clusters was correctly estimated
(Dataset2, Experiment 3).

Method BERT SciBERT BioBERT
C<p x-means 118 24 64
VBGMM 60 68 44
¢ — p X-means 148 152 141
~ 7 VBGMM 160 154 169
¢ > p X-means 123 213 184
VBGMM 169 167 176

C stands for number of correct clusters. P stands for number
of predicted clusters.

6 Discussion

From the results of Experiment 1 in Table 3, we confirmed that the most accurate
clustering for Dataset 1 was the one converted into a vector using BioBERT. This
is presumably because BioBERT, a model specialized for medical vocabulary,
could grasp the features of sentences better than the other two models since the
paper data were medical papers from PMC. From the results of Experiment 2
in Table 4, we confirmed that the clustering accuracy was increased by learning
pairs of references since the purity, accuracy, and F1 were higher than those of
Experiment 1. From these results, we conclude that fine-tuning the vocabulary
and domain knowledge contributed to the clustering performance to some extent
(RQ1).

From the results in Table 6, we confirmed that the purity of the trained
model for a dataset different from the training dataset was low. BERT had the
lowest purity, indicating a difference in the dataset used for pre-training with the
other BERT models. BERT, which had less pre-training for its area of expertise
than the other BERT models, showed the most significant difference between
the same training/test set result and the different training/test one. This might
be because the pure BERT model without fine-tuning had the most significant
margin to improve with domain knowledge.

From the results in Tables 4 and Tablell, the BERT-based models showed
better or comparable accuracy in terms of purity to the human experts (RQ2).
This demonstrates that using BERT-based models for categorizing references has
a good potential to be used in the writing support task defined by Narimatsu
et al. [5]. It also indicates that the information contained in an abstract may be
sufficient for such a clustering task. It is also likely that the higher purity value of
the BERT models than in Experiment 2 was due to the papers selected. Unlike
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Table 11: Human clustering result (purity).
DS BERT SciBERT BioBERT Human
1 0762 0.765 0.759 0.735
2 0.739 0.674 0.688 0.699

the datasets for the other experiments, the papers selected for this experiment
were those for which abstracts were obtained for all references. This allowed us
to use data from each reference, and all relationships between references could
be expressed. This is a merit that datasets with missing references do not have.
There is merit in avoiding the need to take missing references into account when
clustering. We believe this resulted in higher purity than the other data sets
with missing references.

Regarding the prediction of the number of clusters by the x-means method,
the results in Tables 9 and 10 confirm that even SciBERT, which is the most
accurate, was correct only about 40% of the time. However, the results from
SciBERT confirm that the most common case is that the number of clusters
of correct answers was greater than the number of clusters of predictions. The
errors in the number of predicted clusters and the number of correct clusters
were generally 1. The number of clusters predicted by SciBERT was often two.
The most common mistake was to predict the number of clusters to be 2 instead
of 3. Tt is likely that the number of clusters predicted for papers with more than
three clusters is wrong.

The results of BioBERT for Dataset 1 in Experiment 1 were superior to the
other BERT models. However, BioBERT was also inaccurate in predicting the
number of clusters with the x-means method in Experiment 3. This suggests that
the method for predicting the number of clusters needs further improvement.

The VBGMM method was better at predicting the number of clusters, pos-
sibly because the features used differed from the x-means method. The x-means
method used a vector of features from the abstracts of the references. However,
VBGMM used the distance between references output by the trained model in
Experiment 2. The output of the trained model showed better clustering results
than the clustering using the output of the vectors by the BERT model. There-
fore, the output was considered superior in predicting the number of clusters.

In this study, we used purity and pairwise evaluation to evaluate clustering.
Pairwise evaluation can be performed regardless of the number of clusters. How-
ever, the evaluation decrease is significant if the wrong cluster belongs to a cluster
with many elements. In contrast, the decrease is constant in purity evaluation
no matter which element is mistaken. However, evaluation is difficult when the
number of clusters is different. Therefore, we can evaluate the clustering method
by checking the results of the two evaluation measures.

7 Conclusion and Future Work

In this paper, we investigated a citation categorization task in the context of sup-
port for scientific paper writing by creating two datasets for clustering references
and proposed clustering methods. Our findings showed that the clustering accu-
racy is increased by having the BERT model learn labels that indicate whether
two references belong to the same cluster. Moreover, the accuracy is better or
comparable to human experts.
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Future work will include clustering to allow common references for multiple
clusters. In our experiments, a reference belongs to only one cluster because of
the limitation of the clustering algorithm we used. However, a reference may
sometimes belong to multiple clusters (paragraphs) in actual papers.

Future work will also include finding the adequate evaluation measure for
clustering when the number of clusters is different from the correct number. In
this study, we responded by adding an empty set when evaluating the basis of
purity. The recall used in obtaining the F1 is characterized by a tendency to
lead to a higher evaluation value when the number of clusters in the prediction
is smaller than the number of clusters of correct answers. A problem with this
property is that a lenient evaluation is obtained when the number of clusters is
smaller than the true number.

The evaluation measure in this study should be able to correctly evaluate
for common references and penalize an incorrect number of clusters in the pre-
diction. Each of the clustering evaluation measures has its own merits. For this
reason, we concluded to use multiple evaluation measures. In pairwise evalua-
tion, it is possible to evaluate regardless of the number of clusters. On the other
hand, purity evaluation is complex when the number of clusters differs. However,
with purity evaluation, it is possible to evaluate even when multiple clusters do
not have common references. In pairwise evaluation, clustering with no common
references in the prediction results in a reduced evaluation. In addition, a dis-
advantage exists in that the range of decreases in the evaluation value is large
when a cluster with a large number of elements mistakenly belongs to a cluster
with a large number of elements.

The datasets for this experiment were created from the PMC archive. In the
future, for non-medical papers, a dataset of papers and references in a particular
field needs to be created. It will be important to construct datasets with a high
acquisition rate of references.

In addition, clustering was performed by human experts with only ten sam-
ples out of the thousands contained in each dataset due to resource limitations.
We plan to expand the sample size and the number of experts in the future.

In this study, clustering was performed using abstracts for the dataset, which
is information that can be easily collected. For clustering, we used the abstract
information from the references, so we need to consider other information that
can be used for clustering. For example, we might use the amount of text per
paragraph in the “background” section. Paragraphs with a large amount of text
may have a large number of references. Thus, clustering accuracy may be im-
proved by using information other than abstract information.
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