論文

樹枝状単調減少論理回路を実現するCMOS回路に対する最小分離度配置問題

正 員 真鍋 兼文† 正 員 戎原 兼一†† 正 員 都倉 信樹††

Minimum Separation Layout for CMOS Circuits Realizing Tree-Shape Monotone Decreasing Logic Circuit

Yoshifumi MANABE†, Ken‘ichi HAGIHARA†† and Nobuki TOKURA††, Members

あらまし CMOS回路では、p-MOS回路とn-MOS回路で同じゲート入力を持つトランジスタが上下に並ぶように回路を配置するという方法がよくとられる。この場合、隣接した拡散領域が同一電位ならば、それらを併合して回路面積を小さくすることが可能である。従って、この併合が可能な箇所の数（分離度）が最小な回路配置を効率良く求められる問題が重要である。現在まで、樹枝状単調減少論理回路で、各論理素子のファンイン数がすべて奇数のときのみ分離度が0であることが知られているが、任意の回路が与えられたとき、最小分離度を求めめる問題の時間計算量は知られていない。本論文では、樹枝状単調減少論理回路で非負整数kを与えたときに、Cの配置で分離度がk以下のものが存在するかどうかを判定し、存在するときは最小分離度とその値を達成する配置とを求める問題、およびCの各論理素子のファンイン数がk以下のときに最小分離度とその値を達成する配置とを求める問題があり、あるいはkを定数とするとき、いずれも論理変数と論理素子数の和の線形時間で解けることを示す。

1. まえがき

CMOS集積回路は、消費電力が少ないという利点から、近年よく使われている。樹枝状単調減少論理回路のクラスでは比較的簡単にCMOS回路を求められる。その方法では、一般に複数個のCMOS回路が求められるが、これらの回路では同一のゲート入力を持つトランジスタがp-MOS回路とn-MOS回路の両方に存在するので、それらのトランジスタが上下に並べないようにp-MOS、n-MOSトランジスタをそれぞれ1行に並べる配置方法がある。この配置の横幅を小さくする方法として、同一電位の隣接したトランジスタの拡散領域を併合するという方法がある。この併合ができない箇所の数を与える値として、分離度（separation）がある。分離度を最小にする配置を持つCMOS回路およびその配置を効率良く求める問題が、回路面積を小さくするために重要であるが、この問題の時間計算量は一部の樹枝状単調減少論理回路のクラスを除いてはまだ知られていない。

本論文では、樹枝状単調減少論理回路の接続グラフを定義し、非負整数kを与えたときに、分離度がk以下かどうかを判定し、かつk以下のとき、最小分離度を求め、その値を達成する配置とを求める問題およびその値を達成する配置とを求める問題である、kを定数とするとき、いずれも論理変数と論理素子数の和に対して、線形時間で解けることを示す。

2. 樹枝状単調減少論理回路を実現するCMOS回路

[定義1] [1] N をある論理回路とするとき、その接続グラフ（connection graph）$C(N)$ は、N の各部外入力をと論理素子に1対1に対応する頂点を持ち（各頂点は入力変数名あるいは論理素子名でラベルづけされている）、頂点vに対応する外部入力、あるいは論理素子の出力が頂点uに対応する論理素子の一つの入力として従属されているとき、かつそのときのみ、vから出てvへ入る有向辺をもつグラフと定義する。$C(N)$は出次数（出ていく有向辺の数）が0の頂点を1つだ
け持ち、この論理素子の出力が \(N \) の出力である。この
頂点を根と呼ぶ。さらに、 \(C(N) \) の有向辺の向きをす
べて逆向きにしたグラフがある有向木 \(D \) であるとき、
\(N \) が樹状状であるという。

【定義 2】 樹枝状単調減少論理回路（Tree-shape
Monotone Decreasing Logic Circuit, 以下 TMDCと記
す）は、以下の条件を満たす論理回路 \(N \) である。接続
グラフ \(C(N) \) において [1] 根、根（外部入力に対応する
頂点）以外の頂点のラベルは ANDかOR、[2]根のラベ
ルがNANDかNOR、[3]ラベルがAND（又はOR）で
ある頂点から出る辺はラベルがORかNOR（又はAND
かNAND）である頂点に入る、[4]樹枝状である。

TMDCの接続グラフは非順序木である（1つの頂
点に入る有向辺を持つ複数個の頂点間に順序関係がな
ない）。

以下では、TMDCのCMOS回路による実現法を示
す。一例として、論理関数 \(AB + CD + E \) を考える。こ
の関数は図 1(a)に示すように、TMDCで実現できる。
それを、CMOS回路で実現した例を図 1(b)に示す。図
1(b)の回路中の、 \(p - \text{MOS} (n - \text{MOS}) \) トランジスタは
ゲート電圧が高電位のとき \(\text{OFF} (\text{ON}) \)、低電位のとき
\(\text{ON} (\text{OFF}) \) となる。

【CMOS回路のグラフ・モデル】

分離度をグラフ理論的に定義するために、グラフ・
モデル（graph model）を定義する。グラフ・モデルは
CMOS回路と1対1に対応し、TMDCに対してはグラ
フ・モデルが一般に複数個存在する。

【定義 3】【a】 ラベル・モデル \(M_{d} \) を、6 字組 \(G_{a},
G_{b}, G_{c}, \ldots, G_{n} \) で表わす。ここで、\(G_{a} = (V_{a},
E_{a}) \) は辺にラベルがついた無向グラ
フであり、各ラベル \(\epsilon \) に対し、\(\epsilon \) の辺と \(G_{a} \) と
同数個ずつ存在する。\(G_{a} (G_{b}) \) を \(M \) の \(p - \text{グラフ}
(n - \text{グラフ}) \) と呼び、\(G_{a} (M) \) と書く。また、\(\epsilon_{1}, \epsilon_{2}, \ldots,
\epsilon_{m} \in V_{a} (n_{a}, n_{b}), \) である。それぞれ \(M \) の \(p - \text{グラフ}
(n - \text{グラフ}) \) の高電位点、低電位点と呼び、\(\epsilon_{1}, \epsilon_{2}, \ldots,
\epsilon_{m} \) と書く。

グラフ・モデルの \(p - \text{グラフ} (n - \text{グラフ}) \) の辺は \(p
- \text{MOS} (n - \text{MOS}) \) トランジスタを、頂点は電位を表わ
している。

次に、回路関数 \(g : V(N) \rightarrow S \) を考える。\(V(N) \)は
TMDCの接続グラフの頂点の集合、\(S \) はグラフ・モデル
の集合であり、\(g \) は接続グラフの頂点 \(\nu \) から、\(\nu \)を
根とする部分グラフに対応するCMOS回路を表すグラ
フ・モデルの集合への写像であり、以下のよう 定
義する。

* \(\nu \) が入力変数 \(A \) 対応する頂点のとき

\(g(\nu) = (\{ G_{a}, G_{b}, \ldots, G_{m} \}, (\{ \epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{m} \}) \),
ただし、\(G_{a} = (\{ \epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{m} \}, \epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{m} \) で
\(G_{a} = (n_{a}, n_{b}) \), \(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{m} \)) \) で
実現される。

すなわち図 2(a)に示すグラフ・モデル一つのみから
なる集合を与える（グラフ・モデルを図示するとき、
\(p - \text{グラフ} (n - \text{グラフ}) \) の同 ラベル棒を持つ辺は交差
させて書くこととする。

* \(\nu \) が論理素子 \(L \) 対応する頂点のとき

接続グラフにおいて、\(\nu \) に隣接している（\(\nu \)へ入
有向辺が出てくる）頂点を \(v_{1}, v_{2}, \ldots, v_{m} \) とする。

1) \(L_{a} \) がANDあるいはNANDのとき

\(g(\nu) = \{ (M_{a}(1), M_{b}(2), \ldots, M_{c}(n)) \} (x(1), x(2),
\ldots, x(m)) \in H(m), M_{a} e (v_{1}, v_{2}, \ldots, v_{m}) \} \) ただし \(H(m)
) は \((1, 2, \ldots, m) \) の置換の集合であり、 \(and(M_{a}, M_{b}, \ldots)

図 1 (a) \(AB + CD + E \) の(a)の接続グラフ、(b)のCMOS回路。
(c)そのCMOS回路のある配置

Fig.1 (a) Connection graph. (b) a CMOS circuit
of \(AB + CD + E \). (c) one of its layouts.

1572
論文／枝樹状単調減少論理回路を実現するCMOS回路に対する最小分離度配置問題に

$M_n = \{ (G_0, G_0, p', p', n', n') \}$ とすると、G_p は $\bigcup_{i=1}^{n} G_i$ の頂点 $p'(M_i)$ (1 ≤ i ≤ m) を一致させて署記の頂点を p' とし、頂点 $p'(M_i)$ (1 ≤ i ≤ m) を一致させて署記の頂点を p' としてできるグラフである。G_n は $\bigcup_{i=1}^{n} G_n(M_i)$ の各頂点対 $n'(M_i)$ と $n'(M_{i+1})$ (1 ≤ i ≤ m−1) をそれぞれ一致させて署記、$n' = n'(M_i), n' = n'(M_{i+1})$ としてできるグラフである。すなわち p-グラフを並列に接続し、n-グラフを直列に接続する。図 1(a)の接続グラフの頂点 u_i に対するグラフ・モデルのうちの一つは、$g(u_i)$ と $g(u_i)$ に属するグラフ・モデルから記法の方法で図 2(b)のように求められる。

2) L, が OR あるいは NOR のとき

$g(u) = \{ (M_0, E_0), (M_1, E_1), \ldots, (M_m, E_m) \} \{ \pi(1), \pi(2), \ldots, \pi(m) \} \in H(n), M_i \in g(u_i) (1 \leq i \leq m) \}$ ただし、$g(u_i)$ は (M, E) の n-グラフを並列に接続し、n-グラフを直列に接続したグラフである。図 1(a)

図 2 (a) $g(u)$ (b) $g(u)$ (c) $g(r)$ のグラフ・モデルの一つ

Fig. 2 A graph model in (a) $g(u)$ (b) $g(u)$ (c) $g(r)$.
図3 拡散領域の併合
Fig.3 Merging diffusion areas.

図4 分割パターンの例
Fig.4 Examples of partition pattern.
たものであるとき，M の対小径分割を M_1, M_2, \ldots, M_n の対小径分割から求めることが考えられる。MDTC-N の接続グラフ $G(N)$ において，相異なる 2 顶点 v, \bar{v} が同一の頂点 \bar{v} と隣接しているとき，あるグラフ・モデル $M \in g(v)$ の対小径分割の対小径とも呼ばれる。あるグラフ・モデル $M' \in g(v)$ の対小径分割の対小径と接続することができるのは $\langle p', n' \rangle, \langle p', n'' \rangle, \langle p', n''' \rangle, \langle p', n'''' \rangle$ のいずれかを端点とするものに限る。なぜなら，M の頂点のうち，M'の頂点と一致させ得るのは p', p'', n', n'' のみだからである。また，M の対小径分割において，$\langle p', n' \rangle$ を端点とする対小径は高々一つしか存在しない。なぜなら，葉頂点のグラフ・モデルで G_N と p' に接合し，G_N で n' に接合する辺（この辺を $p' - n'$ 接合辺と呼ぶ）は一つしか存在せず，また $AND(M_1, M_2, \ldots, M_n)$ は或 $AND(M_1, M_2, \ldots, M_n)$ によって得られるグランス・モデルで，$p' - n'$ 接合辺は M_1 の $p'' - n'$ 接合辺のまきだからである。$\langle p', n' \rangle$ についても同様である。

【分割パターンの定義】

上記のこととし，あるグラフ・モデル M の対小径分割を，$\langle p', n' \rangle, \langle p', n'' \rangle, \langle p', n''' \rangle, \langle p', n'''' \rangle$ を端点とする対小径が存在するかどうか，および上記の 4 顶点対を端点としない対小径の数との対（分割パターンと呼ぶ）で特徴づけることができる。分割パターン（partition pattern）p は，$\langle \bar{p}, \bar{n} \rangle$ の値をとりうる $p' \times p''$ 行列（$ma(p)$ と書く）と非負整数（$in(p)$ と書く）の対である（図 4（a））.$ma(p)$ の $(1, 1), (1, 2), (2, 1), (2, 2)$ 的要素と接続する対小径が存在すれば，$\langle \bar{p}, \bar{n} \rangle$ 前に示すように使用される。さらに，例えば $\langle p', n' \rangle$ を端点とする対小径の何方の端点が $\langle p', n' \rangle$ であるときには $\langle \bar{p}, \bar{n} \rangle$ に対応する $(1, 1)$ の要素の値とを合わせて，他ノ要素間の場合も同様である。棒線でつながれたノの対が表わす対小径を $ma(p)$ 上通過する対小径，棒線のつながっていないノが表わす対小径を $ma(p)$ 上で示っと対小径と呼ぶ，両者が $ma(p)$ 上の対小径と呼ぶ。また，$in(p)$ は上記の 4 顶点対のいずれもを端点としない対小径の数を表わす。分割パターン p に対し，P の対小径数 $\ell(p)$ を

$$\ell(p) = in(p) + (ma(p) 上の対小径の数)$$

と定義する。また，P の下限対小径数 $\ell_l(p)$ を

$$\ell_l(p) = \text{min} \{ \ell(p) \}$$

と定義する。$\ell_l(p)$ の 2 は分割パターン p において必ず，ある対小径の端点となる頂点対の数を表わす。}

図 4(a)の分割パターン p に対し，$\ell_l(p) = 7$ である。グラフ・モデルの対小径分割に対して分割パターンは一意に決まる。例えば図 2(c)のグラフ・モデルの

$$\langle x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13} \rangle$$

という対小径分割は図 4(b)の分割パターンをもつ。前述のよう

に，接続グラフの各頂点には一般に複数個のグラフ・モデルが対応し，一つのグラフ・モデルには複数個の対小径分割が存在する。従って，接続グラフの各頂点には分割パターンの集合が対応する。

【分割パターンの論理】

接続グラフの頂点と隣接する頂点に対する対小径分割の対小径を接続することがによって，u に対応する対小径分割を得ることを分割パターンの論理で表現できる。TMDCの接続グラフの頂点 u から分割パターンの集合への写像 f_0 は以下のようないい定義される。

- \bullet u が葉頂点のとき

$$f_0(u) = (u \in (\text{図 4(c)に示した分割パターンの集合})$$

- \bullet u が論理素子 L_i に対する頂点のとき

接続グラフにおいて，u に隣接している頂点を v_1, v_2, \ldots, v_n とする。

1) L_i が AND あるいは NAND のとき

$$f_0(v) = \text{pand}(p_{r1}, p_{r2}, \ldots, p_{rn})$$

ここで，$\text{pand}(p_{r1}, p_{r2}, \ldots, p_{rn})$ とするとき，$ma(p)$ は以下のようになる。まず $ma(p_1), ma(p_2), \ldots, ma(p_n)$ を母分に横に並べる。

$$n'(M_i) = n'(M_i')$$

と

$$p'(M_i) = p'(M_i')$$

と

$$p''(M_i) = p''(M_i')$$

と

$$(1 \leq i \leq n)$$

より，$ma(p_1)$ の $(1, 2)$ の要素と $ma(p_n)$ の $(1, 1)$ の要素と $(2, 1)$ の要素々に合わせる，それぞれの値を対小径は接続できるので棒線でつなげる。

$ma(p)$ の ω の値は，第 1 列は $ma(p_1)$ の第 1 列と同じで，第 2 列は $ma(p_n)$ の第 2 列と同じであり，棒線は例えば，$p''(M_i, n''(M_i'))$ を端点とする対小径が

$$p', n''$$

を端点とする対小径と，上記の操作によって接続されれば，$(1, 1)$ の要素と $(1, 2)$ の要素の 2 つを棒線でつなぐ（他の要素間も同様）。また，$in(p)$ は

$$\sum_{i=1}^{n} in(p_i)$$

に，$ma(p_1), ma(p_2), \ldots, ma(p_n)$ 上の対小径のうち，上記の操作によって $ma(p)$ 上の対小径と接続されないものを（孤立した iolated）対小径と呼ぶ）の数を加えたものである。例えば，図 5(a)に示す 3 つの分割パターンに対して $\text{pand}(p_1, p_2, p_3)$ を行う。
なると，図5(b)に示す分割パターンが得られる。
2) \(L_i \)がORあるいはNORのとき
\[
\phi_g(v) = \{ \text{por}(P_{e(1)}, P_{e(2)}, \ldots, P_{e(m)}) | (\tau(1), \tau(2), \ldots, \tau(m)) \in \Pi(m) \}, p \in f_g(v) (1 \leq i \leq m) \}
\]
ここで，\(\text{por}(p_1, p_2, \ldots, p_m) = p \) とすると，\(ma(p) \)
の\(\tau \)の値では，第1行が\(ma(p) \)の第1行と同じで，
第2行が\(ma(p) \)の第2行と同様である。棒
線および\(in(p) \)については，\(ma(p_1), ma(p_2), \ldots,
ma(p_m) \)をこの順に繰り並べて\(pand \)の時と同様に対
小径の経路をすることによって求める。例えば，図5
(a)に示す3つの分割パターンに対して\(\text{por}(p_1, p_2, p_3)
\)
行なうと，図5(c)に示す分割パターンが得られる。

【補題1】 接続グラフのある頂点\(v \)およびある分
割パターン\(p \)に対して\(p \notin f_g(v) \)を成立すると，\(ma
(p^r) \)が\(ma(p) \)と上下で対称であるという分割パターン
\(p^r \)および，\(ma(p^r) \)が\(ma(p) \)で左辺が対
称で\(in(p^r) = in(p) \)である分割パターン\(p^r \)に対して
\(p^r \notin f_g(v) \)を成立する。

（証明） 布線法で証明する。葉頂点\(v \)では\(f_g(v) \)
が図4(c)の分割パターン集合であることより成立する。
また，\(v \)がAND又はNANDに対する頂点で，\(p = \text{pand}
(P_{e(1)}, P_{e(2)}, \ldots, P_{e(m)}) \), \(p \in f_g(v_1) \)のとき，\(p \notin f_g(v) \)
と仮定すると，\(p = \text{pand}(P_{e(1)}, P_{e(2)}, \ldots,
P_{e(m)}) \in f_g(v) \)である。\(v \)がOR又はNORに対する頂点で，\(p
= \text{por}(P_{e(1)}, P_{e(2)}, \ldots, P_{e(m)}) \), \(p \in f_g(v) \)のとき，\(p
\notin f_g(v) \)と仮定すると，\(p = \text{por}(P_{e(1)},
P_{e(2)}, \ldots, P_{e(m)}) \in f_g(v) \)である。\(p \notin f_g(v) \)も同様にして示
される。

例えば図4(a)に示す分割パターンが\(f_g(v) \)に属する。
とき，図4(d)に示す各分割パターンを\(f_g(v) \)に属する。
従って，以下ではこれら4つの分割パターンを図4(a)
の一つの分割パターンで簡略化する。

最小分離度は，分割パターンを用いて以下のように
表わされる。

【定理1】TMDC \(N \)の接続グラフの根を\(\tau \)とする
と，
\[
ms(N) = \min_{p \in f_g(v)} \tau(p) - 1
\]
である。

in(p)には上限がなく，接続グラフの大きさが大き
くなると，各頂点に対して存在し得る分割パターンの
数も増加する。しかし，最小分離度判定問題において
考慮すべき分割パターンは接続グラフの大きさよりよ
らない有限個である。そのことを以下に示す。

【補題2】 \(ms(N) \leq k \)かどうかの判定問題におい
て考慮すべき分割パターンは\(k \)によって決まるある
有限個である。

（証明） in(p) > k + 1 である分割パターン \(p \)は，
いかなる分割パターンとの\(pand \)で，porをくり返して得
られる分割パターン \(p' \)に対しても \(\tau(p') \geq \text{in}(p) > k
+ 1 \)である。従って，接続グラフのある頂点 \(v \)に対し
て \(p \notin f_g(v) \)かつ \(in(p) > k + 1 \)のとき，\(f_g(v) \)から \(p
\)を取り除いて以降の計算を行なっても，接続グラフの
根 \(\tau \)の \(f_g(v) \)に属する，\(\tau(p) \leq k + 1 \)を満たす分割パ
ターンは同一である。従って，in(p) > k + 1 である
分割パターンのみ考慮すればよい。\(ma(p) \)は図6
に示す有理数しかなく，従って考慮すべき分割パターン
は有限個である。

in(p) = k + 1 である分割パターンを有効分割パ
ターンと呼ぶ。接続グラフの各頂点には有限分割パ
ターンの集合が対応するが，有限集合の部分集合の数が有
限であることもあり，この数も有限である。

離散度が\(k \)以下かどうかを判定する問題においては，
有効でない分割パターンを無視することにより，葉頂点
以外の頂点に対して，関数 \(f_g(v) \)の代わりに，以下の
関数 \(f_{\text{AND}} \)も考察される。

\[
f_{\text{AND}}, f_{\text{OR}}: N^m \rightarrow 2^P
\]
ただし，\(P \)は有限分割パターンの集合，\(m = 2^P \)で
ある。\(f_{\text{AND}}(a_1, a_2, \ldots, a_m) \)は\(P_i \in 2^P \)（但し \(1 \leq i
\leq m \)）を持つ頂点が \(a_i \)個ずつAND又はNAND素子の
頂点\(v \)に隣接しているとき，\(v \)の持つ有限分割パタ
ーンの集合を（\(v \)が有限分割パターンを持たなければ空
集合）とする。\(f_{\text{OR}} \)はORに対する同様
の関数である。

\(f_{\text{AND}}, f_{\text{OR}} \)の関数値を，\((a_1, a_2, \ldots, a_m) \)のそれぞれの値から分割パターンの集合への表の形で定義する。
このとき，\(a_1, a_2, \ldots, a_m \)の値を表記法として定数
\(k, c \)に対して，「\(1 \leq k \)以上の数（奇数）」\(\{a_1,
c : c \geq c \} \)という記法を許すならば，\(f_{\text{AND}}, f_{\text{OR}} \)の関数値は\(k \)の
みに依存する有限の大きさになり，関数

\[
Q \times O \times Q \times
O \times O \times O \times O \times O \times O \times O \times O \times Q \times
G \times E \times D \times C \times B \times A \times H \times I
O \times O \times Q \times O \times Q \times
J \times K \times L \times M \times N \times O \times P \times Q \times R
\]

図6 分割パターンの\(ma(p) \)のすべて

Fig.6 All possible \(ma(p) \) of partition
patterns.
値表を求める時間も k のみに依存する。以下にその証明を述べる。

【補題 3】 f_{and}, f_{or} の関数値表は k のみに依存する有限の大きさである。

(証明) f_{and} についてのみ証明するが、f_{or} についても同様である。
まず、分割パターン集合 P に対し、P の下限対小数集 $LT(P)$ を次のように定義する。

$$LT(P) = \min_{p \in P} \{ t(p) \}$$

分割パターン p の、$ma(p)$ 上で終わる対小数の、0 で表わされている方でない端点は他の対小数分割をどのように接続しても他の対小数の一方の端点となる。
従って、ある分割パターン p に対し、他の対小数分割をどう接続しても、少なくとも 1 つ $t(p)$ 個は p に小数搭接する。$LT(P) > 0$ である分割パターン集合 P_i に属する分割パターンを a_i とし、それ以外の分割パターン任意値を pand したときの対小数搭接は少なくとも $LT(P_i) = a_i$ となる。
従って、$a_i > (k + 1)/LT(P_i)$ のとき、$LT(P_i)$ の結果、必ず $k + 2$ 個以上対小数が生じ、$f_{\text{and}}(a_1, a_2, \ldots, a_m) = 0$ となる。

$$\text{in}(p) = 0, \text{ma}(P) = A, B, C, D$$ 又は E (同 6) に示す分割パターンの記号である。p の ma が $t(p) = 0$ である (in $(p) = 0, \text{ma}(p) = E$ はあり得ない) ので、$LT(P_i) = 0$ となる分割パターン集合には、この 5 つの分割パターンのいずれかが属する。

一般性を失うことなく、P_i が $LT(P_i) = 0$ とする。

(1) P_i に上記の分割パターンのうち、$(A, 0)$ のみが属している場合

この場合、分割パターン $(A, 0)$ に pand でいける分割パターンを接続しても、D の右の 2 つのolidaysから成る対小数の左の 2 つのolidaysから成る対小数を接続することはできる。従って、$(A, 0)$ を k 個以上接続すると対小数が少なくとも $k + 2$ 個生じる。よって、$a_i > k + 1 + (k + 1)/LT(P_i - ((A, 0)))$ のとき

$$f_{\text{and}}(a_1, a_2, \ldots, a_m) = 0$$

となる。P_i に $(E, 0)$ のみ、あるいは $(E, 0)$ と $(D, 0)$ のみが属しているときも同様である。

(2) P_i に $(A, 0), (B, 0), (C, 0)$ のうち $(A, 0)$ のみが属している場合

このとき、分割パターン集合 $P_i - \{(A, 0)\}$ に対し、k の上に述べたように、ある定数 b が存在して、$P_i - \{(A, 0)\}$ の分割パターンを $b + 1$ 個以上接続すると必ず $k + 2$ 個以上対小数が生じる。従って、$a_i > b$ のときに有効分割パターンが得られるのは $P_i - \{(A, 0)\}$ から b 個以下を選び、残りを $(A, 0)$ として pand した場合に限る。このとき任意の $j > 0$ に対して、

$$f_{\text{and}}(b + 2j, a_2, a_3, \ldots, a_m)$$

$$= f_{\text{and}}(b + 2, a_2, a_3, \ldots, a_m)$$

$$f_{\text{and}}(b + 1 + 2j, a_2, a_3, \ldots, a_m)$$

$$= f_{\text{and}}(b + 1, a_2, a_3, \ldots, a_m)$$

が成立する。従って、$(A, 0)$ のみが属している場合、$(A, 0)$ のみが属していない場合も同様である。

まず、ある有効な分割パターン p が $p \in f_{\text{and}}(b + 1, a_2, a_3, \ldots, a_m)$ を満たすとする。このとき、$(A, 0)$ すなわち図 4(c) の p' が p が少なくとも 1 つは接続されている。従って、

$$p = \text{pand}(p_1, p_2, \ldots, p_i, p', p_{i+1},$$

$$p_{i+2}, \ldots, p_n) \in \{ x = b + 1 + \sum_{i=2}^{n} a_i, x = 0 \text{ or } 1 \}$$

が考えられる。このとき、

$$\text{pand}(p_1, p_2, \ldots, p_i, p', p_{i+1}, p_{i+2}, \ldots, p_n) \in (A, 0)$$

と接続される。従って、

$$p \in f_{\text{and}}(b + 2j + 1, a_2, a_3, \ldots, a_m)$$

である。逆に、

$$p \notin f_{\text{and}}(b + 2j + 1, a_2, a_3, \ldots, a_m)$$

とする。このとき、分割パターン $(A, 0)$ が少なくとも $j + 1$ 個は接続されているものので、

$$p = \text{pand}(p_1, p_2, \ldots, p_i, p') \in \{ x = b + 2j +$$

$$1 + \sum_{i=2}^{n} a_i, p_i \in \{ p', p \}, 1 \leq k_i \leq (1 \leq k_i \leq 2j + 1)$$

と表わされる。このとき、2 つの $(A, 0)$ を除いて

$$\text{pand}(p_1, p_2, \ldots, p_i, p_i'p_1, p_i'p_2, \ldots, p_i'p_{i+1}, p_{i+1}p_1, p_{i+1}p_2, \ldots, p_{i+1}p_{i+2}, \ldots, p_n)$$

$(p \in \text{ma}(p'))$ が p と上下対称で $\text{in}(p) = \text{in}(p')$ である分割パターンであるとすると、p と同じ分割パターンが得られる。
従って、

$$p \in f_{\text{and}}(b + 1, a_2, a_3, \ldots, a_m)$$

である。逆に、

$$f_{\text{and}}(a_2, a_3, \ldots, a_m)$$

の値が異なる a_i の値は 0, 1, b および $b + 1$ 以上の奇数、0, 1 以上の偶数の $b + 3$ 通りである。

同様にして、P_i に $(B, 0), (C, 0)$ が属する場合でも f_{and} の値が異なる a_i の値も有限通りである。以上のことより、f_{and} の関数値表の大きさは k のみによって決まる有限である。

ここで、

$$f_{\text{and}}, f_{\text{or}}$$

の関数値表中の (a_1, a_2, \ldots, a_m) に対する分割パターン集合 P_i に対する分割パターン集合 P_i に対し、各分割パターン集合 P_i に対し、分割パターンをどの順序に pand すれば p が得られるかを共有記憶においても、表は (k) のみに依存する有限の大きさと

† 廣義には、有効部分集合（後述）が導入される。
なる。

[アルゴリズム 1]: TMDC で、\(m_s \leq k \) かどうかの判定を行うアルゴリズム

入力: TMDC の接続グラフ \(C(N) \)

出力: \(m_s \leq k \) かどうか、もしくは、\(m_s \leq k \) なら、\(m_s \) の値および、その値を達成する配置のうちの 1 つ

方法:

(1) \(C(N) \) の辺の向きをすべて逆にした有向グラフ \(C(N) \) を作る。\(C(N) \) の頂点を、\(m_s \) の値に対応する顶点とするから順に順序に訪問して以下のことを行う。

(2) 訪れた頂点 \(v \) が内部頂点であるとき、AND は NAND (OR は NOR) のとき、隣接した各頂点に与えられている分割パターン集合 \((a_1, e_1, \cdots, e_m) \) を求め、\(f_{\text{and}}(f_{\text{or}}) \) の表を探索する。\(f_{\text{and}}(f_{\text{or}}) = v \) ならば、このとき \(m_s > k \) である。終了する。そうでなければ \(f_{\text{and}}(f_{\text{or}}) \) によって求まった分割パターン集合を \(v \) に与える。

(2) 根に与えた分割パターン集合 \(\mathcal{P}, \) に対し、\(\min_{p \in \mathcal{P}} \) \(t(p) \) を計算する。この値を \(T(P) \) とおく。\(T(P) > k + 1 \) なら \(m_s > k \) である、終了する。

(3) \(T(P) = k + 1 \) なら、\(m_s = T(P) - 1 \) であり、このとき、\(t(p) = T(P), p \in \mathcal{P} \) である 1 つの分割パターン \(p \) を \(C(N) \) の根に与え、\(C(N) \) の各頂点を、\(\mathcal{P} \) から順番に訪問して以下のことを行う。

(3) 訪れた頂点 \(v \) が内部頂点ならば、\(v \) に与えた分割パターン \(p \) および(1)の(3)で求めた \((a_1, e_1, \cdots, e_m) \) から、\(f_{\text{and}}(f_{\text{or}}) \) の表を探索し、\(p \) を得るために隣接した各頂点のそれぞれ分割パターンおよびそれらを \(p \) と \(p' \) を得る順序を求める。その分割パターンを各頂点に与える。

(4) 再び \(C(N) \) の各頂点を、\(\mathcal{P} \) から順番に訪問して以下のことを行なう。

(5) 訪れた頂点が葉ならば、(3)の(3)で \(p \) と \(p' \) を得た、隣接する各頂点の分割パターン \(p \) と \(p' \) を \(p \) と \(p' \) を得る順序に従って、隣接する各頂点の対を順に分割パターンを接続する。

\(C(N) \) の根に対して求めた対を根に分割パターンを達成する配置を与える。

[定理 2] TMDC の接続グラフの頂点数を \(k \) とすると、\(m_s \leq k \) かどうかを判定し、\(m_s \leq k \) ならば、\(m_s \) の値および、その値を達成する配置のうちの 1 つを求める問題の時間計算量は、\(k \) を定数とすると \(O(k) \) である。

(証明) アルゴリズム 1 では、\(C(N) \) の各頂点 \(v \) に対し、\(v \) に与えた分割パターン \(p \) に対応する部分接続グラフに対する部分回路の対を小径分割、有限な分割パターンをすべて求めている。従って、\(C(N) \) の各頂点に対する分割パターン集合 \(P_v \) として、\(t(p) \leq k + 1 \) である分割パターン \(p \) が選ばれているならば、\(m_s \leq k \) であり、最小分離度を達成する、\(C(N) \) の各頂点 \(v \) の分割パターンがすべて有効であるので除去されず、よって \(P_v \) に対応する分割パターンが選ばれている。従って、アルゴリズム 1 によって正しい解が得られる。

また、\(f_{\text{and}}, f_{\text{or}} \) の表の大きさが \(k \) にのみ依存する有限の大きさであることにより、\(f_{\text{and}}, f_{\text{or}} \) の表を求める時間、およびアルゴリズムのステップ(1)の(2)、(3)の(1)における \(f_{\text{and}}, f_{\text{or}} \) の表探索は定数時間である。

ステップ(1)，(3)，(4)において接続グラフの各頂点を一度ずつ訪れるので、アルゴリズム 1 の時間複雑度は \(O(n) \) である。

5. ゲートのファインンが制限された樹枝状
単調減少論理回路に対する最小仮定度問題

前章ではゲートのファインンに制限がない場合についての結果を述べたが、ファインンが \(k \) 以下に制限された TMDC に対して \(m_s \) を求める問題を考慮する。

接続グラフのある頂点 \(v \) に対する分割パターン集合 \(P = f_g(v) \) の中において、\(P_1, P_2 \) などにおいて任意の分割パターンと \(p \) を \(p \) と \(p' \) の代わりに \(p_1 \) に対して同一の操作をしたときに得られた分割パターン \(p_2 \) に対して、常に \(t(p_2) \leq t(p_2) \) が成立するならば、\(P \) は \(P_1 \) で \(m_s \) の値に影響しない。\(P_1 \) でこのような分割パターンをすべて取り除いた \(P \) を \(P \) の有効部分集合と呼ぶ。

\(P \) を正規化係数 \(Q(P) = \min_{p \in P} \) 、正规分割パターン集合 \(N(P) = \{ \text{eq}(p), \text{in}(p) - Q(P) \} \) の \(p \in P \) の対で表す。このとき、正規分割パターン集合は有限個しか存在しない。

ここで、\(f_g(v) \) の代わりとして、正規分割パターン集合の \(p \) のみを考えればよ。この関数値表の大きさは、ファインンが \(k \) 以下に制限された正規分割パターン
論文／枝葉状単調減少論理回路を実現するCMOS回路に対する最小分離度配置問題

集合が有限値であることより，λ のみに依存する有限の大きさで．この関数値を用いて，アルゴリズム1 と同様の方法で $ms(N)$ とその値を達成する配置を求めることができる．

[定理 3] 20 ゲートのファインが λ 以下である MDTC の接続グラフの頂点数を V とすると，$ms(N)$ の値および，その値を達成する配置のうちの 1 つを求める問題の時間計算量は，λ を定数とすると $O(V)$ である．

むすび

本論文では枝葉状単調減少論理回路に対して議論を行った．一般に，半調減少論理関数は定義 2 の (1)，(2)，(3) を満たし，有向閉路ではない回路で実現できる．しかし，同一の入力に対する頂点が複数個存在することを許すならば，出次数１（≥ 2）の頂点に対し，その頂点の出力に対応する論理関数を実現する回路を d 個作ることによって枝葉状にすることができる．従って，素数 p の増大を許すならば，以上の議論は一般の半調減少論理関数を実現する回路に対しても適用できる．

また，未解決の問題として，接続グラフの次の素が定数でない場合に $ms(N)$ を求め問題の時間計算量を求める問題がある．

謝辞 御討論頂いた名古屋大学生澤元光氏，池田光二氏および都倉研究室諸氏に感謝致します．また，文献を提供して頂いた富士通研究所ソフトウェア研究部第一研究室長上原貫団博士に感謝致します．

文献

(1) 藤沢，巌："電子通信機械学Ⅰ：解析構造論"，コロナ社（1979）．
(2) F. Harary："Graph Theory"，Addison-Wesley （1969）．
(3) 真鍋，萩原，都倉："半調減少論理関数を実現する CMOS 回路に対する配置問題"，信学技報，CAS 84-103（1984-10）．

（昭和59年11月2日受付，60年3月15日再受付）