Meta-Envy-Free Cake-Cutting Protocols

Yoshifumi Manabe ${ }^{1}$ and Tatsuaki Okamoto ${ }^{2}$
1 NTT Communication Science Laboratories, 3-1 Morinosato-Wakamitya, Atsugi, Kanagawa 243-0198 Japan manabe. yoshifumi@lab.ntt. co.jp
2 NTT Information Sharing Platform Laboratories, 3-9-11, Midori-cho, Musashino-shi, 180-8585 Japan okamoto.tatsuaki@lab.ntt.co.jp

Abstract

This paper discusses cake-cutting protocols when the cake is a heterogeneous good that is represented by an interval in the real line. We propose a new desirable property, the meta-envy-freeness of cake-cutting, which has not been formally considered before. Though envy-freeness was considered to be one of the most important desirable properties, envy-freeness does not prevent envy about role assignment in the protocols. We define meta-envy-freeness that formalizes this kind of envy. We show that current envy-free cake-cutting protocols do not satisfy meta-envy-freeness. Formerly proposed properties such as strong envy-free, exact, and equitable do not directly consider this type of envy and these properties are very difficult to realize. This paper then shows meta-envy-free cake-cutting protocols for two and three party cases.

1 Introduction

Cake-cutting is an old problem in game theory. It can be employed for such purposes as dividing territory on a conquered island or assigning jobs to members of a group. This paper discusses the cake-cutting problem when the cake is a heterogeneous good that is represented by an interval $[0,1]$ in the real line. The most famous cake-cutting protocol is 'divide-and-choose' for two players. Player 1 (Divider) cuts the cake into two equal size pieces. Player 2 (Chooser) takes the piece that she prefers. Divider takes the remaining piece. This protocol is proved to be envy-free. Envy-freeness is defined as: after the assignment is finished, no player wants to exchange his/her part for that of the other player. Divider must cut the cake into two equal size pieces (using Divider's utility function), otherwise Chooser might take the larger piece and Divider will obtain less than half. Since Divider cuts the cake into equal size pieces, she never envies Chooser whichever piece Chooser selects. Chooser never envies Divider because she chooses first.

Although it appears that the 'divide-and-choose' protocol is perfect, actually it is not, because it is not a complete protocol. When Alice and Bob execute this protocol, they must first decide who will be Divider and Chooser. Chooser is the better choice as mentioned in several papers [3][9]. If the utility functions of Alice and Bob are the same, Divider and Chooser obtain exactly half of the cake by using their utility function. Next we consider a case where the utility functions of Alice and Bob differ. Let us assume that Bob is Divider. Let us
also assume that by using Bob's utility function, $[0,1 / 4]$ and $[1 / 4,1]$ is an exact division, because the cake is chocolate coated near 0 and Bob likes chocolate. Alice does not have such a preference, thus by choosing $[1 / 4,1]$, Alice's utility is $3 / 4$. If Alice is Divider, she cuts to $[0,1 / 2]$ and $[1 / 2,1]$. Then Bob chooses $[0,1 / 2]$ and obtains more than half by his utility. Therefore, Chooser is never worse than Divider, and Chooser is properly better than Divider if their utility functions differ. If both Alice and Bob know this fact, they both want to be Chooser. Therefore, they must employ a method such as coin-flipping to decide who will be Divider. If Alice is assigned the role of Divider, she definitely envies Bob who is Chooser.

Some readers might think that coin-flipping will result in a fair decision between Alice and Bob, and so it is not a problem. If this supposition is accepted, the following protocol must also be accepted: 'Flip a coin and the winner takes the whole cake and the loser gets nothing.' This is an unfair (envy) assignment using fair coin-flipping. Game-theory researchers have discussed cake-cutting protocols where the unfairness (envy) is minimized. If there is the possibility of unfair assignment, we need to consider a better way that eliminates it. Now that we know 'divide-and-choose' is unfair, we must consider eliminating this kind of envy. Although this type of envy is known, it has not been formally defined. This paper defines this type of envy for the first time as meta-envy and proposes new protocols that eliminate it for two-party case and three-party case.

Previous studies defined stronger properties for the obtained portion such as strong envy-free, super envy-free, exact, and equitable [6][13]. These properties are hard to realize and do not directly consider this type of envy. We can obtain a three-party meta-envy-free protocol by modifying a three player envy-free protocol.

Note that we do not eliminate every coin-flip. For the above example of 'divide-and-choose', if Alice and Bob's utility functions are exactly the same, their cutting points are the same. Thus, both Alice and Bob think that the values of the two pieces are the same. To complete the protocol, we must assign each party either piece. Coin-flipping is necessary for such a case, but can only be allowed if its result causes no envy.

2 Preliminaries

Throughout this paper, the cake is a heterogeneous good that is represented by an interval $[0,1]$ in the real line. Each party P_{i} has a utility function μ_{i} that has the following three properties. (1) For any non-empty $X \subseteq[0,1], \mu_{i}(X)>0$. (2) For any X_{1} and X_{2} such that $X_{1} \cap X_{2}=\emptyset, \mu_{i}\left(X_{1} \cup X_{2}\right)=\mu_{i}\left(X_{1}\right)+$ $\mu_{i}\left(X_{2}\right)$. (3) $\mu_{i}([0,1])=1$. The tuple of $P_{i}(i=1, \ldots, n)$'s utility function is denoted by $\left(\mu_{1}, \ldots, \mu_{n}\right)$. Utility functions might differ among parties. No party has knowledge of the other parties' utility functions.

In this paper, 'party' indicates a person such as Alice, Bob, etc. and is denoted by P. 'Player' is a role in a protocol and is denoted by p. We sometimes state
that 'party X is assigned to player y ' if a person X executes the role of player y in the protocol.

An n-player cake-cutting protocol f assigns several portions of $[0,1]$ to the players such that every portion of $[0,1]$ is assigned to one player. We denote $f_{i}\left(\mu_{1}, \ldots, \mu_{n}\right)$ as the set of portions assigned to player p_{i} by f, when party $P_{i}(i=1, \ldots, n)$ is assigned to player $p_{i}(i=1, \ldots, n)$ in f. When f is a randomized algorithm, let us denote $f_{i}\left(\mu_{1}, \ldots, \mu_{n} ; r\right)$ as the assignment to p_{i} when the sequence of random values used in f is r.

All parties are risk averse, namely they avoid gambling. They try to maximize the worst case utility they can obtain.

A desirable property for cake-cutting protocols is strategy-proofness [6]. A protocol is strategy-proof if there is no incentive for any player to lie about his utility function. A protocol defines what to do for each player p_{i} according to its utility function μ_{i}. Since μ_{i} is unknown to any other player, p_{i} can execute some action that differs from the protocol's definition (by pretending that p_{i} 's utility function is $\left.\mu_{i}^{\prime}\left(\neq \mu_{i}\right)\right)$. If p_{i} obtains more utility by lying about his utility function, the protocol is not strategy-proof. If a protocol is not strategy-proof, each player has to consider what to do and the result might differ from the intended result. If a protocol is strategy-proof, the best policy for each player is simply observing the rule of the protocol. Thus strategy-proofness is very important. As for 'divide-and-choose', the protocol requires Divider to cut the cake in half by using Divider's true utility function. Divider can cut the cake other than in half. However, if Divider does so, Chooser might take the larger portion and Divider might obtain less than half. Thus a risk averse party honestly executes the protocol, and 'divide-and-choose' is strategy-proof.

3 Meta-envy-freeness

This section provides the definition of meta-envy-freeness. We offer two definitions and show that they are equivalent.

Definition 1. A cake-cutting protocol f is meta-envy-free if for any $\left(\mu_{1}, \ldots, \mu_{n}\right)$, i, j, and r,

$$
\begin{equation*}
\mu_{i}\left(f_{i}\left(\mu_{1}, \ldots, \mu_{i}, \ldots, \mu_{j}, \ldots, \mu_{n} ; r\right)\right) \geq \mu_{i}\left(f_{j}\left(\mu_{1}, \ldots, \mu_{j}, \ldots, \mu_{i}, \ldots, \mu_{n} ; r\right)\right) \tag{1}
\end{equation*}
$$

This definition considers the following two executions of f. (1) party P_{i} (whose utility function is μ_{i}) plays the role of player p_{i} and party P_{j} (whose utility function is μ_{j}) plays the role of player p_{j} in f. (2) party P_{i} plays the role of player p_{j} and party P_{j} plays the role of player p_{i} in f, that is, P_{i} and P_{j} swap role assignments. If the swap does not increase the utility of the obtained portions, P_{i} will not want to swap the role assignment, thus the protocol is envy-free as regards the role assignment.

Next we show a stronger definition.

Definition 2. A cake-cutting protocol f is meta-envy-free if for any $\left(\mu_{1}, \ldots, \mu_{n}\right)$, permutation $\pi:\{1, \ldots, n\} \rightarrow\{1 \ldots, n\}$, i, and r,

$$
\begin{equation*}
\mu_{i}\left(f_{i}\left(\mu_{1}, \ldots, \mu_{n} ; r\right)\right)=\mu_{i}\left(f_{\pi^{-1}(i)}\left(\mu_{\pi(1)}, \ldots, \mu_{\pi(n)} ; r\right)\right) \tag{2}
\end{equation*}
$$

This definition allows any permutation of the role assignment, which includes the case where P_{i} 's role is unchanged. In addition, the utility must be unchanged for any permutation.
Theorem 1. Definition 1 and Definition 2 are equivalent.
Proof. If the condition of Definition 2 is satisfied, the condition of Definition 1 is obviously satisfied. Thus we prove the opposite direction.

Suppose that f satisfies the condition of Definition 1 and for some $\left(\mu_{1}, \ldots, \mu_{i}, \ldots, \mu_{j}, \ldots, \mu_{n}\right), i, j$, and r,

$$
\begin{equation*}
\mu_{i}\left(f_{i}\left(\mu_{1}, \ldots, \mu_{i}, \ldots, \mu_{j}, \ldots, \mu_{n} ; r\right)\right)>\mu_{i}\left(f_{j}\left(\mu_{1}, \ldots, \mu_{j}, \ldots, \mu_{i}, \ldots, \mu_{n} ; r\right)\right) \tag{3}
\end{equation*}
$$

is satisfied. Then consider another execution of f with $\left(\mu_{1}, \ldots, \mu_{j}, \ldots, \mu_{i}, \ldots, \mu_{n}\right)$, that is, P_{i} 's utility function is μ_{j} and P_{j} 's utility function is μ_{i}. Since the condition of Definition 1 is satisfied, swapping the roles of P_{i} and P_{j} does not increase P_{j} 's utility, that is,

$$
\begin{equation*}
\mu_{i}\left(f_{j}\left(\mu_{1}, \ldots, \mu_{j}, \ldots, \mu_{i}, \ldots, \mu_{n} ; r\right)\right) \geq \mu_{i}\left(f_{i}\left(\mu_{1}, \ldots, \mu_{i}, \ldots, \mu_{j}, \ldots, \mu_{n} ; r\right)\right) \tag{4}
\end{equation*}
$$

This contradicts Eq. (3). Thus, for any $\left(\mu_{1}, \ldots, \mu_{i}, \ldots, \mu_{j}, \ldots, \mu_{n}\right), i, j$, and r,

$$
\begin{equation*}
\mu_{i}\left(f_{i}\left(\mu_{1}, \ldots, \mu_{i}, \ldots, \mu_{j}, \ldots, \mu_{n} ; r\right)\right)=\mu_{i}\left(f_{j}\left(\mu_{1}, \ldots, \mu_{j}, \ldots, \mu_{i}, \ldots, \mu_{n} ; r\right)\right) \tag{5}
\end{equation*}
$$

is satisfied.
Next we consider a general permutation of the role assignment. Any permutation π can be realized by a sequence in which two elements are swapped. As shown above, P_{i} 's utility is unchanged when the swap involves P_{i}, thus we discuss P_{i} 's utility when there is a swap between the other parties. Consider two utilities $\mu_{i}\left(f_{i}\left(\ldots, \mu_{i}, \ldots, \mu_{j}, \ldots, \mu_{k}, \ldots ; r\right)\right)$ and $\mu_{i}\left(f_{i}\left(\ldots, \mu_{i}, \ldots, \mu_{k}, \ldots, \mu_{j}, \ldots ; r\right)\right)$.

The roles of P_{j} and P_{k} can be swapped by the sequence of (S1) swapping P_{i} and P_{j}, (S2) swapping P_{i} (current role is p_{j}) and P_{k}, and (S3) swapping P_{i} (current role is p_{k}) and P_{j} (current role is p_{i}).

For each swap, Eq. (5) must be satisfied. From these equalities, we obtain

$$
\begin{aligned}
\mu_{i}\left(f_{i}\left(\ldots, \mu_{i}, \ldots, \mu_{j}, \ldots, \mu_{k}, \ldots ; r\right)\right) & =\mu_{i}\left(f_{j}\left(\ldots, \mu_{j}, \ldots, \mu_{i}, \ldots, \mu_{k}, \ldots ; r\right)\right) \\
\mu_{i}\left(f_{j}\left(\ldots, \mu_{j}, \ldots, \mu_{i}, \ldots, \mu_{k}, \ldots ; r\right)\right) & =\mu_{i}\left(f_{k}\left(\ldots, \mu_{j}, \ldots, \mu_{k}, \ldots, \mu_{i}, \ldots ; r\right)\right) \\
\mu_{i}\left(f_{k}\left(\ldots, \mu_{j}, \ldots, \mu_{k}, \ldots, \mu_{i}, \ldots ; r\right)\right) & =\mu_{i}\left(f_{i}\left(\ldots, \mu_{i}, \ldots, \mu_{k}, \ldots, \mu_{j}, \ldots ; r\right)\right)
\end{aligned}
$$

From these equalities, we obtain

$$
\mu_{i}\left(f_{i}\left(\ldots, \mu_{i}, \ldots, \mu_{j}, \ldots, \mu_{k}, \ldots ; r\right)\right)=\mu_{i}\left(f_{i}\left(\ldots, \mu_{i}, \ldots, \mu_{k}, \ldots, \mu_{j}, \ldots ; r\right)\right)
$$

Since this equality holds for any single swap, the equality holds for any permutation π.

Several desirable properties have been defined as shown below [6][13], but these definitions do not take role assignment into consideration.

Simple fair For any $i, \mu_{i}\left(f_{i}\left(\mu_{1}, \ldots, \mu_{n}\right)\right) \geq 1 / n$.
Strong fair For any $i, \mu_{i}\left(f_{i}\left(\mu_{1}, \ldots, \mu_{n}\right)\right)>1 / n$.
Envy-free For any $i, j(i \neq j), \mu_{i}\left(f_{i}\left(\mu_{1}, \ldots, \mu_{n}\right)\right) \geq \mu_{i}\left(f_{j}\left(\mu_{1}, \ldots, \mu_{n}\right)\right)$.
Strong envy-free For any $i, j(i \neq j), \mu_{i}\left(f_{i}\left(\mu_{1}, \ldots, \mu_{n}\right)\right)>\mu_{i}\left(f_{j}\left(\mu_{1}, \ldots, \mu_{n}\right)\right)$.
Super envy-free For any $i, j(i \neq j), \mu_{i}\left(f_{j}\left(\mu_{1}, \ldots, \mu_{n}\right)\right)<1 / n$.
Exact For any $i, j, \mu_{i}\left(f_{j}\left(\mu_{1}, \ldots, \mu_{n}\right)\right)=1 / n$.
Equitable For any $i, j, \mu_{i}\left(f_{i}\left(\mu_{1}, \ldots, \mu_{n}\right)\right)=\mu_{j}\left(f_{j}\left(\mu_{1}, \ldots, \mu_{n}\right)\right)$.
Simple fair division can be achieved for any number of parties by using the moving-knife protocol [8]. Strong fair division cannot be achieved if every party has an identical utility function μ. Woodall [14] proposed an algorithm for achieving strong fair division provided that there is a portion $X \subset[0,1]$ such that $\mu_{1}(X) \neq \mu_{2}(X)$, when $n=2$. The algorithm for obtaining such a portion X is an open problem. Envy-free division can be achieved for any number of parties [5], however the protocol is very complicated.

As regards strong envy-free cake-cutting, the lower bound of the number of cuts is shown [10]. Super envy-free division can be achieved if utility functions μ_{1}, \ldots, μ_{n} are linearly independent, however the algorithm for obtaining an actual assignment is not shown[2]. An exact division algorithm has been reported for two players using a moving knife method [1]. Though existence of exact division was proved [11], no algorithm has been shown for $n \geq 3$. An equitable division algorithm between two parties has been described [9]. The case where $n \geq 3$ is an open problem.

As shown above, stronger properties than envy-free such as strong-envy-free, super-envy-free, exact, and equitable are very hard to realize.

A definition, similar to ours, called 'anonymous,' is provided in [12]. A cakecutting protocol is anonymous if for any $\left(\mu_{1}, \ldots, \mu_{i}, \ldots, \mu_{j}, \ldots, \mu_{n}\right), i$, and j,

$$
f_{i}\left(\mu_{1}, \ldots, \mu_{i}, \ldots, \mu_{j}, \ldots, \mu_{n}\right)=f_{j}\left(\mu_{1}, \ldots, \mu_{j}, \ldots, \mu_{i}, \ldots, \mu_{n}\right)
$$

holds. This is a severe definition that requires the assigned portion to be identical for any role swapping. In meta-envy-freeness the assigned portions need not be identical but their utilities must be identical for any role swapping. In addition, randomization is not explicitly considered in the definition of anonymity.

Equitability does not imply meta-envy-freeness. There can be an (artificial) protocol that is equitable but not meta-envy-free. Party P_{1} 's utility μ_{1} satisfies $\mu_{1}([0,1 / 4])=0.3, \mu_{1}([1 / 4,1 / 2])=0.3, \mu_{1}([1 / 2,3 / 4])=0.2$, and $\mu_{1}([3 / 4,1])=$ 0.2. Party P_{2} 's utility μ_{2} satisfies $\mu_{2}([0,1 / 4])=0.2, \mu_{2}([1 / 4,1 / 2])=0.2$, $\mu_{2}([1 / 2,3 / 4])=0.3$, and $\mu_{2}([3 / 4,1])=0.3$. A protocol f initially assigns $[0,1 / 4]$ to the first player and $[3 / 4,1]$ to the second player. The result of $f\left(\mu_{1}, \mu_{2}\right)$ is $f_{1}\left(\mu_{1}, \mu_{2}\right)=[0,1 / 2]$ and $f_{2}\left(\mu_{1}, \mu_{2}\right)=[1 / 2,1]$ and the utilities are 0.6 for both parties. On the other hand, $f\left(\mu_{2}, \mu_{1}\right)$ might result in $f_{1}\left(\mu_{2}, \mu_{1}\right)=([0,1 / 4]$,
$[1 / 2,3 / 4])$ and $f_{2}\left(\mu_{2}, \mu_{1}\right)=([3 / 4,1],[1 / 4,1 / 2])$, thus the utilities are 0.5 for both parties. Therefore this (artificial) protocol is equitable, but not meta-envy-free,

```
begin
p}\mathrm{ cuts into three pieces (so that p}\mp@subsup{p}{1}{}\mathrm{ considers their sizes are the same)
Let }\mp@subsup{X}{1}{},\mp@subsup{X}{2}{},\mp@subsup{X}{3}{}\mathrm{ be the pieces where }\mp@subsup{X}{1}{}\mathrm{ is the largest and }\mp@subsup{X}{3}{}\mathrm{ is the smallest for p}\mp@subsup{p}{2}{}\mathrm{ .
if }\mp@subsup{X}{1}{}\mathrm{ is larger than }\mp@subsup{X}{2}{}\mathrm{ for p}\mp@subsup{p}{2}{}\mathrm{ then
    p}\mp@subsup{p}{2}{\mathrm{ cuts }L\mathrm{ from }\mp@subsup{X}{1}{}\mathrm{ so that }\mp@subsup{X}{1}{\prime}=\mp@subsup{X}{1}{}-L\mathrm{ is the same as }\mp@subsup{X}{2}{}\mathrm{ for p}\mp@subsup{p}{2}{}\mathrm{ .}
p}\mathrm{ selects the largest (for p}\mp@subsup{p}{3}{}\mathrm{ ) among }\mp@subsup{X}{1}{\prime},\mp@subsup{X}{2}{}\mathrm{ , and X3.
if X}\mp@subsup{X}{1}{\prime}\mathrm{ remains then
        begin
        p2 must select X1.
        Let ( }\mp@subsup{p}{a}{},\mp@subsup{p}{b}{})\mathrm{ be ( }\mp@subsup{p}{3}{},\mp@subsup{p}{2}{})\mathrm{ .
        end
else
        begin
        p2 selects }\mp@subsup{X}{2}{(the largest for p2).
        Let ( }\mp@subsup{p}{a}{},\mp@subsup{p}{b}{})\mathrm{ be ( }\mp@subsup{p}{2}{},\mp@subsup{p}{3}{})
        end
p1 obtains the remaining piece.
if L is not empty then
    pa}\mathrm{ cuts L into three pieces (such that }\mp@subsup{p}{a}{}\mathrm{ considers their sizes are the same) and
pb, p
end.
```

Fig. 1. Three-player envy-free protocol.
since P_{1} prefers the first player. On the other hand, the meta-envy-free protocols shown in the next section are not equitable. Note that meta-envy-freeness does not imply envy-freeness. As shown in the introduction, the following holds.

Theorem 2. The 'divide-and-choose' protocol is not meta-envy-free.
Next, we consider the envy-free cake-cutting protocol for three players, found independently by Selfridge and Conway (introduced in [6]), and shown in Fig. 1.

Note that without loss of envy-freeness, we assume that when a player cuts L from $X_{1}=\left[x_{1}, x_{2}\right], L$ must be cut as $\left[x_{1}, x_{3}\right]$ for some x_{3}.

Theorem 3. The protocol in Fig. 1 is not meta-envy-free.
Proof. Let there be three parties P_{x}, P_{y}, and P_{z} whose utility functions are μ_{x}, μ_{y}, and μ_{z}, respectively.

We show that party P_{x} prefers the role of player p_{3} to that of p_{2} in this protocol. Let us consider the following two executions:
(Ex1) $\left(p_{1}, p_{2}, p_{3}\right)=\left(P_{z}, P_{y}, P_{x}\right)$ and (Ex2) $\left(p_{1}, p_{2}, p_{3}\right)=\left(P_{z}, P_{x}, P_{y}\right)$.
The result of the initial cut by P_{z} at line 2 is the same in (Ex1) and (Ex2). Let the three pieces be Z_{1}, Z_{2}, and Z_{3}. Without loss of generality, Z 's are ordered from the largest to the smallest for P_{y}. All possible cases are categorized as follows.
(Case 1) P_{y} does not cut L in (Ex1).
(Case 1-1) P_{x} cuts L^{\prime} from some piece Z in (Ex2).
(Case 1-2) P_{x} does not cut L in (Ex2).
(Case 2) P_{y} cuts L from Z_{1} in (Ex1).
(Case 2-1) P_{x} also cuts L^{\prime} from Z_{1} in (Ex2).
(Case 2-1-1) L^{\prime} is larger ${ }^{3}$ than L. (Case 2-1-2) L^{\prime} is smaller than L. (Case 2-1-3) $L^{\prime}=L$.
(Case 2-2) P_{x} cuts L^{\prime} from another piece Z in (Ex2).
(Case 2-3) P_{x} does not cut L^{\prime} in (Ex2).
(Case 1-1) Let the largest piece for P_{x} be Z_{1}^{\prime}. P_{x} selects Z_{1}^{\prime} at line 6 in (Ex1) and obtains utility $\mu_{x}\left(Z_{1}^{\prime}\right)$. In contrast, at lines $7-16$ of (Ex2), P_{x} obtains a piece whose utility equals $\mu_{x}\left(Z_{1}^{\prime}-L^{\prime}\right)$, because there are two pieces with utility $\mu_{x}\left(Z_{1}^{\prime}-L^{\prime}\right)$ after cutting L^{\prime}. At line 19 of (Ex2), P_{x} obtains a cut of L^{\prime} whose utility is smaller than $\mu_{x}\left(L^{\prime}\right)$. Thus, the total utility of P_{x} is smaller than $\mu_{x}\left(Z_{1}^{\prime}\right)$. Therefore, (Ex1) is better for P_{x}.
(Case 1-2) There are at least two largest pieces for P_{x} among Z_{1}, Z_{2}, and Z_{3}. P_{x} selects the largest piece at line 6 in (Ex1). In contrast, after P_{y} has selected Z_{1} at line 6 in (Ex2), P_{x} can select one of the largest pieces at lines 7-16. Thus P_{x} obtains the same utility in (Ex1) and (Ex2).
(Case 2-1-1) At line 6 in (Ex1), the largest piece for P_{x} is $Z_{1}-L$, since L^{\prime} is larger than L. At line $19, P_{x}$ obtains at least $\mu_{x}(L) / 3$. Thus, P_{x} obtains at least $\mu_{x}\left(Z_{1}\right)-2 \mu_{x}(L) / 3$ in total. In contrast, P_{y} selects Z_{2}, which is larger than $Z_{1}-L^{\prime}$, at line 6 in (Ex2). Thus P_{x} selects $Z_{1}-L^{\prime}$ at line 9 . In addition, P_{x} obtains at least $\mu_{x}\left(L^{\prime}\right) / 3 . P_{x}$ obtains at least $\mu_{x}\left(Z_{1}\right)-2 \mu_{x}\left(L^{\prime}\right) / 3$ in total. Thus, (Ex1) is better for risk averse party P_{x}.
(Case 2-1-2) At line 6 in (Ex1), P_{x} does not select $Z_{1}-L$, since it is not greater than the second largest piece, whose utility is $\mu_{x}\left(Z_{1}-L^{\prime}\right)$, for $P_{x} . P_{x}$ chooses the piece and obtains $\mu_{x}\left(Z_{1}-L^{\prime}\right)$. In addition, at line $19, P_{x}$ obtains $\mu_{x}(L) / 3$ because P_{x} cuts $L . P_{x}$ obtains $\mu_{x}\left(Z_{1}\right)-\mu_{x}\left(L^{\prime}\right)+\mu_{x}(L) / 3$ in total. In contrast, at line 6 in (Ex2), P_{y} selects $Z_{1}-L^{\prime}$, which is the largest for P_{y}. Thus P_{x} selects Z_{2} or Z_{3} whose utility is $\mu_{x}\left(Z_{1}-L^{\prime}\right)$. P_{x} then obtains $\mu_{x}\left(L^{\prime}\right) / 3$ at line 19 because P_{x} cuts $L^{\prime} . P_{x}$ obtains $\mu_{x}\left(Z_{1}\right)-2 \mu_{x}\left(L^{\prime}\right) / 3$ in total, which is smaller than that in (Ex1), since L^{\prime} is smaller than L.
(Case 2-1-3) In both (Ex1) and (Ex2), P_{x} obtains a piece whose utility is $\mu_{x}\left(Z_{1}-L\right)$. The only difference is who cuts L. As shown in the proof of 'divide-and-choose', being Chooser is the better than being Divider at line 19. In (Ex1), P_{x} can select $Z_{1}-L$ and become Chooser. In (Ex2), if P_{y} selects $Z_{1}-L, P_{x}$ must become Divider. Thus (Ex1) is better than (Ex2).
(Case 2-2) In (Ex1), P_{x} selects the largest piece, which is not $Z_{1}-L$, at line 6 and obtains $\mu_{x}(Z)$. At line 19, P_{x} obtains at least $\mu_{x}(L) / 3$. In (Ex2), P_{y} selects Z_{1} not $Z-L^{\prime}$ at line 6. Thus P_{x} obtains $\mu_{x}(Z)-\mu_{x}\left(L^{\prime}\right)$ at line 9 . At line 19, P_{x} obtains less than $\mu_{x}\left(L^{\prime}\right) . P_{x}$ obtains less than $\mu_{x}(Z)$ in total, which is worse than in (Ex1).

[^0]```
begin
\(P_{i}(i=1,2)\) simultaneously declare \(c_{i}\) that satisfies \(\mu_{i}\left(\left[0, c_{i}\right]\right)=1 / 2\).
if \(c_{1}=c_{2}\) then
 Cut at \(c_{1}\), coin-flip and decide which party obtains \(\left[0, c_{1}\right]\) or \(\left[c_{1}, 1\right]\).
else
 Cut as \(\left[0,\left(c_{1}+c_{2}\right) / 2\right],\left[\left(c_{1}+c_{2}\right) / 2,1\right] . P_{i}\) obtains the piece which contains \(c_{i}\).
end.
```

Fig. 2. Two-party meta-envy-free protocol.
(Case 2-3) There are at least two largest pieces among $Z_{1}, Z_{2}$, and $Z_{3}$ for $P_{x}$. Let $\mu_{x}(Z)$ be the utility of the largest piece. In (Ex1), $P_{x}$ can obtain $\mu_{x}(Z)$ at line 6 . In addition, $P_{x}$ obtains $\mu_{x}(L) / 3$ at line 19. In contrast, in (Ex2), $P_{x}$ obtains $\mu_{x}(Z)$. Thus (Ex1) is better than (Ex2) for $P_{x}$.

## 4 Meta-envy-free protocols for two and three parties

This section shows meta-envy-free cake-cutting protocols for two and three parties. Note that the word 'party' is used in the descriptions in this section because every player's role is identical. When there are two parties, the protocol proposed in [4], shown in Fig. 2, is meta-envy-free.

The simultaneous declaration of values by multiple parties can be realized in several ways, (1) Trusted third party (TTP): $P_{i}$ sends $c_{i}$ to the TTP. After the TTP receives all the values, he broadcasts them to all parties. (2) Commitment scheme [7]: $P_{i}$ first sends $\operatorname{com}_{i}\left(c_{i}\right)$, which is a commitment of $c_{i}$. The other parties cannot obtain the value $c_{i}$ from $\operatorname{com}_{i}\left(c_{i}\right)$. After $P_{i}$ has obtained the other parties' committed values, $P_{i}$ opens its commitment (that is, sends $c_{i}$ and a proof that $\operatorname{com}_{i}\left(c_{i}\right)$ is really made by $\left.c_{i}\right) . P_{i}$ cannot provide a false proof that $\operatorname{com}_{i}\left(c_{i}\right)$ is made by $c_{i}^{\prime}\left(\neq c_{i}\right)$.

Theorem 4. The protocol in Figure 2 is meta-envy-free, envy-free, and strategyproof.
Proof. The cut point depends only on the parties' declared values. The result is independent of the role assignment or the order of declaration. Thus the protocol is meta-envy-free. The protocol is envy-free because both parties obtain at least half evaluated by their utility functions. The protocol is strategy-proof since if $P_{1}$ declares false cut point $c_{1}^{\prime}, P_{2}$ 's true cut point $c_{2}$ might satisfy $c_{2}=c_{1}^{\prime}$ and $P_{1}$ might obtain less than half by coin-flipping. Thus, risk adverse parties obey the rule and declare their true cut points.

There is another method for assigning portions when the declared values differ. Without loss of generality, assume that $c_{1}<c_{2}$. Assign $\left[0, c_{1}\right]$ to $P_{1},\left[c_{2}, 1\right]$ to $P_{2}$, and execute the same protocol again for the remaining piece $\left[c_{1}, c_{2}\right]$. Although this method might need an infinite number of declaration rounds and each party might obtain multiple fragments of the cake, the assignment guarantees $\mu_{1}\left(f_{1}\left(\mu_{1}, \mu_{2}\right)\right)=\mu_{2}\left(f_{2}\left(\mu_{1}, \mu_{2}\right)\right)$.

Avoiding multiple declaration is possible if $P_{i}$ simultaneously declares the utility density function $u_{i}$. Utility density function $u_{i}$ satisfies $u_{i}(z)>0$ for $[0,1]$ and $\int_{0}^{1} u_{i}(z) d z=1$.

When the remaining piece is $\left[l^{(j)}, r^{(j)}\right]$ at round $j\left(l^{(1)}=0\right.$ and $\left.r^{(1)}=1\right)$, The cut point declaration at round $j$ is the point $c_{i}^{(j)}$ that satisfies

$$
\begin{equation*}
\int_{l^{(j)}}^{c_{i}^{(j)}} u_{i}(z) d z=\int_{c_{i}^{(j)}}^{r^{(j)}} u_{i}(z) d z \tag{6}
\end{equation*}
$$

If $c_{1}^{(j)} \neq c_{2}^{(j)}$, let $l^{(j+1)}=\min \left(c_{1}^{(j)}, c_{2}^{(j)}\right), r^{(j+1)}=\max \left(c_{1}^{(j)}, c_{2}^{(j)}\right)$, and execute next round.

A protocol that uses a utility density function is also proposed in [3]. Here the cake is cut into two pieces. However, the protocol has the disadvantage that it is not strategic-proof, that is, a party can obtain more utility by declaring a false utility density function.

Next we show a protocol for a three-party case in Fig. 3. The protocol is outlined as follows. First, each party $P_{i}$ simultaneously declares cut point $l_{i}$ such that $\left[0, l_{i}\right]$ is $1 / 3$ for $P_{i}$. Cases are switched according to how many of $l_{1}, l_{2}$, and $l_{3}$ are the same. If at least two of them are the same, the parties with the same value simultaneously declare cut point $r_{i}$ such that $\left[r_{i}, 1\right]$ is $1 / 3$ for $P_{i}$. Envy-free assignment can be easily obtained using the declared values when at least two of $l_{1}, l_{2}$, and $l_{3}$ are the same. The remaining case is when $l_{1}, l_{2}$, and $l_{3}$ are all different (without loss of generality, assume that $l_{1}<l_{2}<l_{3}$ ). Here, we execute the three-player envy-free protocol in Fig. 1 with the role assignment $\left(p_{1}, p_{2}, p_{3}\right)=\left(P_{3}, P_{2}, P_{1}\right)$, that is, $P_{3}$ plays the role of $p_{1}$ in the protocol, and so on, with the restriction that $P_{3}$ must use $l_{3}$ as a cut. Note that this role assignment is executed by the declared value $l_{i}$, thus the protocol is meta-envy-free.

Although $\left(p_{1}, p_{2}, p_{3}\right)=\left(P_{3}, P_{2}, P_{1}\right)$ is not a unique acceptable role assignment, there are unacceptable role assignments. Let us consider the following role assignment: $\left(p_{1}, p_{2}, p_{3}\right)=\left(P_{2}, P_{1}, P_{3}\right)$, namely, the cake is cut at $l_{2}, r_{2}$ and $P_{1}$ cuts $L$ from the largest piece. Suppose that $\left[0, l_{2}\right]$ is the largest for $P_{1} . P_{1}$ cuts $L$ from $\left[0, l_{2}\right]$. In this case, $\left[0, l_{2}\right]$ is less than $1 / 3$ for $P_{3}$ because $l_{3}>l_{2}$. After $P_{1}$ cuts $L$ from $\left[0, l_{2}\right], P_{3}$ will never select $\left[0, l_{2}\right]-L$ as the largest piece for $P_{3} . P_{1}$ knows this fact from $l_{3}>l_{2}$, thus $P_{1}$ will not cut $L$ honestly from $\left[0, l_{2}\right]$. In this case, $P_{3}$ will select some piece other than $\left[0, l_{2}\right] . P_{1}$ then selects $\left[0, l_{2}\right]$ and obtains more utility than when honestly cutting $L$. Thus, the protocol is not strategy-proof.

Theorem 5. The protocol in Fig. 3 is meta-envy-free, envy-free, and strategyproof.

Proof. The protocol is meta-envy-free because the role is decided solely by the declared values. Next let us consider envy-freeness. All possible cases are categorized as follows. (Case 1) $l_{1}=l_{2}=l_{3}$ and $r_{1}=r_{2}=r_{3}$. (Case 2) $l_{1}=l_{2}=l_{3}$, $r_{1}=r_{2}$, and $r_{3}>r_{1}$. (Case 3) $l_{1}=l_{2}=l_{3}, r_{1}=r_{2}$, and $r_{1}>r_{3}$. (Case 4) $l_{1}=l_{2}=l_{3}$ and $r_{1}<r_{2}<r_{3}$. (Case 5) $l_{1}=l_{2}\left(\neq l_{3}\right)$ and $r_{1}=r_{2}$. (Case 6) $l_{1}=l_{2}\left(\neq l_{3}\right)$ and $r_{1}<r_{2}$. (Case 7) $l_{1}<l_{2}<l_{3}$.

```
Each party \(P_{i}\) simultaneously declares \(l_{i}\) such that \(\left[0, l_{i}\right]\) is \(1 / 3\) for \(P_{i}\).
if \(l_{1}=l_{2}=l_{3}\) then
 begin
 Each party \(P_{i}\) simultaneously declares \(r_{i}\) such that \(\left[r_{i}, 1\right]\) is \(1 / 3\) for \(P_{i}\).
 if \(r_{1}=r_{2}=r_{3}\) then
 Cut at \(l_{1}\) and \(r_{1}\). Coin-flip and assign \(\left[0, l_{1}\right],\left[l_{1}, r_{1}\right],\left[r_{1}, 1\right]\) to the parties.
 else
 if two of \(r_{1}, r_{2}, r_{3}\) are the same then
 begin /* Without loss of generality, let \(r_{1}=r_{2} .{ }^{*} /\)
 Cut at \(l_{1}\) and \(r_{1}\).
 if \(r_{3}>r_{1}\) then Assign \(\left[r_{1}, 1\right]\) to \(P_{3}\).
 else /* \(r_{3}<r_{1} * /\)
 Assign \(\left[l_{1}, r_{1}\right]\) to \(P_{3}\).
 Coin-flip and assign the remaining two pieces to \(P_{1}\) and \(P_{2}\).
 end
 else /* Without loss of generality, let \(r_{1}<r_{2}<r_{3} .{ }^{*} /\)
 Cut at \(l_{1}\) and \(r_{2}\). Assign \(\left[0, l_{1}\right]\) to \(P_{2},\left[l_{1}, r_{2}\right]\) to \(P_{1}\), and \(\left[r_{2}, 1\right]\) to \(P_{3}\).
 end \(/ *\) end of case \(l_{1}=l_{2}=l_{3} . * /\)
else
 if two among \(l_{1}, l_{2}\), and \(l_{3}\) are the same then
 begin /* Without loss of generality, let \(l_{1}=l_{2}\). */
 \(P_{1}\) and \(P_{2}\) simultaneously declare \(r_{i}\) such that \(\left[r_{i}, 1\right]\) is \(1 / 3\) for \(P_{i}\).
 if \(r_{1}=r_{2}\) then
 begin
 Cut at \(l_{1}\) and \(r_{1} . P_{3}\) selects one piece among \(\left[0, l_{1}\right],\left[l_{1}, r_{1}\right]\), and \(\left[r_{1}, 1\right]\).
 Coin-flip and assign the remaining two pieces to \(P_{1}\) and \(P_{2}\).
 end
 else /* \(r_{1} \neq r_{2}\). */
 begin /* Without loss of generality, let \(r_{1}<r_{2}\). */
 Cut at \(l_{1}, r_{1}, r_{2} . L \leftarrow\left[r_{1}, r_{2}\right] . P_{3}\) selects one among \(\left[0, l_{1}\right],\left[l_{1}, r_{1}\right],\left[r_{2}, 1\right]\).
 if \(P_{3}\) selects \(\left[0, l_{1}\right]\) then
 begin
 Assign \(\left[l_{1}, r_{1}\right]\) and \(\left[r_{2}, 1\right]\) to \(P_{1}\) and \(P_{2}\), respectively.
 \(P_{3}\) cuts L into three pieces. \(P_{1}, P_{2}, P_{3}\) selects one in this order.
 end
 else
 if \(P_{3}\) selects \(\left[l_{1}, r_{1}\right]\) then
 begin
 Assign \(\left[0, l_{1}\right]\) and \(\left[r_{2}, 1\right]\) to \(P_{1}\) and \(P_{2}\), respectively.
 \(P_{3}\) cuts L into three pieces. \(P_{2}, P_{1}, P_{3}\) selects one in this order.
 end
 else /* \(P_{3}\) selects \(\left[r_{2}, 1\right]\). */
 begin
 Assign \(\left[l_{1}, r_{1}\right]\) and \(\left[0, l_{1}\right]\) to \(P_{1}\) and \(P_{2}\), respectively.
 \(P_{3}\) cuts L into three pieces. \(P_{1}, P_{2}, P_{3}\) selects one in this order.
 end
 end
 end
 else \(/{ }^{*} l_{1}, l_{2}\) and \(l_{3}\) are different. Without loss of generality, let \(l_{1}<l_{2}<l_{3} . * /\)
 Execute Fig. 1 with \(\left(p_{1}, p_{2}, p_{3}\right)=\left(P_{3}, P_{2}, P_{1}\right)\) and \(l_{3}\) is used as a cut.
```

Fig. 3. Three party meta-envy-free protocol.
(Case 1) Since the utilities of $\left[0 . l_{1}\right],\left[l_{1}, r_{1}\right]$, and $\left[r_{1}, 1\right]$ are $1 / 3$ for all parties, no assignment causes envy.
(Case 2) The utilities of $\left[0, l_{1}\right],\left[l_{1}, r_{1}\right]$, and $\left[r_{1}, 1\right]$ are the same for $P_{1}$ and $P_{2}$. $\left[r_{1}, 1\right]$ is the largest for $P_{3}$ since $r_{3}>r_{1}$ and $l_{3}=l_{1}$. Thus assigning $\left[r_{1}, 1\right]$ does not cause any party envy. Assigning the remaining pieces to $P_{1}$ and $P_{2}$ can be arbitrary.
(Case 3) The utilities of $\left[0, l_{1}\right],\left[l_{1}, r_{1}\right]$, and $\left[r_{1}, 1\right]$ are the same for $P_{1}$ and $P_{2}$. [ $l_{1}, r_{1}$ ] is the largest for $P_{3}$ since $r_{3}<r_{1}$ and $l_{3}=l_{1}$. Thus assigning $\left[l_{1}, r_{1}\right]$ does not cause any party envy. Assigning the remaining pieces to $P_{1}$ and $P_{2}$ can be arbitrary.
(Case 4) Among $\left[0, l_{1}\right],\left[l_{1}, r_{2}\right]$, and $\left[r_{2}, 1\right],\left[l_{1}, r_{2}\right]$ is the largest for $P_{1}$ since $r_{1}<r_{2} .\left[r_{2}, 1\right]$ is the largest for $P_{3}$ since $r_{2}<r_{3}$ and $l_{1}=l_{3}$. $P_{2}$ feels the three pieces are the same size, thus assigning $\left[0, l_{1}\right]$ to $P_{2}$ does not cause envy.
(Case 5) The utilities of $\left[0, l_{1}\right],\left[l_{1}, r_{1}\right]$, and $\left[r_{1}, 1\right]$ are the same for $P_{1}$ and $P_{2}$. Thus, $P_{3}$ 's selection from these pieces does not cause envy.
(Case 6) The utilities of $\left[0, l_{1}\right],\left[l_{1}, r_{1}\right]$, and $\left[r_{1}, 1\right]$ are the same for $P_{1}$. The utilities of $\left[0, l_{1}\right],\left[l_{1}, r_{2}\right]$, and $\left[r_{2}, 1\right]$ are the same for $P_{2}$. Cutting the cake into four pieces, $\left[0, l_{1}\right],\left[l_{1}, r_{1}\right],\left[r_{2}, 1\right]$, and $L=\left[r_{1}, r_{2}\right]$ is exactly the same situation as during three-player envy-free cutting (Case 6-1) $P_{1}$ executes the initial cut ( $\left[0, l_{1}\right],\left[l_{1}, r_{1}\right]$, and $\left[r_{1}, 1\right]$ ) and $P_{2}$ cuts $L$ from the largest piece $\left[r_{1}, 1\right]$ so that its size becomes that of the second largest piece $\left[0, l_{1}\right]$ and (Case $\left.6-2\right) P_{2}$ executes the initial cut $\left(\left[0, l_{1}\right],\left[l_{1}, r_{2}\right]\right.$, and $\left.\left[r_{2}, 1\right]\right)$ and $P_{1}$ cuts $L$ from the largest piece $\left[l_{1}, r_{2}\right]$ so that its size becomes that of the second largest piece $\left[0, l_{1}\right]$.

When $P_{3}$ selects $\left[0, l_{1}\right]$ from the three pieces, we can regard this as (Case 6-2) being executed. With the three-player envy-free protocol, next $P_{1}$ must select $\left[l_{1}, r_{1}\right]$ and $P_{2}$ selects the remaining piece $\left[r_{2}, 1\right] . P_{3}$ cuts $L$ into three pieces. $P_{1}$, $P_{2}$, and $P_{3}$ each select one piece in this order. Because of the envy-freeness of the three-player protocol, the result is envy-free.

When $P_{3}$ selects $\left[l_{1}, r_{1}\right]$ from the three pieces, we can regard this as (Case 61) being executed. With the three-player envy-free protocol, next $P_{2}$ must select $\left[r_{2}, 1\right]$ and $P_{1}$ selects the remaining piece $\left[0, l_{1}\right] . P_{3}$ cuts $L$ into three pieces. $P_{2}$, $P_{1}$, and $P_{3}$ each select one piece in this order. Because of the envy-freeness of the three-player protocol, the result is envy-free.

Lastly, when $P_{3}$ selects $\left[r_{2}, 1\right]$ from the three pieces, we can regard this as (Case 6-2) being executed. With the three-player envy-free protocol, next $P_{1}$ must select $\left[l_{1}, r_{1}\right]$ and $P_{2}$ selects the remaining piece $\left[0, l_{1}\right]$. $P_{3}$ cuts $L$ into three pieces. $P_{1}, P_{2}$, and $P_{3}$ each select one piece in this order. Because of the envyfreeness of the three-player protocol, the result is envy-free.
(Case 7) Since the players execute the three-player envy-free protocol, the result is envy-free.

Lastly, let us discuss strategy-proofness. When $P_{i}$ declares a cut point $l_{i}$ (or $r_{i}$ ) simultaneously with some other process $P_{j}$, declaring a false value $l_{i}^{\prime}$ (or $r_{i}^{\prime}$ ) might result in a worse utility, since $P_{j}$ 's true value $l_{j}$ (or $r_{j}$ ) might satisfy $l_{j}=l_{i}^{\prime}$ (or $r_{j}=r_{i}^{\prime}$ ) and $P_{i}$ might obtain a smaller piece by coin-flipping.

When $P_{3}$ selects one piece at line 30 , a false selection results in a worse utility for $P_{3}$. Note that this selection does not affect who will be the divider of L .

Next, consider the execution of the three-player envy-free protocol with extra information $l_{1}<l_{2}<l_{3}$. When $P_{3}$ cuts as $\left[0, l_{3}\right],\left[l_{3}, r_{3}\right]$, and $\left[r_{3}, 1\right]$, a false cut $r_{3}^{\prime}$ might result in $P_{3}$ obtaining less than $1 / 3$. When $P_{2}$ cuts $L$ from the largest piece, information of $l_{1}$ does not help $P_{2}$ to obtain greater utility with false cut $L^{\prime}$ even if $P_{2}$ cuts $L$ from $\left[0, l_{3}\right]$. The reason is as follows. For any true cut $L$, either of the two cases can happen according to $P_{1}$ 's utility (that is unknown to $\left.P_{2}\right):(1)\left[l_{3}, r_{3}\right]$ or $\left[r_{3}, 1\right]$ is the largest for $P_{1}$ or (2) $\left[0, l_{3}\right]-L$ is the largest for $P_{1}$. Thus, if $P_{2}$ cuts $L^{\prime}$ that is smaller than $L, P_{1}$ might select $\left[0, l_{3}\right]-L^{\prime}$ and $P_{2}$ 's utility might become worse. If $P_{2}$ cuts $L^{\prime \prime}$ that is larger than $L, P_{1}$ might select $\left[l_{3}, r_{3}\right]$ and $P_{2}$ 's utility might become worse. With respect to cutting $L$ into three pieces, the strategy-proofness is exactly the same as that of the original three-player envy-free protocol. Therefore, the protocol is strategy-proof.

Acknowledgment We thank Dr. Hiro Ito for his valuable comments.

## References

1. Austin, A.K.: "Sharing a Cake," Mathematical Gazette, Vol. 66, No. 437, pp. 212215(1982).
2. Barbanel, J.B.: "Super Envy-Free Cake Division and Independence of Measures," J. of Mathematical Analysis and Applications, Vol. 197, No. 1, pp. 54-60 (1996).
3. Brams, S. J., Jones, M. A., and Klamler, C.: "Better Ways to Cut a Cake," Notices of the AMS, Vol. 53, No. 11, pp. 1314-1321 (2006).
4. Brams, S. J., Jones, M. A., and Klamler, C.: "Divide-and-Conquer: A Proportional, Minimal-Envy Cake-Cutting Procedure," Proc. of Dagstuhl Seminar (2007).
5. Brams, S.J. and Taylor, A.D.: "An Envy-Free Cake Division Protocol," American Mathematical Monthly, Vol. 102, No. 1, pp. 9-18 (1995).
6. Brams, S. J. and Taylor, A. D.: "Fair Division: From Cake-Cutting to Dispute Resolution," Cambridge University Press (1996).
7. Brassard, G., Chaum, D., and Crépeau, C.: "Minimum Disclosure Proofs of Knowledge," Journal of Computer and System Sciences, Vol. 37, No. 2, pp. 156-189 (1988).
8. Dubins, L. E. and Spanier, E. H.: "How to Cut a Cake Fairly," American Mathematical Monthly, Vol. 85, No. 1, pp. 1-17 (1961).
9. Jones, M. A.: "Equitable, Envy-free, and Efficient Cake Cutting for Two People and its Application to Divisible Goods." Mathematics Magazine Vol. 75, No. 4, pp. 275-283 (2002).
10. Magdon-Ismail, M., Busch, C., and Krishnamoorthy, M.S.: " Cake Cutting is Not a Piece of Cake," Proc. of the 20th STACS, LNCS 2607, pp. 596-607 (2003).
11. Neyman, J.: "Un theoreme d'existence," C. R. Acad. Sci. Paris Vol. 222 pp. 843-845 (1946).
12. Nicolò, A. and Yu, Y.: "Strategic Divide and Choose," Games and Economic Behavior, Vol. 64, No. 1, pp. 268-289 (2008).
13. Robertson, J. and Webb, W.: "Cake-Cutting Algorithms: Be Fair If You Can," A K Peters (1998).
14. Woodall, D.R.: "A Note on the Cake-Division Problem," J. of Combbinatorial Theory, A, Vol. 42, No. 2, pp. 300-301 (1986).

[^0]:    ${ }^{3}$ To compare the sizes of $L$ and $L^{\prime}$, they must be cut in a canonical way. Thus the additional rule for cutting $L$ is necessary.

