
Meta-Envy-Free Cake-Cutting Protocols

Yoshifumi Manabe1 and Tatsuaki Okamoto2

1 NTT Communication Science Laboratories, 3-1 Morinosato-Wakamitya, Atsugi,
Kanagawa 243-0198 Japan manabe.yoshifumi@lab.ntt.co.jp

2 NTT Information Sharing Platform Laboratories, 3-9-11, Midori-cho,
Musashino-shi, 180-8585 Japan okamoto.tatsuaki@lab.ntt.co.jp

Abstract. This paper discusses cake-cutting protocols when the cake
is a heterogeneous good that is represented by an interval in the real
line. We propose a new desirable property, the meta-envy-freeness of
cake-cutting, which has not been formally considered before. Though
envy-freeness was considered to be one of the most important desirable
properties, envy-freeness does not prevent envy about role assignment
in the protocols. We define meta-envy-freeness that formalizes this kind
of envy. We show that current envy-free cake-cutting protocols do not
satisfy meta-envy-freeness. Formerly proposed properties such as strong
envy-free, exact, and equitable do not directly consider this type of envy
and these properties are very difficult to realize. This paper then shows
meta-envy-free cake-cutting protocols for two and three party cases.

1 Introduction

Cake-cutting is an old problem in game theory. It can be employed for such
purposes as dividing territory on a conquered island or assigning jobs to members
of a group. This paper discusses the cake-cutting problem when the cake is a
heterogeneous good that is represented by an interval [0, 1] in the real line. The
most famous cake-cutting protocol is ‘divide-and-choose’ for two players. Player
1 (Divider) cuts the cake into two equal size pieces. Player 2 (Chooser) takes the
piece that she prefers. Divider takes the remaining piece. This protocol is proved
to be envy-free. Envy-freeness is defined as: after the assignment is finished, no
player wants to exchange his/her part for that of the other player. Divider must
cut the cake into two equal size pieces (using Divider’s utility function), otherwise
Chooser might take the larger piece and Divider will obtain less than half. Since
Divider cuts the cake into equal size pieces, she never envies Chooser whichever
piece Chooser selects. Chooser never envies Divider because she chooses first.

Although it appears that the ‘divide-and-choose’ protocol is perfect, actually
it is not, because it is not a complete protocol. When Alice and Bob execute
this protocol, they must first decide who will be Divider and Chooser. Chooser
is the better choice as mentioned in several papers [3][9]. If the utility functions
of Alice and Bob are the same, Divider and Chooser obtain exactly half of the
cake by using their utility function. Next we consider a case where the utility
functions of Alice and Bob differ. Let us assume that Bob is Divider. Let us

also assume that by using Bob’s utility function, [0, 1/4] and [1/4, 1] is an exact
division, because the cake is chocolate coated near 0 and Bob likes chocolate.
Alice does not have such a preference, thus by choosing [1/4, 1], Alice’s utility
is 3/4. If Alice is Divider, she cuts to [0, 1/2] and [1/2, 1]. Then Bob chooses
[0, 1/2] and obtains more than half by his utility. Therefore, Chooser is never
worse than Divider, and Chooser is properly better than Divider if their utility
functions differ. If both Alice and Bob know this fact, they both want to be
Chooser. Therefore, they must employ a method such as coin-flipping to decide
who will be Divider. If Alice is assigned the role of Divider, she definitely envies
Bob who is Chooser.

Some readers might think that coin-flipping will result in a fair decision
between Alice and Bob, and so it is not a problem. If this supposition is accepted,
the following protocol must also be accepted: ‘Flip a coin and the winner takes
the whole cake and the loser gets nothing.’ This is an unfair (envy) assignment
using fair coin-flipping. Game-theory researchers have discussed cake-cutting
protocols where the unfairness (envy) is minimized. If there is the possibility of
unfair assignment, we need to consider a better way that eliminates it. Now that
we know ‘divide-and-choose’ is unfair, we must consider eliminating this kind
of envy. Although this type of envy is known, it has not been formally defined.
This paper defines this type of envy for the first time as meta-envy and proposes
new protocols that eliminate it for two-party case and three-party case.

Previous studies defined stronger properties for the obtained portion such as
strong envy-free, super envy-free, exact, and equitable [6][13]. These properties
are hard to realize and do not directly consider this type of envy. We can ob-
tain a three-party meta-envy-free protocol by modifying a three player envy-free
protocol.

Note that we do not eliminate every coin-flip. For the above example of
‘divide-and-choose’, if Alice and Bob’s utility functions are exactly the same,
their cutting points are the same. Thus, both Alice and Bob think that the
values of the two pieces are the same. To complete the protocol, we must assign
each party either piece. Coin-flipping is necessary for such a case, but can only
be allowed if its result causes no envy.

2 Preliminaries

Throughout this paper, the cake is a heterogeneous good that is represented by
an interval [0, 1] in the real line. Each party Pi has a utility function µi that has
the following three properties. (1) For any non-empty X ⊆ [0, 1], µi(X) > 0.
(2) For any X1 and X2 such that X1 ∩ X2 = ∅, µi(X1 ∪ X2) = µi(X1) +
µi(X2). (3) µi([0, 1]) = 1. The tuple of Pi(i = 1, . . . , n)’s utility function is
denoted by (µ1, . . . , µn). Utility functions might differ among parties. No party
has knowledge of the other parties’ utility functions.

In this paper, ‘party’ indicates a person such as Alice, Bob, etc. and is denoted
by P . ‘Player’ is a role in a protocol and is denoted by p. We sometimes state

that ‘party X is assigned to player y’ if a person X executes the role of player
y in the protocol.

An n-player cake-cutting protocol f assigns several portions of [0, 1] to the
players such that every portion of [0, 1] is assigned to one player. We denote
fi(µ1, . . . , µn) as the set of portions assigned to player pi by f , when party
Pi(i = 1, . . . , n) is assigned to player pi(i = 1, . . . , n) in f . When f is a random-
ized algorithm, let us denote fi(µ1, . . . , µn; r) as the assignment to pi when the
sequence of random values used in f is r.

All parties are risk averse, namely they avoid gambling. They try to maximize
the worst case utility they can obtain.

A desirable property for cake-cutting protocols is strategy-proofness [6]. A
protocol is strategy-proof if there is no incentive for any player to lie about his
utility function. A protocol defines what to do for each player pi according to
its utility function µi. Since µi is unknown to any other player, pi can execute
some action that differs from the protocol’s definition (by pretending that pi’s
utility function is µ′

i(̸= µi)). If pi obtains more utility by lying about his utility
function, the protocol is not strategy-proof. If a protocol is not strategy-proof,
each player has to consider what to do and the result might differ from the
intended result. If a protocol is strategy-proof, the best policy for each player
is simply observing the rule of the protocol. Thus strategy-proofness is very
important. As for ‘divide-and-choose’, the protocol requires Divider to cut the
cake in half by using Divider’s true utility function. Divider can cut the cake
other than in half. However, if Divider does so, Chooser might take the larger
portion and Divider might obtain less than half. Thus a risk averse party honestly
executes the protocol, and ‘divide-and-choose’ is strategy-proof.

3 Meta-envy-freeness

This section provides the definition of meta-envy-freeness. We offer two defini-
tions and show that they are equivalent.

Definition 1. A cake-cutting protocol f is meta-envy-free if for any (µ1, . . . , µn),
i, j, and r,

µi(fi(µ1, . . . , µi, . . . , µj , . . . , µn; r)) ≥ µi(fj(µ1, . . . , µj , . . . , µi, . . . , µn; r)) (1)

This definition considers the following two executions of f . (1) party Pi (whose
utility function is µi) plays the role of player pi and party Pj (whose utility
function is µj) plays the role of player pj in f . (2) party Pi plays the role of player
pj and party Pj plays the role of player pi in f , that is, Pi and Pj swap role
assignments. If the swap does not increase the utility of the obtained portions,
Pi will not want to swap the role assignment, thus the protocol is envy-free as
regards the role assignment.

Next we show a stronger definition.

Definition 2. A cake-cutting protocol f is meta-envy-free if for any (µ1, . . . , µn),
permutation π : {1, . . . , n} → {1 . . . , n}, i, and r,

µi(fi(µ1, . . . , µn; r)) = µi(fπ−1(i)(µπ(1), . . . , µπ(n); r)) (2)

This definition allows any permutation of the role assignment, which includes
the case where Pi’s role is unchanged. In addition, the utility must be unchanged
for any permutation.

Theorem 1. Definition 1 and Definition 2 are equivalent.

Proof. If the condition of Definition 2 is satisfied, the condition of Definition 1
is obviously satisfied. Thus we prove the opposite direction.

Suppose that f satisfies the condition of Definition 1 and for some
(µ1, . . . , µi, . . . , µj , . . . , µn), i, j, and r,

µi(fi(µ1, . . . , µi, . . . , µj , . . . , µn; r)) > µi(fj(µ1, . . . , µj , . . . , µi, . . . , µn; r)) (3)

is satisfied. Then consider another execution of f with (µ1, . . . , µj , . . . , , µi, . . . , µn),
that is, Pi’s utility function is µj and Pj ’s utility function is µi. Since the condi-
tion of Definition 1 is satisfied, swapping the roles of Pi and Pj does not increase
Pj ’s utility, that is,

µi(fj(µ1, . . . , µj , . . . , µi, . . . , µn; r)) ≥ µi(fi(µ1, . . . , µi, . . . , µj , . . . , µn; r)) (4)

This contradicts Eq. (3). Thus, for any (µ1, . . . , µi, . . . , µj , . . . , µn), i, j, and r,

µi(fi(µ1, . . . , µi, . . . , µj , . . . , µn; r)) = µi(fj(µ1, . . . , µj , . . . , µi, . . . , µn; r)) (5)

is satisfied.
Next we consider a general permutation of the role assignment. Any permu-

tation π can be realized by a sequence in which two elements are swapped. As
shown above, Pi’s utility is unchanged when the swap involves Pi, thus we discuss
Pi’s utility when there is a swap between the other parties. Consider two utilities
µi(fi(. . . , µi, . . . , µj , . . . , µk, . . . ; r)) and µi(fi(. . . , µi, . . . , µk, . . . , µj , . . . ; r)).

The roles of Pj and Pk can be swapped by the sequence of (S1) swapping
Pi and Pj , (S2) swapping Pi (current role is pj) and Pk, and (S3) swapping Pi

(current role is pk) and Pj (current role is pi).
For each swap, Eq. (5) must be satisfied. From these equalities, we obtain

µi(fi(. . . , µi, . . . , µj , . . . , µk, . . . ; r)) = µi(fj(. . . , µj , . . . , µi, . . . , µk, . . . ; r))
µi(fj(. . . , µj , . . . , µi, . . . , µk, . . . ; r)) = µi(fk(. . . , µj , . . . , µk, . . . , µi, . . . ; r))
µi(fk(. . . , µj , . . . , µk, . . . , µi, . . . ; r)) = µi(fi(. . . , µi, . . . , µk, . . . , µj , . . . ; r)).

From these equalities, we obtain

µi(fi(. . . , µi, . . . , µj , . . . , µk, . . . ; r)) = µi(fi(. . . , µi, . . . , µk, . . . , µj , . . . ; r)).

Since this equality holds for any single swap, the equality holds for any permu-
tation π. ⊓⊔

Several desirable properties have been defined as shown below [6][13], but
these definitions do not take role assignment into consideration.

Simple fair For any i, µi(fi(µ1, . . . , µn)) ≥ 1/n.
Strong fair For any i, µi(fi(µ1, . . . , µn)) > 1/n.
Envy-free For any i, j(i ̸= j), µi(fi(µ1, . . . , µn)) ≥ µi(fj(µ1, . . . , µn)).
Strong envy-free For any i, j(i ̸= j), µi(fi(µ1, . . . , µn)) > µi(fj(µ1, . . . , µn)).
Super envy-free For any i, j(i ̸= j), µi(fj(µ1, . . . , µn)) < 1/n.
Exact For any i, j, µi(fj(µ1, . . . , µn)) = 1/n.
Equitable For any i, j, µi(fi(µ1, . . . , µn)) = µj(fj(µ1, . . . , µn)).

Simple fair division can be achieved for any number of parties by using the
moving-knife protocol [8]. Strong fair division cannot be achieved if every party
has an identical utility function µ. Woodall [14] proposed an algorithm for achiev-
ing strong fair division provided that there is a portion X ⊂ [0, 1] such that
µ1(X) ̸= µ2(X), when n = 2. The algorithm for obtaining such a portion X
is an open problem. Envy-free division can be achieved for any number of par-
ties [5], however the protocol is very complicated.

As regards strong envy-free cake-cutting, the lower bound of the number of
cuts is shown [10]. Super envy-free division can be achieved if utility functions
µ1, . . . , µn are linearly independent, however the algorithm for obtaining an ac-
tual assignment is not shown[2]. An exact division algorithm has been reported
for two players using a moving knife method [1]. Though existence of exact di-
vision was proved [11], no algorithm has been shown for n ≥ 3. An equitable
division algorithm between two parties has been described [9]. The case where
n ≥ 3 is an open problem.

As shown above, stronger properties than envy-free such as strong-envy-free,
super-envy-free, exact, and equitable are very hard to realize.

A definition, similar to ours, called ‘anonymous,’ is provided in [12]. A cake-
cutting protocol is anonymous if for any (µ1, . . . , µi, . . . , µj , . . . , µn), i, and j,

fi(µ1, . . . , µi, . . . , µj , . . . , µn) = fj(µ1, . . . , µj , . . . , µi, . . . , µn)

holds. This is a severe definition that requires the assigned portion to be identical
for any role swapping. In meta-envy-freeness the assigned portions need not be
identical but their utilities must be identical for any role swapping. In addition,
randomization is not explicitly considered in the definition of anonymity.

Equitability does not imply meta-envy-freeness. There can be an (artificial)
protocol that is equitable but not meta-envy-free. Party P1’s utility µ1 satisfies
µ1([0, 1/4]) = 0.3, µ1([1/4, 1/2]) = 0.3, µ1([1/2, 3/4]) = 0.2, and µ1([3/4, 1]) =
0.2. Party P2’s utility µ2 satisfies µ2([0, 1/4]) = 0.2, µ2([1/4, 1/2]) = 0.2,
µ2([1/2, 3/4]) = 0.3, and µ2([3/4, 1]) = 0.3. A protocol f initially assigns [0, 1/4]
to the first player and [3/4, 1] to the second player. The result of f(µ1, µ2) is
f1(µ1, µ2) = [0, 1/2] and f2(µ1, µ2) = [1/2, 1] and the utilities are 0.6 for both
parties. On the other hand, f(µ2, µ1) might result in f1(µ2, µ1) = ([0, 1/4],
[1/2, 3/4]) and f2(µ2, µ1) = ([3/4, 1], [1/4, 1/2]), thus the utilities are 0.5 for both
parties. Therefore this (artificial) protocol is equitable, but not meta-envy-free,

1: begin
2: p1 cuts into three pieces (so that p1 considers their sizes are the same)
3: Let X1, X2, X3 be the pieces where X1 is the largest and X3 is the smallest for p2.
4: if X1 is larger than X2 for p2 then
5: p2 cuts L from X1 so that X ′

1 = X1 − L is the same as X2 for p2.
6: p3 selects the largest (for p3) among X ′

1, X2, and X3.
7: if X ′

1 remains then
8: begin
9: p2 must select X ′

1.
10: Let (pa, pb) be (p3, p2).
11: end
12: else
13: begin
14: p2 selects X2 (the largest for p2).
15: Let (pa, pb) be (p2, p3).
16: end
17: p1 obtains the remaining piece.
18: if L is not empty then
19: pa cuts L into three pieces (such that pa considers their sizes are the same) and

pb, p1, and pa selects one piece in this order.
20: end.

Fig. 1. Three-player envy-free protocol.

since P1 prefers the first player. On the other hand, the meta-envy-free protocols
shown in the next section are not equitable. Note that meta-envy-freeness does
not imply envy-freeness. As shown in the introduction, the following holds.

Theorem 2. The ‘divide-and-choose’ protocol is not meta-envy-free.

Next, we consider the envy-free cake-cutting protocol for three players, found
independently by Selfridge and Conway (introduced in [6]), and shown in Fig. 1.

Note that without loss of envy-freeness, we assume that when a player cuts
L from X1 = [x1, x2], L must be cut as [x1, x3] for some x3.

Theorem 3. The protocol in Fig. 1 is not meta-envy-free.

Proof. Let there be three parties Px, Py, and Pz whose utility functions are µx,
µy, and µz, respectively.

We show that party Px prefers the role of player p3 to that of p2 in this
protocol. Let us consider the following two executions:
(Ex1) (p1, p2, p3) = (Pz, Py, Px) and (Ex2) (p1, p2, p3) = (Pz, Px, Py).

The result of the initial cut by Pz at line 2 is the same in (Ex1) and (Ex2). Let
the three pieces be Z1, Z2, and Z3. Without loss of generality, Z’s are ordered
from the largest to the smallest for Py. All possible cases are categorized as
follows.

(Case 1) Py does not cut L in (Ex1).

(Case 1-1) Px cuts L′ from some piece Z in (Ex2).
(Case 1-2) Px does not cut L in (Ex2).
(Case 2) Py cuts L from Z1 in (Ex1).
(Case 2-1) Px also cuts L′ from Z1 in (Ex2).

(Case 2-1-1) L′ is larger3 than L. (Case 2-1-2) L′ is smaller than L.
(Case 2-1-3) L′ = L.

(Case 2-2) Px cuts L′ from another piece Z in (Ex2).
(Case 2-3) Px does not cut L′ in (Ex2).

(Case 1-1) Let the largest piece for Px be Z ′
1. Px selects Z ′

1 at line 6 in (Ex1)
and obtains utility µx(Z ′

1). In contrast, at lines 7-16 of (Ex2), Px obtains a
piece whose utility equals µx(Z ′

1 −L′), because there are two pieces with utility
µx(Z ′

1 − L′) after cutting L′. At line 19 of (Ex2), Px obtains a cut of L′ whose
utility is smaller than µx(L′). Thus, the total utility of Px is smaller than µx(Z ′

1).
Therefore, (Ex1) is better for Px.

(Case 1-2) There are at least two largest pieces for Px among Z1, Z2, and Z3.
Px selects the largest piece at line 6 in (Ex1). In contrast, after Py has selected
Z1 at line 6 in (Ex2), Px can select one of the largest pieces at lines 7-16. Thus
Px obtains the same utility in (Ex1) and (Ex2).

(Case 2-1-1) At line 6 in (Ex1), the largest piece for Px is Z1 − L, since L′

is larger than L. At line 19, Px obtains at least µx(L)/3. Thus, Px obtains at
least µx(Z1)− 2µx(L)/3 in total. In contrast, Py selects Z2, which is larger than
Z1 − L′, at line 6 in (Ex2). Thus Px selects Z1 − L′ at line 9. In addition, Px

obtains at least µx(L′)/3. Px obtains at least µx(Z1)−2µx(L′)/3 in total. Thus,
(Ex1) is better for risk averse party Px.

(Case 2-1-2) At line 6 in (Ex1), Px does not select Z1 − L, since it is not
greater than the second largest piece, whose utility is µx(Z1 − L′), for Px. Px

chooses the piece and obtains µx(Z1 − L′). In addition, at line 19, Px obtains
µx(L)/3 because Px cuts L. Px obtains µx(Z1) − µx(L′) + µx(L)/3 in total. In
contrast, at line 6 in (Ex2), Py selects Z1 −L′, which is the largest for Py. Thus
Px selects Z2 or Z3 whose utility is µx(Z1−L′). Px then obtains µx(L′)/3 at line
19 because Px cuts L′. Px obtains µx(Z1)− 2µx(L′)/3 in total, which is smaller
than that in (Ex1), since L′ is smaller than L.

(Case 2-1-3) In both (Ex1) and (Ex2), Px obtains a piece whose utility is
µx(Z1 −L). The only difference is who cuts L. As shown in the proof of ‘divide-
and-choose’, being Chooser is the better than being Divider at line 19. In (Ex1),
Px can select Z1 − L and become Chooser. In (Ex2), if Py selects Z1 − L, Px

must become Divider. Thus (Ex1) is better than (Ex2).
(Case 2-2) In (Ex1), Px selects the largest piece, which is not Z1−L, at line 6

and obtains µx(Z). At line 19, Px obtains at least µx(L)/3. In (Ex2), Py selects
Z1 not Z − L′ at line 6. Thus Px obtains µx(Z) − µx(L′) at line 9. At line 19,
Px obtains less than µx(L′). Px obtains less than µx(Z) in total, which is worse
than in (Ex1).

3 To compare the sizes of L and L′, they must be cut in a canonical way. Thus the
additional rule for cutting L is necessary.

1: begin
2: Pi(i = 1, 2) simultaneously declare ci that satisfies µi([0, ci]) = 1/2.
3: if c1 = c2 then
4: Cut at c1, coin-flip and decide which party obtains [0, c1] or [c1, 1].
5: else
6: Cut as [0, (c1 + c2)/2], [(c1 + c2)/2, 1]. Pi obtains the piece which contains ci.
7: end.

Fig. 2. Two-party meta-envy-free protocol.

(Case 2-3) There are at least two largest pieces among Z1, Z2, and Z3 for
Px. Let µx(Z) be the utility of the largest piece. In (Ex1), Px can obtain µx(Z)
at line 6. In addition, Px obtains µx(L)/3 at line 19. In contrast, in (Ex2), Px

obtains µx(Z). Thus (Ex1) is better than (Ex2) for Px. ⊓⊔

4 Meta-envy-free protocols for two and three parties

This section shows meta-envy-free cake-cutting protocols for two and three par-
ties. Note that the word ‘party’ is used in the descriptions in this section because
every player’s role is identical. When there are two parties, the protocol proposed
in [4], shown in Fig. 2, is meta-envy-free.

The simultaneous declaration of values by multiple parties can be realized in
several ways, (1) Trusted third party (TTP): Pi sends ci to the TTP. After the
TTP receives all the values, he broadcasts them to all parties. (2) Commitment
scheme [7]: Pi first sends comi(ci), which is a commitment of ci. The other parties
cannot obtain the value ci from comi(ci). After Pi has obtained the other parties’
committed values, Pi opens its commitment (that is, sends ci and a proof that
comi(ci) is really made by ci). Pi cannot provide a false proof that comi(ci) is
made by c′i(̸= ci).

Theorem 4. The protocol in Figure 2 is meta-envy-free, envy-free, and strategy-
proof.

Proof. The cut point depends only on the parties’ declared values. The result is
independent of the role assignment or the order of declaration. Thus the protocol
is meta-envy-free. The protocol is envy-free because both parties obtain at least
half evaluated by their utility functions. The protocol is strategy-proof since if
P1 declares false cut point c′1, P2’s true cut point c2 might satisfy c2 = c′1 and
P1 might obtain less than half by coin-flipping. Thus, risk adverse parties obey
the rule and declare their true cut points. ⊓⊔

There is another method for assigning portions when the declared values differ.
Without loss of generality, assume that c1 < c2. Assign [0, c1] to P1, [c2, 1] to
P2, and execute the same protocol again for the remaining piece [c1, c2]. Al-
though this method might need an infinite number of declaration rounds and
each party might obtain multiple fragments of the cake, the assignment guaran-
tees µ1(f1(µ1, µ2)) = µ2(f2(µ1, µ2)).

Avoiding multiple declaration is possible if Pi simultaneously declares the
utility density function ui. Utility density function ui satisfies ui(z) > 0 for [0, 1]
and

∫ 1

0
ui(z)dz = 1.

When the remaining piece is [l(j), r(j)] at round j (l(1) = 0 and r(1) = 1),
The cut point declaration at round j is the point c

(j)
i that satisfies∫ c

(j)
i

l(j)
ui(z)dz =

∫ r(j)

c
(j)
i

ui(z)dz. (6)

If c
(j)
1 ̸= c

(j)
2 , let l(j+1) = min(c(j)

1 , c
(j)
2), r(j+1) = max(c(j)

1 , c
(j)
2), and execute

next round.
A protocol that uses a utility density function is also proposed in [3]. Here

the cake is cut into two pieces. However, the protocol has the disadvantage that
it is not strategic-proof, that is, a party can obtain more utility by declaring a
false utility density function.

Next we show a protocol for a three-party case in Fig. 3. The protocol is
outlined as follows. First, each party Pi simultaneously declares cut point li
such that [0, li] is 1/3 for Pi. Cases are switched according to how many of l1, l2,
and l3 are the same. If at least two of them are the same, the parties with the
same value simultaneously declare cut point ri such that [ri, 1] is 1/3 for Pi.
Envy-free assignment can be easily obtained using the declared values when at
least two of l1, l2, and l3 are the same. The remaining case is when l1, l2, and l3
are all different (without loss of generality, assume that l1 < l2 < l3). Here, we
execute the three-player envy-free protocol in Fig. 1 with the role assignment
(p1, p2, p3)=(P3, P2, P1), that is, P3 plays the role of p1 in the protocol, and so on,
with the restriction that P3 must use l3 as a cut. Note that this role assignment
is executed by the declared value li, thus the protocol is meta-envy-free.

Although (p1, p2, p3)=(P3, P2, P1) is not a unique acceptable role assignment,
there are unacceptable role assignments. Let us consider the following role as-
signment: (p1, p2, p3)=(P2, P1, P3), namely, the cake is cut at l2, r2 and P1 cuts
L from the largest piece. Suppose that [0, l2] is the largest for P1. P1 cuts L from
[0, l2]. In this case, [0, l2] is less than 1/3 for P3 because l3 > l2. After P1 cuts L
from [0, l2], P3 will never select [0, l2] − L as the largest piece for P3. P1 knows
this fact from l3 > l2, thus P1 will not cut L honestly from [0, l2]. In this case, P3

will select some piece other than [0, l2]. P1 then selects [0, l2] and obtains more
utility than when honestly cutting L. Thus, the protocol is not strategy-proof.

Theorem 5. The protocol in Fig. 3 is meta-envy-free, envy-free, and strategy-
proof.

Proof. The protocol is meta-envy-free because the role is decided solely by the
declared values. Next let us consider envy-freeness. All possible cases are catego-
rized as follows. (Case 1) l1 = l2 = l3 and r1 = r2 = r3. (Case 2) l1 = l2 = l3,
r1 = r2, and r3 > r1. (Case 3) l1 = l2 = l3, r1 = r2, and r1 > r3. (Case 4)
l1 = l2 = l3 and r1 < r2 < r3. (Case 5) l1 = l2(̸= l3) and r1 = r2. (Case 6)
l1 = l2(̸= l3) and r1 < r2. (Case 7) l1 < l2 < l3.

1: Each party Pi simultaneously declares li such that [0, li] is 1/3 for Pi.
2: if l1 = l2 = l3 then
3: begin
4: Each party Pi simultaneously declares ri such that [ri, 1] is 1/3 for Pi.
5: if r1 = r2 = r3 then
6: Cut at l1 and r1. Coin-flip and assign [0, l1], [l1, r1], [r1, 1] to the parties.
7: else
8: if two of r1, r2, r3 are the same then
9: begin /* Without loss of generality, let r1 = r2. */

10: Cut at l1 and r1.
11: if r3 > r1 then Assign [r1, 1] to P3.
12: else /* r3 < r1 */
13: Assign [l1, r1] to P3.
14: Coin-flip and assign the remaining two pieces to P1 and P2.
15: end
16: else /* Without loss of generality, let r1 < r2 < r3. */
17: Cut at l1 and r2. Assign [0, l1] to P2, [l1, r2] to P1, and [r2, 1] to P3.
18: end /* end of case l1 = l2 = l3. */
19: else
20: if two among l1, l2, and l3 are the same then
21: begin /* Without loss of generality, let l1 = l2. */
22: P1 and P2 simultaneously declare ri such that [ri, 1] is 1/3 for Pi.
23: if r1 = r2 then
24: begin
25: Cut at l1 and r1. P3 selects one piece among [0, l1], [l1, r1], and [r1, 1].
26: Coin-flip and assign the remaining two pieces to P1 and P2.
27: end
28: else /* r1 ̸= r2. */
29: begin /* Without loss of generality, let r1 < r2. */
30: Cut at l1, r1, r2. L← [r1, r2]. P3 selects one among [0, l1], [l1, r1], [r2, 1].
31: if P3 selects [0, l1] then
32: begin
33: Assign [l1, r1] and [r2, 1] to P1 and P2, respectively.
34: P3 cuts L into three pieces. P1, P2, P3 selects one in this order.
35: end
36: else
37: if P3 selects [l1, r1] then
38: begin
39: Assign [0, l1] and [r2, 1] to P1 and P2, respectively.
40: P3 cuts L into three pieces. P2, P1, P3 selects one in this order.
41: end
42: else /* P3 selects [r2, 1]. */
43: begin
44: Assign [l1, r1] and [0, l1] to P1 and P2, respectively.
45: P3 cuts L into three pieces. P1, P2, P3 selects one in this order.
46: end
47: end
48: end
49: else /* l1, l2 and l3 are different. Without loss of generality, let l1 < l2 < l3. */
50: Execute Fig. 1 with (p1, p2, p3)=(P3, P2, P1) and l3 is used as a cut.

Fig. 3. Three party meta-envy-free protocol.

(Case 1) Since the utilities of [0.l1], [l1, r1], and [r1, 1] are 1/3 for all parties,
no assignment causes envy.

(Case 2) The utilities of [0, l1], [l1, r1], and [r1, 1] are the same for P1 and P2.
[r1, 1] is the largest for P3 since r3 > r1 and l3 = l1. Thus assigning [r1, 1] does
not cause any party envy. Assigning the remaining pieces to P1 and P2 can be
arbitrary.

(Case 3) The utilities of [0, l1], [l1, r1], and [r1, 1] are the same for P1 and P2.
[l1, r1] is the largest for P3 since r3 < r1 and l3 = l1. Thus assigning [l1, r1] does
not cause any party envy. Assigning the remaining pieces to P1 and P2 can be
arbitrary.

(Case 4) Among [0, l1], [l1, r2], and [r2, 1], [l1, r2] is the largest for P1 since
r1 < r2. [r2, 1] is the largest for P3 since r2 < r3 and l1 = l3. P2 feels the three
pieces are the same size, thus assigning [0, l1] to P2 does not cause envy.

(Case 5) The utilities of [0, l1], [l1, r1], and [r1, 1] are the same for P1 and P2.
Thus, P3’s selection from these pieces does not cause envy.

(Case 6) The utilities of [0, l1], [l1, r1], and [r1, 1] are the same for P1. The
utilities of [0, l1], [l1, r2], and [r2, 1] are the same for P2. Cutting the cake into
four pieces, [0, l1], [l1, r1], [r2, 1], and L = [r1, r2] is exactly the same situation
as during three-player envy-free cutting (Case 6-1) P1 executes the initial cut
([0, l1], [l1, r1], and [r1, 1]) and P2 cuts L from the largest piece [r1, 1] so that its
size becomes that of the second largest piece [0, l1] and (Case 6-2) P2 executes
the initial cut ([0, l1], [l1, r2], and [r2, 1]) and P1 cuts L from the largest piece
[l1, r2] so that its size becomes that of the second largest piece [0, l1].

When P3 selects [0, l1] from the three pieces, we can regard this as (Case 6-2)
being executed. With the three-player envy-free protocol, next P1 must select
[l1, r1] and P2 selects the remaining piece [r2, 1]. P3 cuts L into three pieces. P1,
P2, and P3 each select one piece in this order. Because of the envy-freeness of
the three-player protocol, the result is envy-free.

When P3 selects [l1, r1] from the three pieces, we can regard this as (Case 6-
1) being executed. With the three-player envy-free protocol, next P2 must select
[r2, 1] and P1 selects the remaining piece [0, l1]. P3 cuts L into three pieces. P2,
P1, and P3 each select one piece in this order. Because of the envy-freeness of
the three-player protocol, the result is envy-free.

Lastly, when P3 selects [r2, 1] from the three pieces, we can regard this as
(Case 6-2) being executed. With the three-player envy-free protocol, next P1

must select [l1, r1] and P2 selects the remaining piece [0, l1]. P3 cuts L into three
pieces. P1, P2, and P3 each select one piece in this order. Because of the envy-
freeness of the three-player protocol, the result is envy-free.

(Case 7) Since the players execute the three-player envy-free protocol, the
result is envy-free.

Lastly, let us discuss strategy-proofness. When Pi declares a cut point li (or
ri) simultaneously with some other process Pj , declaring a false value l′i (or r′i)
might result in a worse utility, since Pj ’s true value lj (or rj) might satisfy lj = l′i
(or rj = r′i) and Pi might obtain a smaller piece by coin-flipping.

When P3 selects one piece at line 30, a false selection results in a worse utility
for P3. Note that this selection does not affect who will be the divider of L.

Next, consider the execution of the three-player envy-free protocol with extra
information l1 < l2 < l3. When P3 cuts as [0, l3], [l3, r3], and [r3, 1], a false cut
r′3 might result in P3 obtaining less than 1/3. When P2 cuts L from the largest
piece, information of l1 does not help P2 to obtain greater utility with false cut
L′ even if P2 cuts L from [0, l3]. The reason is as follows. For any true cut L,
either of the two cases can happen according to P1’s utility (that is unknown to
P2): (1) [l3, r3] or [r3, 1] is the largest for P1 or (2) [0, l3] − L is the largest for
P1. Thus, if P2 cuts L′ that is smaller than L, P1 might select [0, l3] − L′ and
P2’s utility might become worse. If P2 cuts L′′ that is larger than L, P1 might
select [l3, r3] and P2’s utility might become worse. With respect to cutting L into
three pieces, the strategy-proofness is exactly the same as that of the original
three-player envy-free protocol. Therefore, the protocol is strategy-proof. ⊓⊔

Acknowledgment We thank Dr. Hiro Ito for his valuable comments.

References

1. Austin, A.K.: “Sharing a Cake,” Mathematical Gazette, Vol. 66, No. 437, pp. 212-
215(1982).

2. Barbanel, J.B.: “Super Envy-Free Cake Division and Independence of Measures,”
J. of Mathematical Analysis and Applications, Vol. 197, No. 1, pp. 54-60 (1996).

3. Brams, S. J., Jones, M. A., and Klamler, C.: “Better Ways to Cut a Cake,” Notices
of the AMS, Vol. 53, No. 11, pp. 1314-1321 (2006).

4. Brams, S. J., Jones, M. A., and Klamler, C.: “Divide-and-Conquer: A Proportional,
Minimal-Envy Cake-Cutting Procedure,” Proc. of Dagstuhl Seminar (2007).

5. Brams, S.J. and Taylor, A.D.: “An Envy-Free Cake Division Protocol,” American
Mathematical Monthly, Vol. 102, No. 1, pp. 9-18 (1995).

6. Brams, S. J. and Taylor, A. D.: “Fair Division: From Cake-Cutting to Dispute
Resolution,” Cambridge University Press (1996).

7. Brassard, G., Chaum, D., and Crépeau, C.: “Minimum Disclosure Proofs of Knowl-
edge,” Journal of Computer and System Sciences, Vol. 37, No. 2, pp. 156-189
(1988).

8. Dubins, L. E. and Spanier, E. H.: “How to Cut a Cake Fairly,” American Mathe-
matical Monthly, Vol. 85, No. 1, pp. 1-17 (1961).

9. Jones, M. A.: “Equitable, Envy-free, and Efficient Cake Cutting for Two People
and its Application to Divisible Goods.” Mathematics Magazine Vol. 75, No. 4,
pp. 275-283 (2002).

10. Magdon-Ismail, M., Busch, C., and Krishnamoorthy, M.S.: “ Cake Cutting is Not
a Piece of Cake,” Proc. of the 20th STACS, LNCS 2607, pp. 596-607 (2003).

11. Neyman, J.: “Un theoreme d’existence,” C. R. Acad. Sci. Paris Vol. 222 pp. 843-845
(1946).

12. Nicolò, A. and Yu, Y.: “Strategic Divide and Choose,” Games and Economic Be-
havior, Vol. 64, No. 1, pp. 268-289 (2008).

13. Robertson, J. and Webb, W.: “Cake-Cutting Algorithms: Be Fair If You Can,” A
K Peters (1998).

14. Woodall, D.R.: “A Note on the Cake-Division Problem,” J. of Combbinatorial
Theory, A, Vol. 42, No. 2, pp. 300-301 (1986).

