酸素雰囲気硫化アニール処理により作製した硫酸スズ薄膜作製と評価

Fabrication and characterization of tin sulfate thin films

by sulfurization annealing in an oxygen atmosphere

守屋 賢人 (電気電子工学科)

Kento Moriya

高機能デバイス研究室 指導教員 相川 慎也 准教授

1. 緒言

透明酸化物半導体は導電性と光透過性を併せ持つ材料として 注目されている.これらの特性を基に,可視光を透過し紫外光を 発電に利用した P-N 接合による透明太陽電池を実現することが 期待されている[1].また,設置が困難な車のフロントガラスや建 物の窓など現在使用している窓ガラスに置き換えることが可能で あり,大きな技術革新が期待できる[1,2].

透明太陽電池の実現には p 型と n 型の透明酸化物半導体が 必要であるが,可視光透明性と高いキャリア移動度を両立した p 型酸化物半導体はn型酸化物半導体と比較して開発が遅れてい る[3].

本研究室では、価電子帯端での混成 O-2p/Sn-5s 軌道特性に 起因する低い有効質量が期待されることから Sn²⁺ベースの酸化 物に着目し[4], p 型特性を持つ SnO 薄膜の作製を行ってきた[5]. しかし、バンドギャップの狭さから、高い透明性を持たせるには可 視光を透過する広いバンドギャップを持つ材料が求められる.

解決方法として、Sn²⁺-O-X 3元素酸化物で構成することにより、 結合状態と反結合状態のエネルギー分離が拡大し、バンドギャッ プが広くなることが期待されている[6]. Sn²⁺ベースの3元素酸化 物として SnSO4を特定した[6]. この材料は、バンドギャップ 5.4 eV、 ホール有効質量 0.67 の物性が予想され[7]、可視光透明性と高移 動度の p 型酸化物半導体として期待できる. しかし、SnSO4に関 する半導体材料としての先行研究はほとんどなく、これまでに実 験的な SnSO4薄膜の作製報告はされていない. そこで本研究で は、可視光透明性と高いキャリア移動度を両立した p 型酸化物半 導体として期待される SnSO4薄膜の作製を目的とした.

2. 実験方法

超音波洗浄した SiO₂ 付き Si 基板とテンパックスガラス基板上 に抵抗加熱型真空蒸着装置を用いて金属 Sn 薄膜を 100 nm 成 膜した. その後,本研究室でアッセンブルした硫化アニール装置 を用いて,硫黄粉末を用いた酸素雰囲気硫化アニール処理を行 った. アニール条件はアニール温度 300 °C,アニール時間 30 分, 硫黄粉末 2.0 g(富士フィルム和光純薬,純度 98.0%)で固定し, 酸素ガス圧力を 11~71 kPa 可変させて行った. アニール処理後, X 線回折装置(XRD, Rigaku Smart Lab)で結晶構造を評価し,4 探針抵抗測定器を用いてシート抵抗を測定した. 得られたシート 抵抗値(R_{sq})と, 膜厚(t)から以下(1)式を使い抵抗率 ρ を算出し た.

$$\rho = R_{\rm sq} \times t \ (1)$$

3. 実験結果および考察

XRD による結晶構造評価を行った結果を Fig. 1 に示す.アニ ール処理を施した薄膜の結晶構造を比較すると、SnSO4 の結晶 構造データと一致し、4つの条件において SnSO4 ピークが確認さ れた.しかし、酸素ガス圧力 11 kPa のアニール条件では、SnSO4 の(020)面付近に SnS ピークが確認された.これは、加熱によって 拡散した硫黄と酸素が反応することによって硫酸イオン(SO4²)を 生成し、SO4²とスズイオン(Sn²⁺)との(2)式に示したイオン反応に より、SnSO4薄膜が作製されたと考えられる.

 $\operatorname{Sn}^{2+} + \operatorname{SO}_{4^{2-}} \rightarrow \operatorname{SnSO}_{4}$ (2)

また,酸素ガス圧力 11 kPa において,部分的に SnS が見られた. これは, SO4²は硫黄原子 1 つに対し酸素原子 4 つが必要なので, SO4²の数が減り,硫黄イオン S²が増加したため, (2)式に加えて (3)式のイオン反応が起きたと考えられる.

 $Sn^{2+} + S^{2-} \rightarrow SnS$ (3)

Table 1 酸素ガス圧力変化 における抵抗率測定結果

酸素ガス	抵抗率
圧力	$[\Omega \cdot cm]$
[kPa]	
71	8.3
51	5.6
31	8.7
11	51.7

四探針測定による抵抗率の結果を Table 1 に示す.酸素ガス圧 力が 11 kPa のとき,抵抗率は 51.7 Ω·cm を示したが,酸素ガス 圧力 31~71 kPa のとき,抵抗率はすべて 10 Ω·cm 以下を示した. これは, Fig.1 での結晶構造評価で示した酸素ガス圧力 11 kPa の条件で SnSO4と SnS の共晶による影響により高い抵抗率が見 られたが,酸素ガス圧力を増加させた 31~71 kPa の条件で, SnSO4のみの結晶構造が得られたことにより抵抗率が低下したと 考えられる[8].

4. 結論

本研究では、SnSO4薄膜の作製を行った.その結果,酸素ガス 圧力 11~71 kPa を可変させたところ、XRD の結晶構造評価から 酸素ガス圧力 31~71 kPa での条件で SnS を含まない SnSO4薄 膜であることを確認した.今後の展望としては、p型透明半導体と して機能するのかを確認するためにキャリアタイプやキャリア移 動度、キャリア密度の測定を行い、さらなる SnSO4薄膜作製条件 探索を図る.

5. 参考文献

- [1] K. Tonooka et al., Jpn. J. Appl. Phys. 34, 355-356 (2005).
- [2] H. Xing et al., Sci. Rep. 12, 1 (2022).
 - [3] S. Jueli et al., Adv. Mter. 33, 1 (2021).
 - [4] L. Yuwei et al., J. Mater. Chem. C 4, 4593 (2016).
 - [5] K. Watanabe et al., AIP Adv. 12, 105102 (2022).
 - [6] H. Yaoqiao et al., Chem. Mater. 33, 213 (2021).
 - [7] Y. Kanghoon et al., npj Comput. Mater. 4, 4-5 (2018).
- [8] Y. Ruei Sung et al., Thin solid Films 526, 107 (2012).