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Abstract. This paper presents an efficient anonymous credential system that in-
cludes two variants. One is a system that lacks a credential revoking protocol, but
provides perfect anonymity-unlinkability and computational unforgeability under
the strong Diffie-Hellman assumption. It is more efficient than existing creden-
tial systems with no revocation. The other is a system that provides revocation
as well as computational anonymity-unlinkability and unforgeability under the
strong Diffie-Hellman and decision linear Diffie-Hellman assumptions. This sys-
tem provides two types of revocation simultaneously: one is to blacklist a user
who acted wrong so that he can no longer use his credential, and the other is
identifying a user who acted wrong from his usage of credential. Both systems are
provably secure under the above-mentioned assumptions in the standard model.

1 Introduction

1.1 Background

The concept of anonymous credential systems was introduced by Chaum [1], and many
anonymous credential systems since then have been proposed.

The basic properties of any anonymous credential system are as follows: It should
be hard for a user to forge a credential. Credentials also should be anonymous and
unlinkable, thus, a verifier cannot learn anything about the user when it proves its cre-
dential to the verifier. Finally, the system is expected to be efficient. The details of the
history and motivation behind anonymous credentials can be found in [2].

One of the most efficient existing anonymous credential systems is the Camenisch-
Lysyanskaya system [3] that is secure under the LRSW assumption for groups with
bilinear maps [4]. However, this system lacks a credential revoking protocol.

There are roughly two types of revocations in anonymous credential systems. One
is to reveal the user’s identity if the user misbehaves, and the other enables a verifier to
reject blacklisted users when they show their credentials to the verifier.

One of the most efficient existing anonymous credential systems with revocation of
revealing the misbehaved user’s identity is [5], which is secure under the strong RSA
(SRSA) and decisional Diffie-Hellman (DDH) assumptions. The only existing anony-
mous credential system with revocation of blacklisting users is [6], which is secure
under the strong Diffie-Hellman (SDH) and DDH assumptions in the random oracle
model.

No efficient anonymous credential system with two types of revocation simultane-
ously has been proposed.



1.2 Our Result

This paper proposes two variants of a anonymous credential system.
One is an anonymous credential system without revocation (called a “basic anony-

mous credential system”) that is more efficient than the most efficient existing protocol
without revocation [3]. It is unforgeable under the SDH assumption, and perfectly (in-
formation theoretically) anonymous-and-unlinkable.

The other is the first efficient anonymous credential system that provides two types
of revocation (blacklisting and revealing an identity) simultaneously. Our system is un-
forgeable under the SDH assumption, and anonymous-and-unlinkable under the deci-
sion linear Diffie-Hellman assumption (the decision linear assumption).

Both systems are provably secure under the above-mentioned assumptions in the
standard model.

2 Preliminaries

2.1 Notation

We will use notationPK as follows:PK{(α, β) : y = gαhβ} denotes a “zero-knowledge
proof of Knowledge of integersα and β such thaty = gαhβ wherey, g, andh are
elements of some groupG = ⟨g⟩ = ⟨h⟩.

2.2 Bilinear Groups

This paper follows the notation regarding bilinear groups given in [?,?]. Let (G1,G2) be
bilinear groups as follows:

1. G1 andG2 are two cyclic groups of prime orderp, where possiblyG1 = G2,
2. g1 is a generator ofG1 andg2 is a generator ofG2,
3. ψ is an isomorphism fromG2 toG1, with ψ (g2) = g1.

4. e is a non-degenerate bilinear mape : G1×G2→ GT , where|G1| = |G2| = |GT | = p,
i.e.,

– (Bilinear): for allu ∈ G1, v ∈ G2, for all a, b ∈ Z∗P, e
(
ua, vb

)
= e(u, v)ab

– (Non-degenerate):e(g1,g2) , 1 (i.e.,e(g1,g2) is a generator ofGT),
– (Efficient):e, ψ and the group inG1, G2 andGT can be computed efficiently.

2.3 Anonymous Credential System

In this section, we outline the protocols and the security of anonymous credential sys-
tems. We first refer to the basic system, without the credential revoking protocol.



Definition of Basic Anonymous Credential SystemA basic anonymous credential
system consists of three parties users, an authority, and verifiers. An anonymous cre-
dential system performs the following operations.

Key Generation: Authority Auth, given security parameter 1k, outputs a pair of public-
key and secret-key,(pk, sk).

Credential Issuing Protocol: A userU has some kind of datam thatU wants to obtain
a certificate for. Examples ofmare properties such as “belongs to some University”, “is
over the age of 20.” or rights such as ”can access the secure room”. HowAuth detects
whetherm is valid or not with regard toU is outside this protocol.
U executes the credential issuing protocol form with Auth by usingU’s input

m andAuth’s secret-keys. At the end of the protocol,U obtains a credentialCred,
corresponding tom.

Credential Proving Protocol: After U obtains the credential ofm, U executes the
credential proving protocol ofmwith a verifierV, that provesU’s possession ofCred.
At the end of the protocol,V outputsaccept if U really has a validCred, otherwise
outputsreject.

Security of Basic Anonymous Credential SystemIn this section, we refer to the
definition of the security of the basic anonymous credential system. The security of the
basic anonymous credential system is defined as follows.

Unforgeability :U cannot forge a valid credentialCred on any value unlessCred was
issued byAuth. We show a more formal definition: Let us consider the following game.
Let Adv be an adversary.Adv runs in time at mostτ. It first executes the credential issu-
ing protocol withAuth at mostqAuth times, and obtains valid credentials of adaptively
chosen messages. Finally,Adv andV execute the credential proving protocol for mes-
sagem, which has not been chosen byAdv yet, andV outputsaccept or reject. If
the probability thatV outputsaccept at the end of the protocol is at mostϵ for any
Adv, the anonymous credential system is(τ,qAuth, ϵ)-unforgeable.

Anonymity and Unlinkability : An anonymous credential system should provide user
privacy. It should be impossible for verifierV and authorityAuth to find anything
about userU, except the fact thatU has some set of credentials, even ifV cooperates
with other verifiers or the authority (this feature is called anonymity). In particular,
two credentials belonging to the same userU cannot be linked byV andAuth (this
feature is called unlinkability). We merge these two properties into one definition of
security. Anonymous credential systems should have the property of(τ, ϵ)-anonymity-
and-unlinkability.

The formal definition is as follows: There is an adversaryAdv that plays the role
of a verifier and an authority. Let us introduce the following game amongAdv and two
honest usersU0 andU1.

1. Adv outputs its public-key (except some system parameters).



2. Adv engages in the credential issuing protocol ofm with two users,U0 andU1.
These two users employ the same data,m, to obtain credentials.

3. (a) Adv engages in the credential proving protocol withU0 andU1. Adv can exe-
cute this protocol a polynomial number of times.

(b) d ∈ {0,1} is chosen randomly.Ud and Adv execute the credential proving
protocol.Adv also can execute this a protocol polynomial number of times.
Next, Adv can execute 3(a) again.

(c) Adv outputsd′ ∈ {0,1}, which is supposed to be theAdv’s guess of valued.

If the probability thatd′ = d is 1/2 + ϵ, then the adversary’s advantage is defined to
be ϵ. The anonymous credential system is said to be(τ, ϵ)-anonymous-and-unlinkable
if the advantage of any adversary, whose running time is at mostτ, is at mostϵ.

We next refer to an anonymous credential system that has the credential revoking
functions.

Definition of Anonymous Credential System with RevocationIn this paper, we pro-
vide two types of revocation functions, blacklisting and identity revealing. Blacklisting
is whereAuth creates a blacklistBL of unacceptable users, andV reads the list and can
reject the listed users in the credential proving protocol. In the existing anonymous cre-
dential system with this type of revocation [6],V lists bad users toBL whenV notices
that they had done something wrong, by using the transcript whichV obtained in the
authentication protocol (corresponding to the credential proving protocol in this paper).
In our system, the authorityAuth createsBL, by listing users whenAuth detects that
they did something wrong.V can read but not writeBL.

Identity revealing, whereV can know the identity of some user whose transactions
are illegal [5]. In order to achieve this property, an anonymous credential system needs
another party, an openerO. O can reveal the identity ofU for a successful credential
proving transaction betweenU andV. Auth also has a databaseDB to record the data
used in the credential issuing protocol with users.O can read but not writeDB.

In this system, not onlyAuth but alsoU andO generate a pair of public-key and
secret-key.U then usesO’s published data in the credential proving protocol.

Identity Revealing Protocol: This protocol is executed betweenV andO, and reveals
the relations betweenCred and the dataU sends toV in the credential proving proto-
col, and that identifies the user.

Security of Anonymous Credential System with RevocationIn addition toUnforge-
ability andAnonymity and Unlinkability , the anonymous credential system with re-
vocation needs the following security properties:

Traceability : Traceability demands that userU is unable to produce a credential such
that either the honest openerO declares itself unable to identify the origin of the cre-
dential, or,O believes it has identified the origin but is unable to produce a correct proof
of its claim.

The formal definition is as follows: LetAdv be an adversary, which runs in time
at mostτ, corrupts users, and interacts withAuth on their behalf. NowAdv obtains



credentialCred on m from Auth, and proves the credential toV. If the probability
thatO fails in the credential revoking protocol ofCred is at mostϵ for any Adv, the
anonymous credential system with revocation is(τ, ϵ)-traceable.

Non-frameability : OpenerO is unable to create a proof, accepted byV, that an honest
user produced a certain valid proof of the credential unless the user really did produce
the proof of the credential.

The formal definition is as follows: LetAdv be an adversary, andU be an honest
user that does not produce an accepted proof of the credentialCred to an honest verifier
V. NowAdv, who acts as a user, the authority, and the opener, whose running time is at
mostτ, first successfully executes the credential proving protocol toV in the credential
proving protocol, and then tries to prove toV that honestU is the user of the credential
proving protocol by the identity revealing protocol. If the probability ofAdv’s success
is at mostϵ for anyAdv, the the anonymous credential system with revocation is(τ, ϵ)-
non-frameable.

3 Assumptions and Basic Signature Scheme

3.1 Strong Diffie-Hellman (SDH) Assumption

Let (G1,G2) be bilinear groups (introduced in Section 2.1). The problem in(G1,G2)
is defined as follows: given the(q+ 2)-tuple

(
g1,g2,gx

2, ..., g
xq

2

)
as input, output pair(

g
1

x+c

1 , c
)

wherec ∈ Z∗p. AlgorithmA has advantage,AdvS DH (q), in solvingq-SDH in

(G1,G2) if AdvS DH (q) ← Pr
[A (
G1,G2,g1,g2,gx

2, ..., g
xq

2

)
=

(
g

1
x+c

1 , c
)
; g2

U← G2,g1
U←

G1, x, y
U← Z∗p

]
.

Definition 1. AdversaryAdv (τ, ϵ)-breaks the q-SDH problem ifAdv runs in time at
mostτ andAdvS DH (q) is at leastϵ. The(q, τ, ϵ)-SDH assumption holds if no adversary
Adv (τ, ϵ)-breaks the q-SDH problem.

3.2 The Decision Linear Diffie-Hellman Assumption [7]

LetG be a cyclic group of prime orderp. Let u, v,h be generators ofG. The problem in
G is defined as follows: Givenu, v,h,ua, vb,hc ∈ G as input, outputyes if a+b = c and
no otherwise.

AlgorithmA has advantage,AdvLinear in deciding the Decision Linear problem in

G if AdvLinear ← |Pr
[A (
G,u, v,h,ua, vb,ha+b

)
= yes : u, v,h

U← G,a,b U← Z∗p
] −

Pr
[A (
G, u, v,h,ua, vb, η

)
= yes : u, v,h, η

U← G,a,b U← Z∗p
]|.

Definition 2. The(τ, ϵ)-Decision Linear Diffie-Hellman Assumption (the Decision Lin-
ear Assumption) holds inG if no τ-time algorithm has advantage of at leastϵ in solving
the Decision Linear Problem inG.



3.3 Basic Signature Scheme

We now describe a signature scheme [8] that is strongly existentially unforgeable against
chosen plaintext attacks. This scheme is a fundamental element of the credential issuing
protocol of our proposed anonymous credential systems.

Key Generation:

Randomly select generatorsg2, u2, v2
U←G2 and setg1 ← ψ (g2), u1← ψ (u2), andv1←

ψ (v2). Randomly selectx
U← Z∗p and computew2← gx

2 ∈G2. (G1,G2,GT , ψ, e,g1,g2, u2, v2)
is the system parameter,w2 is the public-key, andx is the secret-key.
Signature Generation:

Let m ∈ Z∗p be the message to be signed. SignerS randomly selectsr, s
U← Z∗p, and

computesσ←
(
gm

1 u1vs
1

)1/(x+r)
. Here 1/(x+ r) mod p (andm/(x+ r) mod p ands/(x+

r) mod p) are computed. In the unlikely event thatx+ r ≡ 0 modp, we try again with a
different randomr. (σ, r, s) is the signature ofm.
Signature Verification:
Given system parameters(g1,g2,u2, v2) and public-keyw2, messagem, and signature

(σ, r, s), check thatm, r, s∈ Z∗p, σ ∈ G1, σ , 1, ande
(
σ,w2gr

2

) ?
= e

(
g1,gm

2 u2vs
2

)
. If they

hold, the verification result isvalid, otherwiseinvalid.

Proposition 1 (Security of the Basic Signature Scheme [8]).
If the (qS + 1, τ′, ϵ′)-SDH assumption holds inG1 andG2, the basic signature scheme is
(τ,qS, ϵ)-strongly existentially-unforgeable against adaptively chosen message attacks,
provided that

ϵ ≥ 3qSϵ
′, τ ≤ τ′ − Θ

(
q2

ST
)
,

where T is the maximum time for a single exponentiation inG1 andG2.

4 Proposed Basic Anonymous Credential System

In this section, we describe the construction of the proposed basic anonymous credential
system. We use a bilinear group pair(G1,G2) with a computable isomorphismψ, as in
Section 2.2. We assume the basic signature scheme is strongly existentially unforgeable
against chosen message attacks and the Strong Diffie-Hellman assumption holds inG2.
We use the basic signature scheme in the credential issuing protocol of our proposed
system.

4.1 Key Generation

Authority Auth generates public-keyw2 and secret-keyx in the same way as in the
signature scheme in Section 3.3.



4.2 Credential Issuing Protocol

First, userU sends datam as a message, for whichU wants to obtain a certificate,
to authorityAuth. When messagem is received fromU, Auth signsm by using the
signature scheme described in Section 3.3.A then sends triple signature(σ, r, s), toU
asCred, whereσ =

(
gm

1 u1vs
1

)1/(x+r)
. U then verifies whetherCred is a valid signature

onm.U calculatesα← w2gr
2, β← gm

2 u2vs
2 and verifiese(σ, α)

?
= e(g1, β) .

4.3 Credential Proving Protocol

After getting its credential,U proves knowledge of the credential to verifierV, instead
of sending the credential directly toV.

First,U randomises its credential, and sends the data including the randomised

credential toV as follows: ProverU randomly selectst, θ
U← Z∗p, and computes

σ′ ← σt/θ =
(
gm

1 u1vs
1

)t/θ(x+r)
, α′ ← (

w2gr
2
)θ , β′ ← (

gm
2 u2vs

2

)t
.

and sends(σ′, α′, β′) to the verifierV.V then checks the equatione(σ′, α′)
?
= e(g1, β

′).

Second,U has to prove toV thatU fairly created(σ′, α′, β′). ThereforeU proves
knowledge for the following statement:

PK{(θ, rθ) : α′ = wθ
2grθ

2 , θ , 0}, PK{(t, st) : β′ =
(
gm

2

)t
ut

2vst
2 , t , 0}.

Details of this proof of knowledge are shown inFigure.1.

Figure.1 PK{(θ, rθ) : α′ = wθ
2grθ

2 , θ , 0}

Common input: Public-key andα′ Prover’s input: (θ , 0, rθ)
Protocol:
Step1:U randomly selectsR1, R2, R3

U← Z∗p, and computesγ ← α′R1gR2
2 uR3

2 , δ ←
θR1 mod p, ω ← rθR1 + R2 mod p and sends(γ, δ) to V. If δ , 0 thenV outputs
reject. Otherwise,U andV executes

PK{(R1,R2,R3, ω) : γ = α′R1gR2
2 uR3

2 , γ/w
δ
2 = gω2 uR3

2 }

as follows.
Step2:U picks random numbersr1, r2, r3, r4

U← Z∗p, computesA = α′r1gr2
2 ur3

2 , B =
gr4

2 ur3

2 , and sends(A, B) toV.

Step3:V sends a random numberb
U← Z∗p toU.

Step4:U sends(c1, c2, c3, c4) toV such thatc1← r1+bR1 mod p, c2← r2+bR2 mod
p, c3 ← r3 + bR3 mod p, c4← r4 + bω mod p.

Step5:V checks thatα′c1gc2
2 uc3

2
?
= Aγb, gc4

2 uc3

2
?
= B

(
γ/wδ

2

)b
.

PK{(t, st) : β′ =
(
gm

2

)t
ut

2vst
2 , t , 0} can be proved in the same way as above. IfV

succeeds in these two proofs of the knowledge,V outputsaccept, otherwise outputs
reject.



4.4 Security

Unforgeability

Theorem 1. If the basic signature scheme is(qAuth, τ, ϵ)-strongly existentially unforge-
able against chosen message attacks, then our proposed basic anonymous credential
system is

(
τ′,q′Auth, ϵ

′
)
-unforgeable, provided that

1
2

(
1− 2e

ϵ′
2(ϵ′−1) n

) (
1− 2e

pϵ′−4
2(pϵ′−4−2p) n

)
≥ ϵ, 2nτ′ + Θ (T) ≤ τ, q′Auth ≤ qAuth.

Proof. Let us assume our system is not
(
τ′,q′Auth, ϵ

′
)
-unforgeable. We will then show

that the basic signature scheme is not(τ,qAuth, ϵ) -unforgeable. Under this assumption,
adversaryU can prove the two protocols in Section 4.3 as a prover with success prob-
ability greater thanϵ. We will then construct extractorE that outputs (σ, r, s).

Let us focus on protocolPK in Figure.1. E usesU as a black-box. After receiving

(A, B), V sendsb
U← Z∗p to U and receives(c1, c2, c3, c4). E then resetsU, and af-

ter receiving the same(A, B), E sendsb′
U← Z∗p/{b} to U and receives

(
c′1, c

′
2, c
′
3, c
′
4

)
.

If both runs of the protocols are accepted,E calculatesR1 ←
c′1−c1

b′−b mod p,R2 ←
c′2−c2

b′−b mod p,R3 ←
c′3−c3

b′−b mod p, ω ← c′4−c4

b′−b mod p. Note that(R1,R2,R3, ω) satisfies
γ = α′R1gR2

2 uR3

2 andγ = gω2 uR3

2 wδ
2. Now E succeeds in extracting(R1,R2,R3). E then

calculatesθ ← δ
R1

mod p, r ← ω−R2
θR1

mod p. Note thatα′ = wθ
2grθ

2 and θ , 0 since

δ , 0. In the same way,E computes the value(s, t) such thatβ′ =
(
gm

2

)t
ut

2vst
2 andt , 0

from PK{(t, st) : β′ =
(
gm

2

)t
ut

2vst
2 , t , 0}, and then computesσ← σ′

θ
t . (σ, r, s) is a valid

signature of the basic signature scheme.
Therefore,E, using black-boxU, can forge the basic signature scheme(σ, r, s) with

probability of at leastϵ′ such that12

(
1− 2e

ϵ′
2(ϵ′−1) n

) (
1− 2e

pϵ′−4
2(pϵ′−4−2p) n

)
≥ ϵ (by using the

heavy row lemma and Chernoff bound). 2n is the number of times whichE usesU as a
black-box. The running time is at most 2nτ′+Θ (T), and the number of chosen message
attack queries is at mostq′Auth. ⊓⊔

Anonymity and Unlinkability

Theorem 2. Our proposed basic anonymous system is information-theoretically anonymous-
and-unlinkable.

Proof. The game described inAnonymity and Unlinkability of Section 2.3 is used to
assess our system. If the protocols of proving knowledge are witness-indistinguishable,
the system is anonymous and unlinkable; that is, in this game, the view of Step.3(a) and
that of Step.3(b) are information-theoretically independent. TheΣ-protocol is witness-
indistinguishable. We show that the distributions of

(
σ′0, α

′
0, β
′
0

)
and

(
σ′1, α

′
1, β
′
1

)
are the

same.

Letb ∈ {0,1}. Using some set of numbers(zb, yb,wb),σ′b =
(
gzb

1

) tb
θb , α′b =

(
gyb

2

)θb
, β′b =(

gwb

2

)tb
holds. Sincee

(
σ′b, α

′
b

)
= e

(
g1, β

′
b

)
, zbyb = wb mod p is satisfied. Thus, when the



values ofσ′b, α′b are fixed, the value ofβ′b can be uniquely decided. Therefore, there

are two independent values in
(
σ′b, α

′
b, β
′
b

)
and there are two random valuestb andθb.

The distribution of
(
σ′b, α

′
b

)
is the same as the distribution ofσ′b

U← G1 andα′b
U← G2.

Therefore, the distributions of
(
σ′0, α

′
0, β
′
0

)
and

(
σ′1, α

′
1, β
′
1

)
are the same. ⊓⊔

5 Proposed Anonymous Credential System with Revocation

We next show our proposed anonymous credential system with revocation. In this sec-
tion, we assume that the Decision Linear Diffie-Hellman assumption holds inG2.

5.1 Key Generation

In addition to the secret and public keys generated in our proposed basic anonymous

credential system, randomly selectedh, ĥ,a2
U← G2 are also used as system parameters.

Auth provesPK{x : w2 = gx
2} to get a certificate.

Now, in our proposed system with revocation, userU and openerO also generate

secret and public keys.U randomly selects its secret-keyq
U← Z∗p, and calculatesgq

2(thus

gq
1 = ψ

(
gq

2

)
).U also generates a pair(pkU , skU) of public-key and secret-key for some

signature scheme.U publishespkU as its public-key.O randomly selectsξ1, ξ2
U← Z∗p

as its secret-key and computesU ← gξ1

2 , V ← gξ2

2 .O also publishes(U,V) as its public-
key.

5.2 Credential Issuing Protocol

First, userU creates signature ofgq
2, sigU

(
gq

2

)
, usingskU .U then sendsgq

2, sigU

(
gq

2

)
,

andm as a message, for whichU wants to obtain a certificate, to authorityAuth.
Upon receiving these data fromU, Auth verifiessigU

(
gq

2

)
by usingpkU , then signs

m together withq by using the signature scheme described in Section 3.3. Namely,Auth

creates the following signature(σ, r, s), whereσ =
(
gm

1 gq
1u1vs

1

)1/(x+r)
. Auth then sends

the signature toU asCred.
U then verifies whetherCred is a valid signature onm andq, U calculatesα ←

w2gr
2, β← gm

2 gq
2u2vs

2 and verifiese(σ, α)
?
= e(g1, β) . Authwrites

(
σ, r, s,m,gq

2, sigU

(
gq

2

))
in databaseDB wheneverAuth engages in the credential issuing protocol with users.

5.3 Credential Proving Protocol

After getting its credential,U proves knowledge of the credential to verifierV, instead
of sending the credential directly toV.
BL = (b1,b2, · · · ,bl) is V’s current blacklist of users who did something wrong

(Auth can write and read, whileV can only readBL), wherebi (1 ≤ i ≤ l) ← gqi

2 (qi

is the i-th blacklisted user’s secret-key).U encrypts its credential, and sends the data,



including an encrypted credential, data unique to the user related to revocation toV as
follows:

Step1: U randomly selectst1, t2, θ, ρ
U← Z∗p, f , f̂

U←G1, and computesσ′ ← σ ·gt1+t2
1 =(

gm
1 gq

1u1vs
1

) 1
x+r · gt1+t2

1 , α′ ←
(
w2gr

2

)θ
, β′ ←

(
gm

2 gq
2u2vs

2

)θ · α′t1+t2,d1 ← ψ (U)t1 ,d2 ←
ψ (V)t2 , χ← f q f̂ ρ and sends

(
σ′, α′, β′,d1,d2, χ, f , f̂ ,gρ2

)
toV.

Step2: Verifier V verifies e(σ′, α′)
?
= e(g1, β

′) and e(χ,g2)
?
, e( f ,bi) e

(
f̂ ,gρ2

)
for

everyi (1 ≤ i ≤ l).

Step3: U has to prove toV thatU fairly created(χ, σ′, α′, β′,d1,d2). Therefore,U
proves knowledge for the following statement:PK{(q, ρ, θ, rθ, sθ, t1, t2) : χ = f q f̂ ρ, α′ =

wθ
2grθ

2 , β
′ =

(
gm

2

)θ
gqθ

2 uθ2vsθ
2 α
′t1+t2,d1 = ψ (U)t1 ,d2 = ψ (V)t2 , θ , 0}. We detail this proof

of knowledge inFigure.2.

Step4: If all verifications instep.2hold and the proof of knowledge is accepted,V
finally outputsaccept, otherwise outputsreject. Because blacklisted users cannot
satisfy the latter verification instep.2as well as succeed in the proof of knowledge in
Figure.2, this protocol provides blacklisting.

Figure.2 PK{(q, ρ, θ, rθ, sθ, t1, t2) : χ = f q f̂ ρ, α′ = wθ
2grθ

2 ,

β′ =
(
gm

2

)θ
gqθ

2 uθ2vsθ
2 α
′t1+t2, d1 = ψ (U)t1 , d2 = ψ (V)t2 , θ , 0}

Common input: (χ, α′, β′,d1,d2) and public-key
Prover’s input: (q, ρ, θ, rθ, sθ, t1, t2)
Protocol:
Step1:U requestsV to start the protocol.V then picks random numbersb, λ

U← Z∗p
and computesz← hbĥλ (commitment ofb) and sendsz toU.

Step2:U randomly selectsR1, R2, R3, R4
U← Z∗p, computesγ ← α′R1gR2

2 uR3

2 , δ ←
θR1 mod p, ω ← rθR1 + R2 mod p, ξ ← α′R1aR4

2 , and sends(γ, δ, ξ) to
V. If δ , 0 then V outputs reject. Otherwise, U and V execute
PK{(R1,R2,R3,R4, ω,q, ρ, s, t1, t2, (t1 + t2) R1, (t1 + t2) R4) : γ = α′R1gR2

2 uR3

2 , γ/w
δ
2 =

gω2 uR3

2 , χ = f q f̂ ρ, ξ = α′R1aR4
2 , gmδ

2 uδ2 = β′R1g−δq2 vδs
2 ξ
−(t1+t2)a(t1+t2)R4

2 , gmδ
2 uδ2 =

β′R1g−δq2 vδs
2 α
′−(t1+t2)R1)}, as follows.

Step3: U picks random numbersr1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12
U←

Z∗p, computesA = α′r1gr2
2 ur3

2 , B = gr5

2 ur3

2 , C = f r6 f̂ r7, D = α′r1ar4
2 , E =

β′r1g−δr6

2 v−δr8

2 ξ−(r9+r10)ar12
2 , F = β′r1g−δr6

2 v−δr8

2 α′−r11, G = ψ (U)r9, H = ψ (V)r10, and
sends(A, B,C,D,E, F,G,H) toV.
Step4:V sendsb, λ toU in order to open the commitment.
Step5:U sends(c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12) toV such thatc1 ← r1 +

bR1 mod p, c2 ← r2 + bR2 mod p, c3 ← r3 + bR3 mod p, c4 ← r4 + bR4 mod p,
c5← r5+ bω mod p, c6← r6+ bq mod p, c7← r7+ bρ mod p, c8← r8+ bsmod p,
c9 ← r9 + bt1 mod p, c10 ← r10 + bt2 mod p, c11 ← r11 + b (t1 + t2) R1 mod p,
c12← r12 + b (t1 + t2) R4 mod p.



Step6:V checks thatα′c1gc2
2 uc3

2
?
= Aγb, gc5

2 uc3

2
?
= B

(
γ/wδ

2

)b
, f c6 f̂ c7

?
= Cχb, α′c1ac4

2
?
=

Dξb, β′c1g−δc6

2 v−δc8

2 ξ−(c9+c10)ac12
2

?
= E

(
gmδ

2 uδ2
)b

, β′c1g−δc6

2 v−δc8

2 α′−c11
?
= F

(
gmδ

2 uδ2
)b

,

ψ (U)c9
?
= Gdb

1, ψ (U)c10
?
= Hdb

2.

If V succeeds in this proof of knowledge,V outputsaccept, otherwise outputs
reject.

5.4 Identity Revealing Protocol

If verifier V finds that a user has misused his credential,V informsO. O then reveals
the credential of the user as follows:
Step1:V sendsσ′,d1, andd2 toO, and asksO to reveal the user who createdσ′.
Step2:O computesσ = σ′

d1
1/ξ1d2

1/ξ2
and searches the databaseDB to identify the userU.

O then finds
(
r, s,m,gq

2, sigU

(
gq

2

))
in DB (they are related toσ) and sends

(
σ, r, s,m,gq

2, sigU

(
gq

2

))
toV.
Step3:O proves knowledge for the following statement:PK{(ξ1, ξ2) : U = gξ1

2 ,V =

gξ2

2 , σ =
σ′

d1
1/ξ1d2

1/ξ2
}.We detail this proof of knowledge inFigure.3.V checkse

(
σ,w2gr

2

) ?
=

e
(
g1,gm

2 gq
2u2vs

2

)
.

V then finally can find thatσ′ was created fairly byU, by usingpkU and check-
ing whethersigU

(
gq

2

)
is a valid signature ongq

2. This protocol provides the identity
revealing.

Figure.3 PK{(ξ1, ξ2) : U = gξ1

1 ,V = gξ2

2 , σ = σ
′/

(
d1/ξ1

1 d1/ξ2

2

)
}.

Common input: Public key and(d1,d2, σ, σ
′)

Prover’s input: (ξ1, ξ2)
Protocol:
Step1:O picks random numbersR1, R2

U← Z∗p, computesY1 = gR1
1 ,Y2 = gR2

1 ,X1 =

d1/ξ1

1 ,X2 = d1/ξ2

2 ,Y3 = XR1
1 ,Y4 = XR2

2 , and sends these data toV.

Step2:V sends a random numberb
U← Z∗p toO.

Step3:O sends(c1, c2) toV such thatc1← R1 + bξ1 mod p, c2← R2 + bξ2 mod p.

Step4:V checks thatgc1
1

?
= Y1Ub,gc2

2
?
= Y2Vb,Xc1

1
?
= Y3db

1,X
c2
2

?
= Y4db

2, σ
?
= σ′/X1X2.

If it holds,V outputsaccept, otherwise outputsreject.

Remark: If we require a stronger non-frameability where verifierV as well as an
opener is dishonest,V should publish a transcript of the credential proving protocol
in whichV’s challenge is a hashed value of prover’s first message in aΣ-protocol.
However, the protocol inFigure.2 is not aΣ-protocol as challengeb is committed in
Step.1. Hence, in order to guarantee the stronger non-frameability, we should change
the protocol inFigure.2 to a standardΣ-protocol, and challenge message,b, byV is a
hash value of(A, B,C,D,E, F,G,H). Instead, to prove the anonymity-and-unlinkability,
an oracle-linear assumption is needed (it will be shown in the full version of this paper).



5.5 Security

Unforgeability

Theorem 3. If the basic signature scheme is(qAuth, τ, ϵ)-strongly existentially unforge-
able against chosen message attacks, our proposed anonymous credential system with
revocation is

(
τ′,q′Auth, ϵ

′
)
-unforgeable, provided that

1
2

(
1− 2e

ϵ′
2(ϵ′−1) n

) (
1− 2e

pϵ′−2
2(pϵ′−2−2p) n

)
≥ ϵ, 2nτ′′ + Θ (T) ≤ τ, q′Auth ≤ qAuth .

Proof. The proof follows the same approach used in our proposed basic system. As-
suming our system is not(τ′,qAuth, ϵ

′)-unforgeable,U can forge(σ′, α′, β′,d1,d2) that
satisfies verifierV’s equation in the credential proving protocol with(τ′,qAuth, ϵ

′). We
then construct extractorE that outputs the original credential(σ, r, s) (andU,V). ⊓⊔

Anonymity and Unlinkability

Theorem 4. If the (τ, ϵ)-Decision Linear Assumption holds inG2 then our proposed
anonymous credential system with revocation is(τ′, ϵ′)-anonymous-and unlinkable, pro-
vided thatϵ′ ≥ ϵ, τ′ ≤ τ.

Proof. AssumeAdv is an adversary that(τ′, ϵ′)-breaks the anonymity and unlinkability
of our proposed anonymous credential system with revocation. We construct an algo-
rithm A that, by interacting withAdv, solves the Decision Linear Problem in timeτ
with advantageϵ.

AlgorithmA is given random instance
(
G2,U,V,g2,U t1,Vt2, η

)
of the Decision Lin-

ear Problem. It randomly selectsu2, v2
U← G2 and gives(G2,g2,u2, v2) to Adv as a sys-

tem parameter. Adv outputs public keyw2 and provesPK{x : w2 = gx
2}.A extractsx by

usingAdv as a black-box prover.A then generates two users’(U0 andU1) secret-key

i.e., selects randomq0, q1
U← Z∗p and users’ signature key pairskU0, pkU0, skU1, pkU1.

It then sends
(
gq0

2 ,g
q1

2 , pkU0, pkU1

)
to Adv and carries out the credential issuing pro-

tocol with Adv, asU0 andU1. A obtains(σ0, r0, s0) and (σ1, r1, s1), whereσ0 =(
gm

1 gq0

1 u1vs0

1

)1/(x+r0)
, andσ1 =

(
gm

1 gq1

1 u1vs1
1

)1/(x+r1)
.

Next,A can execute the credential proving protocol withU0 andU1 polynomial-

times. WhenAdv queriesUb′ (b′ ∈ {0, 1}), A selectsθ, r1, r2
U← Z∗p, and computes

σ′ ← σb′ · ψ (η) · gr1+r2
1 , α′ ←

(
w2grb′

2

)θ
, β′ ←

(
gm

2 gqb′
2 u2vsb′

2

)θ · ηθ(x+rd)gr1+r2
2 ,d1 ←

ψ
(
U t1

)
gr1

2 , d2 ← ψ
(
Vt2

)
gr2

2 .A randomly choosesρb′
U← Z∗p and fb′ , f̂b′

U← G1, and cal-

culatesχb′ ← f qb′
b′ f̂b′

ρb′ , and sends them toAdv asUb′ .A first executes the protocol and
obtains the value ofb in Step.3, and resetsAdv.A then re-executes the proof of knowl-
edge protocol. NowA knows the value ofb, soA can successfully finish the proof of
knowledge protocol without knowing the witness.A andAdv then engage in the creden-
tial proving protocol.Adv now requests its anonymity challenge.A chooses uniformly

random bit ofd ∈ {0,1}, selects randomθ
U← Z∗p and computesσ′ ← σd · ψ (η) · gr1+r2

1 ,

α′ ←
(
w2grd

2

)θ
, β′ ←

(
gm

2 gqd

2 u2vsd

2

)θ · ηθ(x+rd)gr1+r2
2 , d1 ← ψ

(
U t1

)
gr1

2 , d2 ← ψ
(
Vt2

)
gr2

2 .



A andAdv then engage in the credential proving knowledge ofσd. After this,Adv can
queryU0 andU1 polynomial-times. The procedure is just the same as the above.

Finally,Adv outputs bitd′. If d′ = d,A outputsyes(guessesη = gt1+t2
2 ). Else(ifd′ ,

d), A outputsno. If η = gt1+t2
2 , Pr

[A (
G2,U,V,g2,U t1,Vt2,gt1+t2

2

)
= yes : U,V,g2,

U←

G2, t1, t2
U← Z∗p

]
= Pr

[
d′ = d

]
. If η , gt1+t2

2 , let η = gζ2. σ′ = σb · gζ1 holds.α′ =
(
w2grb

2

)θ
andβ′ =

(
gm

2 gqb

2 u2vsb

2

)θ · α′ζ are satisfied. Since there are two independent elements in
(σ′, α′, β′) and these are randomised byθ andζ, the distribution of(α′, β′) is just the

same as the following distributionα′
U← G2, β

′ U← G2. Therefore, the distribution is

independent of the value ofd, thusPr
[A (
G2,U,V,g2,U t1,Vt2, η

)
= yes : U,V,g2, η

U←
G2, t1, t2

U← Z∗p
]
= 1

2. ⊓⊔

Traceability

Theorem 5. If the basic signature scheme is(qAuth, τ, ϵ)-strongly existentially unforge-
able against chosen message attacks, our proposed anonymous credential system is(
τ′,q′Auth, ϵ

′
)
-traceable, provided that

1
2

(
1− 2e

ϵ′
2(ϵ′−1) n

) (
1− 2e

pϵ′−2
2(pϵ′−2−2p) n

)
≥ ϵ, 2nτ′′ + Θ (T) ≤ τ, qAuth′ ≤ qAuth .

Proof. AssumeAdv is an adversary that
(
τ′, q′Auth, ϵ

′
)
-breaks the traceability of our pro-

posed anonymous credential system with revocation. We construct an extractorE that,
by interacting withAdv, can forge the basic signature scheme in timeτ with advantage
ϵ, whereq′Auth is the maximum number of queries made byAdv.
Adv succeeds in generating such(σ′, α′, β′,d1,d2) that is accepted byV, butO fails

in revealing the original credential stored inDB. E then extracts(σ, r, s) by usingAdv as
a black-box in the same way as in the proof ofUnforgeability . Since(σ, r, s) is not in
DB, it is a forged signature of the basic signature scheme. ⊓⊔

Non-frameability

Theorem 6. If the user’s signature scheme is(qAuth, τ, ϵ)-existentially unforgeable against
chosen message attacks and the discrete logarithm problem inG1 is (τ′, ϵ′)-hard, then
our proposed anonymous credential system with revocation is

(
τ′′,q′′Auth, ϵ

′′
)
-non-frameable,

provided that

1
2

(
1− 2e

ϵ′′
2(ϵ′′−1) n

) (
1− 2e

pϵ′′−2
2(pϵ′′−2−2p) n

)
≥ ϵ′, ϵ′′ ≥ ϵ, min

(
τ′ − Θ (T)

2n
, τ

)
≥ τ′′, qAuth′ ≤ qAuth .

Proof. AssumeAdv is an adversary that(τ′, ϵ′)-breaks the non-frameability of our pro-
posed anonymous credential system with revocation. We then construct an algorithmA
that, by interacting withAdv, breaks the unforgeability of the user’s signature scheme
or the discrete logarithm problem.

AlgorithmA is given public-keypkU of the user’s signature scheme and instance
g2,g

q
2 ∈ G2 of the discrete logarithm problem.A givesAdv G2,g2 as a system parame-

ter.Adv generates authority’s public-keys and opener’s public keys.Adv then generates



its secret-key.A concurrently executes the following two procedures. The first one is
breaking the unforgeability of the user’s signature scheme.A generates a userU and
registerspkU as the public-key ofU. The second one is breaking the discrete logarithm
problem.A generates a userU, generates a new key

(
pk′U , sk′U

)
, and usesgq

2 as the
value given toAdv (Auth) at credential issuing protocol.
Adv first generates its secret-key as a user, and creates its credentialCredAdv on m.

Adv then executes the credential proving protocol ofσAdv with an honest verifierV.
Eventually,Adv employs the identity revealing protocol withV, and creates accepted
proof forV thatU, who is an honest user, produced the proof ofCredAdv. This means
Adv outputs

(
σ, r, s, sigU

(
gq

2

)
,gq

2,m
)

that is accepted byV asU’s proof ofCredAdv.

If Adv outputs in the first procedure,
(
gq

2, sigU

(
gq

2

))
is a forged signature of the user’s

signature scheme. IfAdv outputs in the second procedure,A extractsq in the same
manner as in the proof ofUnforgeability by usingAdv as a black-box. Thus,A can
forge the signature scheme or break the discrete logarithm problem, with the maximum

timeτ′ ≥ 2nτ′′ + Θ (T) and the advantage12

(
1− 2e

ϵ′′
2(ϵ′′−1) n

) (
1− 2e

pϵ′′−2
2(pϵ′′−2−2p) n

)
≥ ϵ′. ⊓⊔

5.6 Comparison

We turn now to the efficiency of our anonymous credential system. The upper table in
Table.1 is a comparison of our basic system and an existing system [3]. “pk” means the
public-key specific to each user (excluding the system parameters), and “sk” means the
secret-key. “Size ofProv” means communication complexity betweenU andV in the
credential proving protocol (Prov denotes a credential proving protocol). “Ops” means
the number of operations.

We show a comparison of our system with revocation and the existing system [5]
in the lower table inTable.1. “Size ofReveal” means communication complexity be-
tweenO andV in the identity revealing protocol (Reveal denotes an identity revealing
protocol).N is the size of an RSA modulus. A numberl means the number of blacklisted
users.

6 Conclusion

We presented two anonymous credential systems. The basic anonymous credential sys-
tem is unforgeable under the Strong Diffie-Hellman assumption and is information-
theoretically anonymous-and-unlinkable. It also seems more efficient than an existing
system [3] (SeeTable.1). Our proposed anonymous credential system with revocation
is secure under the Strong Diffie-Hellman assumption and the Decision Linear assump-
tion. Our system, however, offers two revocation schemes: Blacklisting and identity
revealing of users who act wrongly. Our system is also secure in the standard model.
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