Card-based secure evaluation of decision trees

Yoshifumi Manabe![0000-0002-6312-257X] 4)q Naoki Kobayashi®

School of Informatics, Kogakuin University,
Shinjuku, Tokyo 163-8677 Japan. manabe@cc.kogakuin.ac. jp

Abstract. Decision trees such as BDD (Binary Decision Diagrams) are
commonly used for decision-making. The structure of the decision tree
might be the know-how of the owner of the tree. Thus, when Alice pro-
vides a decision tree and Bob evaluates the tree, Alice wants to hide
the structure of the decision tree from Bob. Though Bob can know the
information about the nodes Bob traversed, the other node and edge
information must be hidden. During the evaluation, Bob might use his
private information. Thus, the traversed nodes and edges and the final
result need to be hidden from Alice. To achieve these requirements, we
propose a card-based decision tree evaluation protocol. By the nature of
card-based cryptographic protocols that they are executed in a public
place, the protocol is simpler than the ones executed on computers.

Keywords: card-based cryptography - secure multi-party computation,
- decision tree - BDD

1 Introduction

Card-based cryptographic protocols [9,10] were proposed in which physical cards
are used instead of computers to securely compute values. They can be used when
users cannot trust the software on the computer. Also, the protocols are easy to
understand, thus the protocols can be used to teach the basics of cryptography
[2,8] to accelerate the social implementation of advanced cryptography [3]. den
Boer [1] first showed a five-card protocol to securely compute the logical AND of
two inputs. Since then, many protocols have been proposed to realize primitives
to compute any Boolean functions [5,6,11,14] and specific computations such as
millionaires’ problem [12,13] and so on.

This paper proposes a new application protocol to securely evaluate decision
trees. Decision trees such as BDD (Binary Decision Diagrams) are commonly
used for decision-making. We can find many examples of decision trees in dis-
ease diagnosis, for example, in [16]. Secure evaluations of the decision tree was
discussed when the cloud server has the decision tree and the server calculates
the result without knowing the user’s private input data [4,15,17].

The structure of the decision tree might be the know-how of the owner of
the tree. Thus, when Alice provides a decision tree and Bob evaluates the tree,
Alice wants to hide the structure of the decision tree from Bob. Though Bob can
know the information about the nodes Bob traversed, the other node and edge

2 Y. Manabe and N. Kobayashi

information must be hidden. During the evaluation, Bob might use his private
information. Thus, the traversed nodes and edges and the final result need to
be hidden from Alice. To achieve these requirements, we propose a card-based
decision tree evaluation protocol. The protocols in [4,15,17] need encryption with
advanced functionality such as homomorphic encryption since the server needs
to calculate the result without knowing the user’s private data. The protocols
are therefore complicated. By the nature of card-based cryptographic protocols
that they are executed in a public place, our protocol is simpler than the ones
executed on computers.

Section 2 gives the definitions of decision trees and cards used in our protocol.
Section 3 shows the preparation to add dummy nodes to the decision trees.
Section 4 shows the case of a complete binary tree. Section 5 shows the case
of general binary trees. Section 6 evaluates the execution times of the proposed
protocols. Section 7 concludes the paper.

2 Preliminaries

2.1 Decision Trees

This section shows the definition of the decision trees discussed in this paper.
Though this paper considers binary decision trees, the result in this paper can
be easily applied to general decision trees whose outdegrees in all internal nodes
are the same. Decision tree D = (V = V3 UV4, E) is a directed acyclic graph that
has a unique root node r € V7. V; is the set of internal nodes and V5 is the set of
leaf nodes. The root node has no incoming edge. Each leaf node has no outgoing
edge. Each node v € V] has two outgoing edges y(v),n(v) € E. y(v) = (v, w)
for some node w € V and n(v) = (v,w’) for some node w’ € V. Every node is
reachable from the root node r.

Each internal node v € V; has a condition ¢(v). Each leaf node v € V5 has
the decision value d(v). A user u of the decision tree executes the following
evaluation. u first evaluates ¢(r) in the root node r. If ¢(r) ="yes" ("no") for u,
u moves to the next node connected by edge y(r)(n(r)), respectively. At the new
node, v', u evaluates the condition ¢(v') and moves using either y(v’) or n(v’).
Since there is no directed cycle in D, user u eventually moves to a leaf node
v € Vi. u obtains the decision d(v). Fig. 1 shows an example of D. When the
decision tree is used for disease diagnosis, the decisions of the leaf nodes are the
names of diseases and the conditions are "The blood pressure is 135/85mmHg
or higher?", "The color of the nails is cloudy like in this photo?", and so on.

Note that this paper assumes Bob can evaluate ¢(v) using Bob’s private value.
The evaluation method is out of the scope of the paper. If ¢(v) is a function f
using Bob’s secure input value b;(i = 1,2,...,«) and f must be hidden from
Bob, a secure function evaluation method might be necessary.

2.2 Security of decision tree

The security definitions when Alice has a decision tree and Bob has private data
for the evaluation are given as follows. The players are assumed to be semi-

Card-based secure evaluation of decision trees 3

d(ve) d(v;) d(ve)

Fig. 1. An example of the decision tree.

honest, that is, they obey the rules of the protocols but try to obtain secure
data.

Definition 1 (Security of Bob’s private data).

A security game is defined between challenger B and an adversary A who
has the decision tree T. A first gives two sequences of answers Sy, S1, which is
the list of evaluation results "yes"/"no" for each internal node to the leaf node.
B privately selects random bit b € {0,1}. A and B execute the decision tree
evaluation protocol. B evaluates the conditions of internal nodes using Sy. After
the evaluation, A outputs bit b' € {0,1}. User data is secure if |Pr[b=b']—1/2|
1s negligible.

The adversary has the tree and decides two different answers by Bob. B selects
one of the two sequences of answers. A guesses which sequence is used. A wins
if the probability of a correct guess is more than 1/2. If such an adversary does
not exist, the user data is kept secret.

Definition 2 (Security of Alice’s decision tree).

A security game is defined between challenger A and an adversary B. B first
outputs two decision trees Ty, T1 that have a common path P from the root r to a
leaf node vy and the depth of every leaf node is the same. Challenger A randomly
selects b € {0,1}. A and B executes the decision tree evaluation protocol with Ty
and B selects the decision at each node to follow the path P. After the evaluation,
B outputs ' € {0,1}. The decision tree is secure if |Pr[b = b'|—1/2| is negligible.

The adversary gives two trees. One of the trees is used for the protocol execution.
After the protocol execution, the adversary guesses which tree is used. B wins
if the probability of a correct guess is more than 1/2. If such an adversary does
not exist, the decision tree is kept secret.

2.3 Definitions related to the cards

We show basic assumptions and operations for card-based cryptographic pro-
tocols. This paper uses @ and cards. The cards with the same mark are

4 Y. Manabe and N. Kobayashi

indistinguishable. The back of all cards is the same . It is impossible to know
the mark of face-down cards. In addition, there are cards to write the condition
on each node and the final results. The cards are called condition cards. The
back of all condition cards are the same .

Set, turn, and shuffle operations are executed on cards. Setting cards is plac-
ing cards according to some rules. Turning a face-down card is opening a card
and seeing the mark on the card. Turning a face-up card is hiding the mark of a
card. Turing might be privately done. For example, Bob turns a face-down card,
sees the mark, and turns the face-up card again at a place where Alice cannot
see. Private operations can be done in the back or under the table.

Shuffle is the randomization of a sequence of cards. For a given sequence
of face-down cards cy, ca, . . ., ¢,, shuffle returns a sequence cr(1y, cr(2), - -, Cr(n)
for some permutation = : {1,2,...,n} — {1,2,...,n}. The permutation 7 is
unknown to all players. Pile-scramble shuffle is a shuffle on piles of cards. A
pile of cards P; is a sequence of cards ¢;1,¢;2,...,¢;m whose order is fixed.
Such a pile can be obtained by inserting the cards into an envelope. Then a
shuffle is executed to the envelopes. After the shuffle, the cards in each envelope
are set back. By a pile-scramble shuffle on piles Py, P, ..., P,, we obtain piles
Pr1y, Pr(2)s - - -, Pr(n)- The sequence in each pile is unchanged by a pile-scramble
shuffle, that is, if P; is moved to the j-th pile by the pile-scramble shuffle, c; 4
is moved to the k-th card in the j-th pile for all k(1 < k < m). Note that the
number of cards in every pile must be the same to hide the permutation 7 to
the players.

3 Adding dummy edges and nodes to decision trees

For the preparation, Alice needs to set the depth of every leaf node is the same
value. If the depth of some leaves is smaller, Bob knows some information about
the structure of the subtree Bob evaluated. Since Bob does not want Alice to
know the final decision, Bob does not want to let Alice know that Bob traversed
to a small depth leaf node. Thus, in many cases, both Alice and Bob have the
incentive to make the depths of all leaf nodes the same value. Alice adds some
dummy edges and nodes and makes the depth of every leaf node the same value k.
Fig. 2 shows an example of adding dummy nodes to the tree in Fig. 1. Node v} is
the dummy node and the condition ¢(v}) is some dummy condition meaningless
to the final decision. The algorithm to add dummy edges and nodes is out of the
scope of the paper. In the rest of this paper, we assume that the depth of every
leaf node is the same.

As shown in Fig. 2, the structure of the decision tree is not completely hidden
by just making the depth of every leaf node the same. This paper discusses two
methods for the secure evaluation. The first method is making copies of nodes.
If an internal node has more than one incoming edge, Alice makes copies of such
an internal node and makes the decision tree a complete binary tree as Fig. 3.
An evaluation protocol for a complete binary tree is shown in Section 4.

Card-based secure evaluation of decision trees 5

(r)e)

X;

c(vy) (@) .
c(vy) Y
dummy(p))

7R
s
d(vs) d(ve) d(vs) d(vg)

Fig. 2. Adding dummy nodes to modify the depth.

c(rg) = c(v3)

N
G‘
@{ NY%% N VAN d(vs) = d(vs)
d(vg) = d(vg)

d(vs) d(ve) d(v-) d('l?s) d(l?-;) - d(l?) = d(v;)

Fig. 3. Making a complete binary tree.

The method needs copying condition card ¢(v). Such a copy might not be easy
in some cases for example, ¢(v) is testing with a color image on the card and the
color is very hard to copy with a standard copy machine (for example, images for
color blindness testing). Section 5 shows an evaluation protocol without copying
internal nodes.

4 Protocol for complete binary tree

When the decision tree is a complete binary tree just like Fig. 3, randomization
is simple. The condition card for node ¢ is written as c(7).

For each internal node, add a face-down @ (@ card to the "yes" ("no")
edge, respectively, as shown in Fig. 4. Note that the cards are shown in face-up
in Fig. 4 for explanation. Note that edges are unnecessary to set the binary tree
since the outdegree of every internal node is two. The players place the nodes
by the order of the breadth-first search. Then they can know the left and right
child of each node from the sequence of nodes.

6 Y. Manabe and N. Kobayashi

ik " jﬁ%

Fig. 4. Setting "yes" and "no" cards.

The randomization is as follows. For each internal node, two subtrees with
the "yes" child and the "no" child are randomly swapped.

Protocol 1 (Randomization of a complete binary decision tree)

Fori=1tok—1 do

For each internal node v of depth i

Alice and Bob randomly swap "yes" and "no" subtree of v (Fig. 5)
Endfor

Endfor

Grds fo do

In Fig. 5, rectangles are piles of cards. The arrow between the piles means ran-
domly swapping two piles.

\VAVAVAV)

Fig. 5. Randomization of a complete binary tree.

The evaluation by Bob is as follows. First, set v as the root of the tree. Repeat
the following step until v becomes a leaf node. Bob privately evaluates c¢(v) and

Card-based secure evaluation of decision trees 7

opens the two cards on the outgoing edges of v. If the evaluation result is "yes"
("no"), Bob sets v to the child node with @ (@) card, respectively. If v is a leaf
node, ¢(v) is the result.

Protocol 2 (Bob’s Evaluation of a complete binary decision tree)

1. v=7r /*root of the decision tree */

2. Repeat

8. Bob privately sees cards for two child nodes of v.

4. Bob privately sees and evaluates c(v). If the answer is "yes" ("no"), Bob
sets v to the child node with @@, respectively.

5. Until v is a leaf.

6. Bob privately sees the result c¢(v).
Theorem 1. Protocol 1 and 2 are correct and secure.

Proof. Correctness: Since the "yes" and "no" edges are known to Bob after
shuffles because of @ and @ cards, Bob can obtain the correct answer.

Security: Alice obtains no information about Bob’s evaluation result at each
internal node v; since the "yes" and "no" edges are randomized. Since the eval-
uation results are unknown, the final result is also unknown.

The security of Alice’s decision tree can be shown as follows. Any trees Ty, T}
that the adversary initially provides are converted to the same complete binary
tree. At the evaluation, the adversary obtains no information other than the
traversed path P from the root to the leaf. Since P is the same in T and 77,
the adversary obtains no information about the tree. a

The protocol uses 2F — 1 @ and @ cards. The total number of shuffles for
the randomization is 2 — 1. Since the shuffles by the same depth nodes are
independent, they can be executed by a single shuffle using some additional
tools. Thus the number of shuffles can be reduced to k.

5 Protocols for general decision trees

This section shows the case when copying the condition card c¢(v) is not easy.
The number of internal nodes and leaf nodes might reveal some information
about the decision tree. Since the number of internal nodes of a complete binary
tree of depth k is 2F — 1, if the number of internal nodes is less than 2% — 1,
Bob knows that there are multiple paths from the root to a leaf node. That
might reveal some information about the decision tree. Thus Alice adds dummy
nodes to hide the information. The number of leaf nodes gives the number of
different final answers. That might be information to be hidden (note that if the
final answer is just "yes/no," there is no security problem that Bob knows the
number of leaf nodes is two). Thus Alice might want to add dummy leaf nodes
to hide the number of final answers.

After adding dummy nodes, the decision tree is changed to DD = (V =
V1 UVa UV UV, E), where V3 is the set of dummy internal nodes and Vj is the

8 Y. Manabe and N. Kobayashi
set of dummy leaf nodes. |V;|+ |V3| = 28 — 1 and |Va| +|V4| = 2*. V3 and V are

isolated nodes. Fig. 6 shows an example of adding isolated dummy nodes to the
tree in Fig. 2.

(r)e(r)

Y @) c(vy)dummy
c(vy) @) c(vy)
NER7AN\
c(vy) @ :
dum:ny c(v3) C(”"«)@ ggﬁ j:’g:nt

N d(vs) dummy

Y[IN Y
%@{ \% @ d(vg) dummy

d(vs) d(vg) d(vs) d(vg)

Fig. 6. Adding isolated dummy nodes.

Note that when Bob knows the result is "yes/no", |Va| = 2 and V; = 0.
The protocol for the case can be similarly obtained, thus this section assumes
[Vi|+|V5| = 28 —1 and |Va|+|V4| = 2%. Let n = |V| = 2+ —1. The nodes in DD
are numbered as 1 to n. Initially, Alice sets the cards to represent the decision
tree DD as follows. Alice sets face-down condition card ¢(1),¢(2),...,¢(n) in a
row. The conditions and the results are written on these cards. Alice sets these
cards by the increasing order of the depth. c¢(z)(2! < z < 2¢+! — 1) are condition
cards of the nodes with depth i(0 < ¢ < k). Below the card c¢(z), Alice sets
two cards O(2z — 1, z) and O(2x, z) that represent the "yes" outgoing edge and
the "no" outgoing edge of node z. Below the card ¢(x) of depth (0 < i < k),
Alice sets 2! rows of face-down cards I(j,z)(2' — 1 < j < 21 — 2). These
cards represent incoming edges to node x. Row ¢ consists of one card O(i,x)
that represents an outgoing edge from node x and multiple cards I(4,y) that
represents an incoming edge to node y. These cards show one directed edge from
node z to node y.

Internal node = has two cards that represent the outgoing edges. O(2x —
l,z) = @, which means "yes" and O(2x,x) = @, which means "no". If x is a
dummy node without a child, O(2x — 1, x) and O(2x,) can be arbitrary, since
they are never seen. If "yes" child of node z is node y, I(2x — 1,y) = @ All the
other card I(2z —1,-) = @ If "no" child of node x is node y, I(2z,y) = @ All

the other card I(2z,-) = @
If node x is dummy node without a child, I(2z—1,-) and I(2z, -) are arbitrary.
Fig. 7 shows an example of Alice’s card set to the decision tree in Fig. 6. The
left (right) side below ¢(z) has O(-,x)(I(-,z)), respectively. Note that the cards
are set face-up to show the marks in Fig. 7. Alice sets all the cards face-down.
D means the card is arbitrary. In the following figures, the mark of each face-

Card-based secure evaluation of decision trees 9

down card is written at the right bottom. If the mark is arbitrary, no mark
is written. In Fig. 7, the first row shows "yes" edge (r,v1). The 6th row shows
"no" edge (vz,v4). Since dummy node v} has no child, 13th and 14th rows are
arbitrary.

Vs || Ve |

Lr J(wa][vz Jlos |[va || ¥ (w2 [[¥s]{%s [[¥7 || ve|[¥s |[%]

¥ ¥ M
W
vl
2

[l €]

e e A AT
[] (] [
K 4l 2 2 2
[R

[l
[Pl

I E Gk a2
I 3 2k 3k Akt
LI TR e I | el

e 3G 2z 2l 2k 3k 3

(€]
CIC I el e €]
e 2 2 3l 13k
CCEe €] R e)
G 36 2 2k 3%)

[]
[]

Fig. 7. Cards set by Alice.

First, we show Bob’s evaluation steps without security. Bob can evaluate the
decision tree using the cards though Alice can know Bob’s "yes/no" selection
on each node and the final result. Bob sees the condition card of the first node
and decides "yes/no". If the result is "yes" ("no"), open the cards I(1,-)(I(2,-)),
respectively. There is just one @ and all other cards are @ If (I(1,5) (or I1(2,7))

= @, Bob next sees j-th node. Bob sees the condition card of the j-th node and
decides "yes/no". If the result is "yes" ("no"), open the cards I(2j—1,-)(1(24,)),
respectively. Bob repeats the procedure and after the k-th iteration, Bob sees a
leaf node. The condition card on the node has the result.

Suppose that ¢(r) ="no", c¢(ve) ="yes", c(vz) ="no", and the result is vy.
Since ¢(r)="no", Bob sees the second row and opens I(2,-). Since 1(2,3) = @,
Bob knows the next node is the 3rd column. Bob sees ¢(v3) and the answer is
"yes". The "yes" edge information is in the 5th row, Bob opens I(5,-). Since
I1(5,5) = @, Bob knows the next node is the 5th column. Bob sees c¢(vs) and
the answer is "no". The "no" edge information is in the 10th row. Bob opens

10 Y. Manabe and N. Kobayashi

I(10,). Since I(10,10) = @, Bob knows the next node is the 10th column. Bob
sees c(v7) and this is the final result since k = 3.

The above procedure outputs the correct result. However, Alice can know
Bob’s selection of "yes/no" in each node and all the nodes Bob selects. To make
the selection by Bob secure, the decision tree must be randomized in advance.

Alice and Bob randomize the cards to hide the information of the nodes Bob
accesses to evaluate the decision tree.

Protocol 3 (Randomization protocol for any binary tree)

1. /* First phase: row randomization */

2. Alice and Bob make pile P; by the cards in i-th row (1 <i <2(2F —1)).

3. Alice and Bob execute a pile-scramble shuffle on Po;—1 and Py (1 < i <
ok 1),

/* Second phase: internal node randomization in each depth */
Fori=1tok—1 do

Alice and Bob make pile P; by c¢(2' — 1+ j) and the cards in (2 — 1+ j)-th
column, (2(2° — 1+ j) — 1)-th row, and (2(2* — 1+ j))-th row (1 < j < 2°).
Alice and Bob executes a pile-scramble shuffle on P; (1 < j <2°).

Endfor

/* Third phase: leaf node randomization */

Alice and Bob make pile P; by ¢(2¥ —1+414) and the cards in (28 — 14 14)-th
column (1 <1i < 2’“).

11. Alice and Bob executes a pile-scramble shuffle on P; (1 <i < 2’“).

SAla

S

S © ™=

The randomization consists of three phases. The first phase is the random-
ization of the rows. The odd (even) rows represent "yes" ("no") outgoing edges,
respectively. Thus the order of rows must be randomized. After the randomiza-
tion is executed, Alice cannot know which row is "yes" edge or "no" edge.

Alice and Bob makes 2(2F —1) set of piles P;(1 <14 < 2(2¥—1)). P; consists of
i-th row. Alice and Bob execute a pile-scramble shuffle on P;_; and Ps;, that is,
(2i — 1)-th row and 2i-th row are randomly swapped. Fig. 8 shows a row shuffle.

The second phase is the randomization of the sequence of internal nodes.
Since Alice knows which node has which condition, the order of internal nodes of
the same depth must be randomized while keeping the directed edge information.
For each depth i(1 < ¢ < k), execute the following randomization. Alice and Bob
make 2 piles Pj, P, ..., Pyi. Pj(1 < j < 2%) consists of cards for j-th internal
node of depth i, that is, node with condition card ¢(2! — 1+ 7). Let = 2/ —1+3j.
The j-th internal node of depth 4 has cards for incoming edges from depth (i —1)
node(s), I(l,x)(2i71 <1 <2/ —1). It has cards for outgoing edges O(2x — 1,z),
O(2z,z), I(2x — 1,1), and I(2z,1)(2"T < < 2%2 —1). That is, P; consists of
the cards of a-th column, (22 — 1)-th row, and 2z-th row.

Alice and Bob execute a pile-scramble shuffle on P;(1 < j < 2%). Fig. 9 shows
the randomization of depth 1 to the result of swapping (P1, P»), (Ps, P1), (Po, Pio)
by the randomization of Fig. 8. Fig. 10 shows the randomization of depth 2 to

Card-based secure evaluation of decision trees 11

s

B |

(v |[vg || v][22

¥ ||V |[¥z {ve]|¥s [2a]]¥s || ¥ |

1P/ I N

I PP

I I I P)

A I I I I I N]

I]

((N i N 2 N N il I O O cd O e
7 72 ? s ? 7 2

Fig. 8. Row shuffle of the cards.

the result of swapping v; and vy by the randomization of Fig. 9. In the figures,
the polygons shows the piles.

The third phase is the randomization of leaf nodes. The order of leaf nodes
must be hidden from Alice. Alice and Bob make 2* piles P;, P, ..., Por. Pi(1 <
i < 2F) consists of cards i-th leaf node, that is, node with condition card c(2% —
1+1i). Let # = 2 — 1 + 4. The i-th leaf node has cards for incoming edges from
depth (k — 1) nodes, I(l,z)(2*=t <1 < 2F —1). It has no cards for outgoing
edges. That is, P; consists of the cards of z-th column.

Alice and Bob execute a pile-scramble shuffle on P;(1 < ¢ < 2’“). Fig. 11 shows
the randomization of leaf nodes to the result with the node sequence vy, v}, v3, v}
by the randomization of Fig. 10.

The evaluation protocol after the randomization is executed as follows.

Protocol 4 (Bob’s evaluation protocol for any binary tree)

1. Seti=1.

2. Fors=1tok do
Bob privately opens ¢(i) and decides "yes/no." Bob privately reveals O(-,1)
and sees the marks. If the result is "yes" ("no"), Bob sets j to be the row
that satisfies O(j,1) = (@), respectively. Bob publicly opens all the cards
I(4,-). There is one E card. Let i be the column that satisfies 1(j,1) = @

3. Endfor

4. /* i must be a leaf node */
Bob privately reveals ¢(i) and obtains the result.

12 Y. Manabe and N. Kobayashi

Lvs | [ve |[v][ve]lva |[va]{vs]| ve]

Lr v Jfve o |[va][va |[v

ESlEs /s e S e e P
B s [rE rE e P

S/ e s re e P

5)| P P | P PR P
I I [o P e

I | 50 PO Y P

Fig. 9. Randomization of depth 1 nodes.

We show an evaluation example for the randomized table in Fig. 12, in which
the leaf node sequence is changed to vj, v§, vy, vs, vs, v§, v, v by the randomiza-
tion of Fig. 11.

Suppose that ¢(r) ="no", c(vs) ="yes", ¢(v3) ="no", and the result is v7. Bob
first privately reveals ¢(r) and the evaluation result is "no". Bob privately reveals
O(+,1) and selects the first row since O(1,1) @ Bob opens all I(1,-) and sees
1(1,2) = @ Thus the second column is the child node. Bob privately reveals

¢(v2) and the evaluation result is "yes". Bob privately reveals O(-,2) and selects
the 3rd row since O(3,2) @ Bob opens all cards in I(3,-) and sees I(3,6) =
@. Thus the 6th column is the child node. Bob privately reveals ¢(vs) and the
evaluation result is "no". Bob privately reveals O(-, 6) and selects the 11th row
since O(11,6) = @ Bob opens all cards in I(11, -) and sees I(11,10) @ Thus
the 10th column is the child node. Bob privately reveals c(v7) and obtains the
final result.

Note that Alice might have set incorrect cards. In this case, Bob can claim
that DD is incorrect with proof. In Step 2, when Bob sees O(+,), the numbers
of @ and @ cards might be incorrect. In that case, Bob opens all O(-,4) cards
and claims that DD is incorrect. When Bob opens I(i,-), Bob claims that DD

is incorrect if the number of @ cards is not one.

Card-based secure evaluation of decision trees 13

A N Y

vs | | ¥ |[%7] va || ¥s [[a]|®s |[¥ |

-3

fe]
IFJIEIIE[EI
e

-
E
[

4]
&

H

I |) e [P T [T
S P P

EErErErE e s

[ee2]
i] [P P
)| S) |

II

I

e
I [P P I:“"I!ﬂE

= | (s

Fig. 10. Randomization of depth 2 nodes.

Since Bob opens all cards of I(i,-), Alice can verify that Bob correctly visits
the child node.

‘When another user Carol wants to use DD, all opened cards are set face-down
and they execute the randomizations again before the evaluation.

Theorem 2. Protocol 3 and 4 are correct and secure.

Proof. Correctness: Since the "yes" and "no" edges are known to Bob after
shuffles because of @ and @ cards, Bob can obtain the correct answer.

Security: Alice obtains no information about Bob’s evaluation result at each
internal node v; since the "yes" and "no" edges are randomized. Since the eval-
uation results are unknown, the final result is also unknown.

The security of Alice’s decision tree can be shown as follows. Any trees Tg, T}
that the adversary initially provides are converted to the cards with the same
size. At the evaluation, the adversary obtains no information other than the
traversed path P from the root to the leaf. Since P is the same in T and 717,
the adversary obtains no information about the tree. a

When the depth is k, the protocol uses 28! — 1 condition cards, 3(2F — 1)
@ cards and (41 —3.2%F —1)/3 @ cards. The total number of shuffles is
2" +k—1. Since the multiple shuffles in the first phase can be parallelly executed,
the number of shuffles can be reduced to k.

14 Y. Manabe and N. Kobayashi

______\
Lr [vl v | v J[wp [wallw]| ¥ ve o2 | f[s ffve |
1
& [
N TEE
[@
0G0 |
4 W (4
e 3l @
w
& &
Fig. 11. Randomization of leaf nodes.
Lr L veflo [vallwp [vallv [[wg]|[we[[¥s || ¥s|[Ve |[vs][vell vy |
g B
B W [
ETEE
A
FE EAHEEREHE
3 A E EEEE %@
3 R R A R
ulllu R
IEEREEEE
. 4 [4 % % % Bl
v B :
HF HE HAEA @%@

Fig. 12. The result of randomizations.

Card-based secure evaluation of decision trees 15

6 Performance evaluation

This section evaluates the execution times of the proposed protocols and com-
pares them with an existing computer-based protocol. The execution times of
primitives in card-based protocols are counted in [7]. Setting one card (called
"add" in [7]) and turning one card (called "turn" in [7]) take 0.8 seconds on
average. Shuffling cards takes 138.2 seconds on average. Note that the shuffle
in 7] is a random bisection cut, which slightly differs from the pile-scramble
shuffle, but the execution times are considered to be almost the same.

For the complete binary tree protocol with depth k in Section 4, initially
Alice sets all the cards for the nodes and edges. Since the total number of cards
(@, @, condition cards) is 2¥+2 — 3, setting needs 0.8 x (2¥+2 —3) sec. Note that
at the setting, the cards can be set as the piles of the scrambles, we do not need
extra time for the preparation of shuffles. Shuffles are executed k times, thus it
takes 138.2k seconds. After the shuffles, the cards must be set to the original
place again. Thus it takes 0.8 x (2872 —3) seconds. After the setup, Bob privately
turns a card, sees the card, and then turns it again for the evaluation. It takes
0.8 x (2(k + 1)) sec. In total, 1.6 x 2F+2 4+ 139.8k — 3.2 seconds are necessary.
When k& = 5, the time is about 15 minutes. Thus, & < 5 is the size of reasonable
execution time. For the computer-based protocol in [15], the computation time
(that excludes key generations and user inputs) is about one minute when the
tree is a complete binary tree and k = 5. The protocol needs extra time for user
inputs, thus the total time might be several minutes.

For any tree protocol with depth k in Section 5, a similar evaluation can be
done. Setting cards needs 2 x 0.8 x 1/3(4%+! 412 . 2k+1 — 13) seconds. Shuffles
need 138.2k seconds. Evaluation needs 0.8 x (6k + 2¥*1) seconds. In total, 1.6 x
1/3(4%+1 +15-2F 49k —13) +138.2k seconds are necessary. When k = 4, the time
is about 20 minutes. Thus, £ < 4 is the size of reasonable execution time. For
the computer-based protocol in [15], the computation time (that excludes key
generations and user inputs) is about 2 minutes when the tree is not a complete
binary tree and k = 4. The protocol needs extra time for user inputs, thus the
total time might be several minutes.

When the tree size is a small constant, the card-based protocols can be exe-
cuted in a reasonable time.

7 Conclusion
This paper showed a secure evaluation protocol for decision trees. A secure con-

dition evaluation protocol at each internal node is one of the important further
studies. Reducing the number of cards is another important problem.

References

1. den Boer, B.: More efficient match-making and satisfiability the five card trick. In:
Proc. of EUROCRYPT ’89, LNCS Vol. 434. pp. 208-217 (1990)

16

10.

11.

12.

13.

14.

15.

16.

17.

Y. Manabe and N. Kobayashi

. Cheung, E., Hawthorne, C., Lee, P.: Cs 758 project: Secure computation with

playing cards (2013), http://cdchawthorne.com/writings/secure_playing\
_cards.pdf

Hanaoka, G., Iwamoto, M., Watanabe, Y., Mizuki, T., Abe, Y., Shinagawa, K.,
Arai, M., Yanai, N.: Physical and visual cryptography to accelerate social imple-
mentation of advanced cryptographic technologies. IEICE Transactions on Fun-
damentals of Electronics, Communications and Computer Sciences pp. 214228
(2023), (In Japanese)

Ji, K., Zhang, B., Lu, T., Li, L., Ren, K.: Uc secure private branching program and
decision tree evaluation. IEEE Transactions on Dependable and Secure Computing
(2022)

Koch, A., Walzer, S., Hartel, K.: Card-based cryptographic protocols using a min-
imal number of cards. In: Proc. of Asiacrypt 2015, LNCS Vol. 9452. pp. 783-807
(2015)

Manabe, Y.: Survey: Card-based cryptographic protocols to calculate primitives
of boolean functions. International Journal of Computer & Software Engineering
27(1), 178 (2022)

Miyahara, D., Ueda, 1., Hayashi, Y.i., Mizuki, T., Sone, H.: Evaluating card-based
protocols in terms of execution time. International Journal of Information Security
20(5), 729-740 (2021)

Mizuki, T.: Applications of card-based cryptography to education. In: IEICE Te-
chinical Report ISEC2016-53. pp. 13-17 (2016), (In Japanese)

Mizuki, T., Shizuya, H.: A formalization of card-based cryptographic protocols
via abstract machine. International Journal of Information Security 13(1), 1523
(2014)

Mizuki, T., Shizuya, H.: Computational model of card-based cryptographic pro-
tocols and its applications. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences 100(1), 3-11 (2017)

Mizuki, T., Sone, H.: Six-card secure and and four-card secure xor. In: Proc. of 3rd
International Workshop on Frontiers in Algorithms(FAW 2009), LNCS Vol. 5598.
pp. 358-369 (2009)

Nakai, T., Misawa, Y., Tokushige, Y., Iwamoto, M., Ohta, K.: How to solve million-
aires’ problem with two kinds of cards. New Generation Computing 39(1), 73-96
(2021)

Ono, H., Manabe, Y.: Efficient card-based cryptographic protocols for the mil-
lionaires’ problem using private input operations. In: Proc. of 13th Asia Joint
Conference on Information Security(AsiaJCIS 2018). pp. 23-28 (2018)

Ono, H., Manabe, Y.: Card-based cryptographic logical computations using private
operations. New Generation Computing 39(1), 19-40 (2021)

Saito, Y., Ogata, W.: Private decision tree evaluation by a single untrusted server
for machine learning as a service. IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences 105(3), 203-213 (2022)

Today, M.: Clinical flowcharts (2023), https://medicinetoday.com.au/
clinical-flowcharts [Accessed: (Sep 05, 2024)]

Tsuchida, H., Nishide, T., Maeda, Y.: Private decision tree evaluation with constant
rounds via (only) ss-3pc over ring. In: Provable and Practical Security: 14th In-
ternational Conference, ProvSec 2020, Singapore, November 29-December 1, 2020,
Proceedings 14. pp. 298-317. Springer (2020)

