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Abstract. This paper shows new kinds of card-based cryptographic pro-
tocols with a standard deck of cards using private operations. They are
multi-party secure computations executed by multiple players without
computers. Most card-based cryptographic protocols use a special deck
of cards that consists of many cards with two kinds of marks. Though
these protocols are simple and efficient, the users need to prepare such
special cards. Few protocols were shown that use a standard deck of
playing cards. Though the protocols with a standard deck of cards can
be easily executed in our daily life, the numbers of cards used by these
protocols are larger than the ones that use the special deck of cards. This
paper shows logical AND, logical XOR, and copy protocols for a stan-
dard deck of cards that use the minimum number of cards. Any Boolean
functions can be calculated with a combination of the above protocols.
The new protocols use private operations that are executed by a player
where the other players cannot see. The results show the effectiveness of
private operations in card-based cryptographic protocols.

Keywords: Multi-party secure computation · card-based cryptographic
protocols · private operations · logical computations · copy · playing
cards.

1 Introduction

Card-based cryptographic protocols [13,34,36] were proposed in which physical
cards are used instead of computers to securely calculate values. They can be
used when computers cannot be used or users cannot trust the software on the
computer. Also, the protocols are easy to understand, thus the protocols can
be used to teach the basics of cryptography [4, 28]. den Boer [2] first showed a
five-card protocol to securely calculate logical AND of two inputs. Since then,
many protocols have been proposed to realize primitives to calculate any Boolean
functions [7,12,17,37,48,57] and specific computations such as a class of Boolean
functions [1,23,24,29,33,42,43,45,50,51,55,62,64], millionaires’ problem [25,39,
46], realizing Turing machines [6,15], voting [31,40,44,63], random permutation
[8,10,11,38], grouping [9], ranking [60], lottery [58], proof of knowledge of a puzzle
solution [3,5,21,26,27,49,52–54], and so on. This paper considers calculations of
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logical AND and logical XOR functions and copy operation since any Boolean
function can be realized with a combination of these calculations.

Most of the above works are based on a two-color card model. In the two-
color card model, there are two kinds of cards, ♣ and ♡ . Cards of the same
marks cannot be distinguished. In addition, the back of both types of cards is
? . It is impossible to determine the mark in the back of a given card of ? .
Though the model is simple, such special cards are not available in our daily life.
When the players make the special cards using white cards and a printer, the
person who prints the marks to cards might add tiny marks on the cards for the
person to distinguish the cards and obtain secret data. Thus, hand-made cards
are not so easy to realize.

To solve the problem, card-based cryptographic protocols using a standard
deck of playing cards were shown [14,18,19,30,41,56]. Playing cards are available
at many houses and easy to buy. Niemi and Renvall first showed protocols that
use a standard deck of playing cards [41]. They showed logical XOR, logical AND,
and copy protocols since any Boolean functions can be realized by a combination
of these protocols. Their protocols are ‘Las Vegas’ type protocols, that is, the
execution times of the protocols are not limited. The protocols are expected to
terminate within a finite time, but if the sequence of the random numbers is
bad, the protocols do not terminate forever. Mizuki showed fixed time logical
XOR, logical AND, and copy protocols [30]. Though the number of cards used by
the XOR protocol is the minimum, the ones used by the logical AND and copy
protocols are not the minimum. Koch et al. showed a four-card ‘Las Vegas’ type
AND protocol and it is impossible to obtain four-card finite time protocol with
the model without private operations [14]. Koyama et al. showed a three-input
‘Las Vegas’ type AND protocol with the minimum number of cards [18]. Koyama
et al. showed an efficient ‘Las Vegas’ type copy protocol [19]. Shinagawa and
Mizuki showed protocols to calculate any n-variable function using a standard
deck of playing cards and a deck of UNO1 cards [56].

Randomization or a private operation is the most important primitive in
these card-based protocols. If every primitive executed in a card-based protocol
is deterministic and public, the relationship between the private input values
and output values is known to the players. When the output value is disclosed,
the private input value can be known to the players from the relationship. Thus,
all protocols need some random or private operation.

First, public randomization primitives have been discussed and then recently,
private operations are considered. Many protocols use random bisection cuts [37],
which randomly execute swapping two decks of cards or not swapping. If the
random value used in the randomization is disclosed, the secret input value is
known to the players. If some player privately brings a high-speed camera, the
random value selected by the randomization might be known by analyzing the
image. Though the size of a high-speed camera is very large, the size might
become very small shortly. To prepare for the situation, we need to consider
using private operations.

1 https://www.letsplayuno.com
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Operations that a player executes in a place where the other players cannot
see are called private operations. These operations are considered to be exe-
cuted under the table or in the back. Private operations are shown to be the
most powerful primitives in card-based cryptographic protocols. They were first
introduced to solve millionaires’ problem [39]. Using three private operations
shown later, committed-input and committed-output logical AND, logical XOR,
and copy protocols can be achieved with the minimum number of cards on the
two-color card model [48]. Another class of private operations is private input op-
erations that are used when a player inputs a private value [20,46,59,63]. These
operations are not discussed in this paper since the protocols need the players
to know the input values. The protocols without private input operations can
be used when the players do not know private input values.

So the research question is whether we can achieve the minimum number of
cards for a standard deck of cards if we use private operations. We show positive
results to the question. This paper shows new logical AND and copy protocols
with a standard deck of playing cards that achieves the minimum number of
cards by using private operations. The results show that the private operations
are also effective for a standard deck of cards.

Note that in this paper, all players are assumed to be semi-honest. Few
works are done for the case when some players are malicious or make mistakes
[16,22,32,35,61].

In Section 2, basic notations and the private operations introduced in [48]
are shown. Section 3 shows logical AND, copy, and logical XOR protocols. Then,
protocols to calculate any n-variable Boolean function are shown. Section 4 con-
cludes the paper.

2 Preliminaries

2.1 Basic notations

This section gives the notations and basic definitions of card-based protocols
with a standard deck of cards. A deck of playing cards consists of 52 distinct
mark cards, which are named as 1 to 52. The number of each card (for example,
1 is the ace of spade and 52 is the king of club) is common knowledge among

the players. The back of all cards is the same ? . It is impossible to determine

the mark in the back of a given card of ? .

One bit data is represented by two cards as follows: i j = 0 and j i = 1
if i < j.

One pair of cards that represents one bit x ∈ {0, 1}, whose face is down, is

called a commitment of x, and denoted as commit(x). It is written as ? ?︸ ︷︷ ︸
x

.

The base of a commitment is the pair of cards used for the commitment. If card
i and j(i < j) are used to set commit(x) (That is, set i j if x = 0 and set
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j i if x = 1), the commitment is written as commit(x){i,j} and written as

? ?︸ ︷︷ ︸
x{i,j}

. When the base information is obvious or unnecessary, it is not written.

Note that when these two cards are swapped, commit(x̄){i,j} can be obtained.
Thus, logical negation can be calculated without private operations.

A set of cards placed in a row is called a sequence of cards. A sequence of
cards S whose length is n is denoted as S = s1, s2, . . . , sn, where si is i-th card
of the sequence. S = ?︸︷︷︸

s1

?︸︷︷︸
s2

?︸︷︷︸
s3

. . . , ?︸︷︷︸
sn

. A sequence whose length is even is

called an even sequence. S1||S2 is a concatenation of sequence S1 and S2.
All protocols are executed by two players, Alice and Bob. The players are

semi-honest, that is, they obey the rule of the protocols but try to obtain secret
values. There is no collusion between Alice and Bob, otherwise private input data
can be easily revealed. The inputs of the protocols are given in a committed
format, that is, the players do not know the input values. The output of the
protocol must be given in a committed format so that the result can be used as
an input to further calculation.

A protocol is secure when the following two conditions are satisfied: (1)If
the output cards are not opened, each player obtains no information about the
private input values from the view of the protocol for the player (the sequence
of the cards opened to the player). (2)When the output cards are opened, each
player obtains no additional information about the private input values other
than the information by the output of the protocol. For example, if the output
cards of an AND protocol for input x and y are opened and the value is 1, the
players can know that x = 1 and y = 1. If the output value is 0, the players
must not know whether the input (x, y) is (0, 0), (0, 1), or (1, 0).

The following protocols use random numbers. Random numbers can be gen-
erated without computers using coin-flipping or some similar methods. During
the protocol executions, cards are sent and received between the players. The
communication is executed by handing the cards between the players to avoid in-
formation leakage during the communication. If the players are not in the same
place during the protocol execution, a trusted third party (for example, post
office) is necessary to send and receive cards between players.

2.2 Private operations

We show three private operations introduced in [48]: private random bisection
cuts, private reverse cuts, and private reveals.

Primitive 1 (Private random bisection cut)
A private random bisection cut is the following operation on an even sequence

S0 = s1, s2, . . . , s2m. A player selects a random bit b ∈ {0, 1} and outputs

S1 =

{
S0 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1
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The player executes this operation in a place where the other players cannot see.
The player must not disclose the bit b.

Note that if the private random cut is executed when m = 1 and S0 =
commit(x), given S0 = ? ?︸ ︷︷ ︸

x

, The player’s output S1 = ? ?︸ ︷︷ ︸
x⊕b

, which is ? ?︸ ︷︷ ︸
x

or ? ?︸ ︷︷ ︸
x

.

Note that a private random bisection cut is the same as the random bisection
cut [37], but the operation is executed in a hidden place.

Primitive 2 (Private reverse cut, Private reverse selection)
A private reverse cut is the following operation on an even sequence S2 =

s1, s2, . . . , s2m and a bit b ∈ {0, 1}. A player outputs

S3 =

{
S2 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1

The player executes this operation in a place where the other players cannot see.
The player must not disclose b.

Note that the bit b is not newly selected by the player. This is the difference
between the primitive in Primitive 1, where a random bit must be newly selected
by the player.

Note that in some protocols below, selecting left m cards is executed after
a private reverse cut. The sequence of these two operations is called a private
reverse selection. A private reverse selection is the following procedure on an
even sequence S2 = s1, s2, . . . , s2m and a bit b ∈ {0, 1}. A player outputs

S3 =

{
s1, s2, . . . , sm if b = 0
sm+1, sm+2, . . . , s2m if b = 1

Primitive 3 (Private reveal) A player privately opens a given committed bit.
The player must not disclose the obtained value.

Using the obtained value, the player privately sets a sequence of cards.
Consider the case when Alice executes a private random bisection cut on

commit(x) and Bob executes a private reveal on the bit. Since the committed
bit is randomized by the bit b selected by Alice, the opened bit is x ⊕ b. Even
if Bob privately opens the cards, Bob obtains no information about x if b is
randomly selected and not disclosed by Alice. Bob must not disclose the obtained
value. If Bob discloses the obtained value to Alice, Alice knows the value of the
committed bit.

2.3 Opaque commitment pair

An opaque commitment pair is defined as a useful situation to design a secure
protocol using a standard deck of cards [30]. It is a pair of commitments whose
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bases are unknown to a player. Let us consider the following two commitments
using cards i, j, i′ and j′. The left(right) commitment has value x (y), respec-
tively, but it is unknown that (1) the left (right) commitment is made using i
and j (i′ and j′), respectively, or (2) the left (right) commitment is made using i′

and j′ (i and j), respectively. Such pair of commitment is called an opaque com-
mitment pair and written as commit(x){i,j},{i

′,j′}||commit(y){i,j},{i
′,j′}. Note

that there is a case when Alice thinks a pair is an opaque commitment pair but
Bob knows the base, especially when Bob privately makes the pair of commit-
ments with the knowledge of x and y. For example, Bob randomly selects a bit
b ∈ {0, 1} and

S =

{
commit(x){i,j}||commit(y){i

′,j′} if b = 0

commit(x){i
′,j′}||commit(y){i,j} if b = 1

then S = commit(x){i,j},{i
′,j′}||commit(y){i,j},{i

′,j′} for Alice.

2.4 Space and time complexities

The space complexity of card-based protocols is evaluated by the number of
cards. Minimizing the number of cards is discussed in many works.

The number of rounds was proposed as a criterion to evaluate the time com-
plexity of card-based protocols using private operations [47]. The first round
begins from the initial state. The first round is (possibly parallel) local execu-
tions by each player using the cards initially given to each player. It ends at
the instant when no further local execution is possible without receiving cards
from another player. The local executions in each round include sending cards
to some other players but do not include receiving cards. The result of every
private execution is known to the player. For example, shuffling whose result is
unknown to the player himself is not executed. Since the private operations are
executed in a place where the other players cannot see, it is hard to force the
player to execute such operations whose result is unknown to the player. The
i(> 1)-th round begins with receiving all the cards sent during the (i − 1)-th
round. Each player executes local executions using the received cards and the
cards left to the player at the end of the (i− 1)-th round. Each player executes
local executions until no further local execution is possible without receiving
cards from another player. The number of rounds of a protocol is the maximum
number of rounds necessary to output the result among all possible inputs and
random values.

Let us show an example of a protocol execution, its space complexity, and
time complexity with the conventional two-color card model. In the two-color
card model, there are two kinds of marks, ♣ and ♡ . One bit data is represented

by two cards as follows: ♣ ♡ = 0 and ♡ ♣ = 1.

Protocol 1 (AND protocol in [48])
Input: commit(x) and commit(y).
Output: commit(x ∧ y).
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1. Alice executes a private random bisection cut on commit(x). Let the output
be commit(x′). Alice sends commit(x′) and commit(y) to Bob.

2. Bob executes a private reveal on commit(x′). Bob privately sets

S2 =

{
commit(y)||commit(0) if x′ = 1
commit(0)||commit(y) if x′ = 0

and sends S2 to Alice.
3. Alice executes a private reverse selection on S2 using the bit b generated

in the private random bisection cut. Let the obtained sequence be S3. Alice
outputs S3.

The AND protocol realizes the following equation.

x ∧ y =

{
y if x = 1
0 if x = 0

The correctness of the protocol is shown in [48]. The number of cards is four,
since the cards of commit(x′) are re-used to set commit(0).

Let us consider the time complexity of the protocol. The first round ends
at the instant when Alice sends commit(x′) and commit(y) to Bob. The second
round begins at receiving the cards by Bob. The second round ends at the instant
when Bob sends S2 to Alice. The third round begins at receiving the cards by
Alice. The number of rounds of this protocol is three.

Since each operation is relatively simple, the dominating time to execute
protocols with private operations is the time to sending cards between players
and setting up so that the cards are not seen by the other players. Thus the
number of rounds is the criterion to evaluate the time complexity of card-based
protocols with private operations.

2.5 Problems with a standard deck of cards

The above AND protocol cannot be executed as it is with a standard deck of
cards.

The protocol uses the property that all ♡ cards (♣ cards) are indistin-
guishable. Even if the final cards are opened to see the result, it is impossible
to know that the opened cards are the cards of commit(y) or commit(0). If it is
possible to detect the above information, the value of x is known to the players.

First, let us consider a simple encoding using a standard deck of a playing
card that heart and diamond cards mean ♡ and all club and spade cards mean

♣ . With this simple encoding, let us consider the case when the aces of diamond
and spade are used to set commit(x) and the aces of heart and club are used to
set commit(y).

Suppose that x = 1 and y = 0. In this case, the result is commit(y), thus
the result is correct since y = 0. At step 2 of the protocol, aces of diamond and
spade are re-used to set commit(0). Since x = 1, the result is commit(y). When
the cards are opened to see the result, the cards are the aces of heart and club.
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The players can know that y is selected as the output, thus x must be 1. The
execution reveals the information of inputs from the cards used to set the input
commitments.

Next, consider the case when the encoding rule i j = 0, j i = 1 if i < j is
used to the standard deck of playing cards. Suppose again that x = 1 and y = 0.
When two inputs are given as commit(x){1,2} and commit(y){3,4}, commit(0)
and commit(y) are set as commit(0){1,2} and commit(y){3,4}, respectively at
Step 2. Since x = 1, the result is commit(y){3,4}. When the cards are opened
to see the result, the cards are 3 and 4. The players can know that y is selected
as the output, thus x must be 1. This execution also reveals the information of
inputs from the base of the commitments.

When we design a protocol with a standard deck of cards, we must consider
the information leakage from the base of the commitment.

3 AND, XOR, and copy with a standard deck of cards

This section shows our new protocols for AND, and copy with the minimum
number of cards using private operations. We also show XOR protocol using
private operations to show the minimum number of cards can also be achieved
using private operations. Before we show the protocols, we show subroutines to
change the base of a given commitment.

3.1 Base Change Protocols

A base change protocol changes the base of a commitment without changing the
value of the commitment. A base change protocol is also shown in [30], but the
protocol uses a public shuffle, thus we show a new protocol that uses private
operations.

Protocol 2 (Base change protocol (1))
Input: commit(x){1,2} and two new card 3 and 4.
Output: commit(x){3,4}.

1. Bob executes a private random bisection cut on commit(x){1,2}. Let b ∈
{0, 1} be the bit Bob selected. The result is S1 = commit(x ⊕ b){1,2}. Bob
sends S1 to Alice.

2. Alice executes a private reveal on S1. Alice sees x ⊕ b. Alice makes S2 =
commit(x⊕ b){3,4} and sends S2 to Bob.

3. Bob executes a private reverse cut using b on S2. The result is commit(x){3,4}.

The protocol is three rounds. The security of the protocol is as follows. When
Alice sees the cards at Step 2, the value is x ⊕ b. Since b is a random value
unknown to Alice, Alice has no information about x by the reveal. Bob sees no
open cards, thus Bob has no information about x. Note again that Bob must
not disclose b to Alice.
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Another base change protocol from an opaque commitment pair can be con-
sidered. In the following protocol, the second input value ⊥ is random and mean-
ingless to Alice.

Protocol 3 (Base change protocol (2))
Input: commit(x){1,2},{3,4}||commit(⊥){1,2},{3,4}.
Output: commit(x){1,2}.

1. Bob executes a private random bisection cut on the left pair,
commit(x){1,2},{3,4}. Let b ∈ {0, 1} be the bit Bob selected. The result S1 =
commit(x⊕ b){1,2},{3,4}||commit(⊥){1,2},{3,4}. Bob sends S1 to Alice.

2. Alice executes a private reveal on S1. Alice sees x ⊕ b. If the base of the
left pair is {1, 2}, Alice just faces down the left pair and the cards, S2, be
the result. Otherwise, the base of the right pair is {1, 2}. Alice makes S2 =
commit(x⊕ b){1,2} using the right cards. Alice sends S2 to Bob.

3. Bob executes a private reverse cut using b on S2. The result is commit(x){1,2}.

In this protocol, Alice knows the bases of the input commitments. The pro-
tocol can be used only when this information leakage does not cause a security
problem, for example, the bases are randomly set by Bob. The security of the
input value x is just the same as the first base change protocol.

3.2 AND protocol

In the following AND, copy, and XOR protocols, the bases of the output com-
mitments are fixed to avoid information leakage from the bases when the outputs
are opened.

Protocol 4 (AND protocol)
Input: commit(x){1,2} and commit(y){3,4}.
Output: commit(x ∧ y){1,2}.

1. Alice executes a private random bisection cut on commit(x){1,2} and
commit(y){3,4} using two different bits b1 and b2. Alice sends the results,
S1 = commit(x⊕ b1)

{1,2} and S2 = commit(y ⊕ b2)
{3,4}, to Bob.

2. Bob executes private reveals on S1 and S2. Bob sees x⊕ b1 and y ⊕ b2. Bob
randomly selects bit b3 ∈ {0, 1}. Bob privately sets

S3,0 =

{
commit(x⊕ b1)

{1,2} if b3 = 0
commit(x⊕ b1)

{3,4} if b3 = 1

and

S3,1 =

{
commit(y ⊕ b2)

{3,4} if b3 = 0
commit(y ⊕ b2)

{1,2} if b3 = 1

S3,0 = commit(x ⊕ b1)
{1,2},{3,4} and S3,1 = commit(y ⊕ b2)

{1,2},{3,4} for
Alice. Bob sends S3,1 to Alice.
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3. Alice executes a private reverse cut using b2 on S3,1. The result S′
3,1 =

commit(y){1,2},{3,4}. Alice sends S′
3,1 to Bob.

4. Bob executes a private reveal on S3,0 and sees x⊕b1. Bob privately sets cards

S4 =

{
commit(0){1,2},{3,4}||S′

3,1 if x⊕ b1 = 0

S′
3,1||commit(0){1,2},{3,4} if x⊕ b1 = 1

Note that the cards used for S3,0 are reused to set commit(0). Since S3,0 =
commit(·){1,2},{3,4}, the result is commit(0){1,2},{3,4} for Alice. Bob sends
S4 to Alice.

5. Alice executes a private reverse selection on S4 using b1. Let S5 be the result
and the remaining two cards be S6. The result S5 = commit(y){1,2},{3,4} if
(b1 = 0 and x⊕ b1 = 1) or (b1 = 1 and x⊕ b1 = 0). The condition equals to
x = 1.
S5 = commit(0){1,2},{3,4} if (b1 = 0 and x⊕ b1 = 0) or (b1 = 1 and x⊕ b1 =
1). The condition equals to x = 0. Thus,

S5 =

{
commit(y){1,2},{3,4} if x = 1
commit(0){1,2},{3,4} if x = 0

= commit(x ∧ y){1,2},{3,4}

Alice sends S5 and S6 to Bob.
6. Bob executes a private random bisection cut on S6 to erase the value to Alice.

Let b′ be the random bit selected by Bob and S′
6 be the result.

Bob and Alice execute Protocol 3 (Base change protocol (2)) to S5||S′
6. Then

they obtain commit(x ∧ y){1,2}.

The protocol is eight rounds since the first round of the base change protocol
can be executed in the sixth round of AND protocol by Bob. The number of cards
is four. Since four cards are necessary to input x and y, the number of cards is
the minimum. The correctness of the output value is shown in the protocol, thus
we show the security.

Theorem 1. The AND protocol is secure.

Proof. First, we show the security for Bob. Though Bob sees cards at Step 2
and 4, the cards, S1 = commit(x ⊕ b1)

{1,2} and S2 = commit(y ⊕ b2)
{3,4}, are

randomized by b1 and b2. Thus Bob obtains no information about the input
values.

Alice sees cards at the second step of the base change protocol. At Step 3
after the private reverse selection by Alice,

S′
3,1 =

{
commit(y){3,4} if b3 = 0
commit(y){1,2} if b3 = 1

and commit(y) (commit(0)) is finally selected as S5 if x = 1 (x = 0), respectively.
The value is then randomized using b as commit(y ⊕ b) (commit(b)) at Step 1
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of the base change protocol (2).

S6 =

{
commit(0){1,2},{3,4} if x = 1
commit(y){1,2},{3,4} if x = 0

S6 is also randomized at Step 6 using b′.
Thus at Step 2 of the base change protocol (2), Alice sees the randomized

cards of S5||S6, which are
commit(b){1,2}||commit(y ⊕ b′){3,4} if b3 = 0 and x = 0
commit(y ⊕ b){3,4}||commit(b′){1,2} if b3 = 0 and x = 1
commit(b){3,4}||commit(y ⊕ b′){1,2} if b3 = 1 and x = 0
commit(y ⊕ b){1,2}||commit(b′){3,4} if b3 = 1 and x = 1

Therefore, Alice sees

commit(0){1,2}||commit(0){3,4}

if (b3 = 0 ∧ x = 0 ∧ b = 0 ∧ y ⊕ b′ = 0) ∨ (b3 = 1 ∧ x = 1 ∧ y ⊕ b = 0 ∧ b′ = 0)
commit(0){1,2}||commit(1){3,4}

if (b3 = 0 ∧ x = 0 ∧ b = 0 ∧ y ⊕ b′ = 1) ∨ (b3 = 1 ∧ x = 1 ∧ y ⊕ b = 0 ∧ b′ = 1)
commit(1){1,2}||commit(0){3,4}

if (b3 = 0 ∧ x = 0 ∧ b = 1 ∧ y ⊕ b′ = 0) ∨ (b3 = 1 ∧ x = 1 ∧ y ⊕ b = 1 ∧ b′ = 0)
commit(1){1,2}||commit(1){3,4}

if (b3 = 0 ∧ x = 0 ∧ b = 1 ∧ y ⊕ b′ = 1) ∨ (b3 = 1 ∧ x = 1 ∧ y ⊕ b = 1 ∧ b′ = 1)
commit(0){3,4}||commit(0){1,2}

if (b3 = 0 ∧ x = 1 ∧ y ⊕ b = 0 ∧ b′ = 0) ∨ (b3 = 1 ∧ x = 0 ∧ b = 0 ∧ y ⊕ b′ = 0)
commit(0){3,4}||commit(1){1,2}

if (b3 = 0 ∧ x = 1 ∧ y ⊕ b = 0 ∧ b′ = 1) ∨ (b3 = 1 ∧ x = 0 ∧ b = 0 ∧ y ⊕ b′ = 1)
commit(1){3,4}||commit(0){1,2}

if (b3 = 0 ∧ x = 1 ∧ y ⊕ b = 1 ∧ b′ = 0) ∨ (b3 = 1 ∧ x = 0 ∧ b = 1 ∧ y ⊕ b′ = 0)
commit(1){3,4}||commit(1){1,2}

if (b3 = 0 ∧ x = 1 ∧ y ⊕ b = 1 ∧ b′ = 1) ∨ (b3 = 1 ∧ x = 0 ∧ b = 1 ∧ y ⊕ b′ = 1)

Let Pij(i ∈ {0, 1}, j ∈ {0, 1}) be the probability when x = i and y = j. The
probabilities P (b = 0), P (b = 1), P (b′ = 0), P (b3 = 0), and P (b3 = 1) are 1/2,
thus the probabilities when Alice sees commit(v){i,i+1}||commit(w){4−i,5−i}(v, w ∈
{0, 1}, i ∈ {1, 3}) are the same value (P00 + P01 + P10 + P11)/8. Thus, Alice ob-
tains no information from the cards she sees. ⊓⊔

The comparison of AND protocols is shown in Table 1.

3.3 Copy protocol

Next, we show a new copy protocol. Note that the protocol is essentially the
same as the one in [48] for the two-color card model. The number of cards is the
minimum.
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Table 1. Comparison of AND protocols with a standard deck of cards.

Article # of cards Note

Niemi et al. [41] 5 Las Vegas algorithm

Koch et al. [14] 4 Las Vegas algorithm

Mizuki [30] 8 Fixed time algorithm

This paper 4 Fixed time algorithm

Table 2. Comparison of copy protocols with a standard deck of cards

Article # of cards Note

Niemi et al. [41] 6 Las Vegas algorithm

Koyama et al. [19] 6 Las Vegas algorithm

Mizuki [30] 6 Fixed time algorithm

This paper 4 Fixed time algorithm

Protocol 5 (Copy protocol)
Input: commit(x){1,2} and two new cards 3 and 4.
Output: commit(x){1,2} and commit(x){3,4}

1. Alice executes a private random bisection cut on commit(x){1,2}. Let b the
random bit Alice selects. Alice sends the result, commit(x⊕ b){1,2}, to Bob.

2. Bob executes a private reveal on commit(x⊕ b){1,2} and sees x⊕ b. Bob pri-
vately makes commit(x⊕b){3,4}. Bob sends commit(x⊕b){1,2} and commit(x⊕
b){3,4} to Alice.

3. Alice executes a private reverse cut on each of the pairs using b. The result
is commit(x){1,2} and commit(x){3,4}.

The protocol is three rounds.

Theorem 2. The copy protocol is secure.

Proof. Since Alice sees no open cards, Alice obtains no information about the
input value. Though Bob sees x⊕ b, input x is randomized by b and Bob obtains
no information about x. ⊓⊔

The comparison of copy protocols are shown in Table 2.
The number of rounds can be decreased to two if we use six cards using the

protocol in [47] for the two-color card model.

3.4 XOR protocol

Though the minimum number of cards is already achieved in [30], the protocol
uses public shuffles. We show a new protocol that uses private operations. The
protocol is essentially the same as the one in [47] for the two-color card model.

Protocol 6 (XOR protocol)
Input: commit(x){1,2} and commit(y){3,4}.
Output: commit(x⊕ y){1,2}.
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Table 3. Comparison of XOR protocols with a standard deck of cards.

Article # of cards Note

Niemi et al. [41] 4 Las Vegas algorithm

Mizuki [30] 4 Fixed time algorithm

This paper 4 Fixed time algorithm

1. Alice executes a private random bisection cut on commit(x){1,2} and
commit(y){3,4} using the same random bit b ∈ {0, 1}. The result is commit(x⊕
b){1,2} and commit(y ⊕ b){3,4}. Alice sends these cards to Bob.

2. Bob executes a private reveal on commit(y ⊕ b){3,4}. Bob sees y ⊕ b. Bob
executes a private reverse cut on commit(x⊕ b){1,2} using y ⊕ b. The result
is commit((x⊕ b)⊕ (y ⊕ b)){1,2} = commit(x⊕ y){1,2}.

The protocol is two rounds. The protocol uses four cards. Since any protocol
needs four cards to input x and y, the number of cards is the minimum.

Note that if Bob sends commit(y ⊕ b){3,4} to Alice and Alice executes a
private reverse cut using b, an input commit(y){3,4} can be obtained without
additional cards. This protocol is called an input preserving XOR and it is used
in Section 3.5.

Theorem 3. The XOR protocol is secure.

Proof. Since Alice sees no open cards, Alice obtains no information about the
input values. Though Bob sees y⊕b, input y is randomized by b and Bob obtains
no information about y. ⊓⊔

The comparison of XOR protocols is shown in Table 3.

3.5 Any Boolean function

We show two kinds of protocols to calculate any n-variable Boolean function. The
first one uses many cards but the number of rounds is constant. The second one
uses fewer cards but needs many rounds. Let f(x1, x2, . . . , xn) be an n-variable
Boolean function.

Protocol 7 (Protocol for any n-variable Boolean function (1))

Input: commit(xi)
{2i−1,2i}(i = 1, 2, . . . , n).

Output: commit(f(x1, x2, . . . , xn))
{1,2}.

1. Alice executes a private random bisection cut on commit(xi)
{2i−1,2i}(i =

1, 2, . . . , n). Let the output be commit(x′
i)

{2i−1,2i}(i = 1, 2, . . . , n). Note that
one random bit bi is selected for each xi(i = 1, 2, . . . , n). x′

i = xi ⊕ bi(i =
1, 2, . . . , n). Alice sends commit(x′

i)
{2i−1,2i}(i = 1, 2, . . . , n) to Bob.
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2. Bob executes a private reveal on commit(x′
i)

{2i−1,2i}(i = 1, 2, . . . , n). Bob se-
lects a random bit b ∈ {0, 1}. Bob privately makes 2n commitments Sa1,a2,...,an

(ai ∈ {0, 1}, i = 1, 2, . . . , n) as Sa1,a2,...,an = commit(f(a1⊕x′
1, a2⊕x′

2, . . . , an⊕
x′
n) ⊕ b) using card 3, 4, . . . , 2n+1 + 1, 2n+1 + 2. Note that the cards used to

set each commitment are randomly selected by Bob. Bob executes a private
random bisection cut on commit(·){1,2} to erase the value. Bob sends these
commitments to Alice.

3. Alice privately reveals Sb1,b2,...,bn . Alice sees f(b1⊕x′
1, b2⊕x′

2, . . . , bn⊕x′
n)⊕

b = f(x1, x2, . . . , xn) ⊕ b, since x′
i = xi ⊕ bi(i = 1, 2, . . . , n). Alice privately

makes S = commit(f(x1, x2, . . . , xn)⊕ b){1,2} and sends S to Bob.
4. Bob executes a private reverse cut using b on S. The result is

commit(f(x1, x2, . . . , xn))
{1,2}. Bob outputs the result.

Note that Bob can re-use cards of 3, 4, . . . , 2n− 1, and 2n to set Sa1,a2,...,an .
The protocol uses 2n+1 + 2 cards. The number of rounds is four.

Theorem 4. The protocol 7 is secure.

Proof. Bob sees x′
i = xi ⊕ bi, but the input xi is randomized by bi and Bob

obtains no information about xi. Alice sees f(x1, x2, . . . , xn) ⊕ b, but the value
is randomized by b and Alice obtains no information about f(x1, x2, . . . , xn).
Alice obtains no information from the base of the commitment since the base is
randomly selected by Bob. ⊓⊔

The main idea of the other protocol is the same as the one in [48] for the
two-color card model, which uses an input preserving AND protocol. After the
AND protocol, the unused pair of cards has g = x̄ ∧ y [48]. Let h = x ∧ y.
The last step of AND protocol (the first step of the base change protocol) is
changed so that Alice sets commit(h ⊕ b){1,2} and commit(g ⊕ b′){3,4}. By the
private reverse cut by Bob, Bob obtains commit(h){1,2} and commit(g){3,4}.
Execute the input preserving XOR protocol to g and h so that h is preserved.
The output g ⊕ h = x ∧ y ⊕ x̄ ∧ y = y, thus we can obtain commit(x ∧ y){1,2}

and commit(y){3,4}. Therefore, one input can be preserved without additional
cards by the AND protocol.

Any Boolean function f(x1, x2, . . . , xn) can be represented as follows:
f(x1, x2, . . . , xn) = x̄1∧x̄2∧· · · x̄n∧f(0, 0, . . . , 0)⊕x1∧x̄2∧· · · x̄n∧f(1, 0, . . . , 0)⊕
x̄1 ∧ x2 ∧ · · · x̄n ∧ f(0, 1, . . . , 0)⊕ · · · ⊕ x1 ∧ x2 ∧ · · ·xn ∧ f(1, 1, . . . , 1).

Since the terms with f(i1, i2, . . . , in) = 0 can be removed, this function f can

be written as f =
⊕k

i=1 v
i
1 ∧ vi2 ∧ · · · ∧ vin, where vij = xj or x̄j . Let us write

Ti = vi1 ∧ vi2 ∧ · · · ∧ vin. The number of terms k(< 2n) depends on f .

Protocol 8 (Protocol for any n-variable Boolean function (2))
Input: commit(xi)

{2i+3,2i+4}(i = 1, 2, . . . , n).
Output: commit(f(x1, x2, . . . , xn))

{1,2}.
The additional four cards (two pairs of cards) 1,2,3, and 4 are used as follows.
1 and 2 store the intermediate value to calculate f .
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Table 4. Comparison of protocols to calculate any n-variable Boolean function with a
standard deck of cards.

Article # of cards Note

Shinagawa et al. [56] 2n+ 8 Fixed time algorithm

This paper’s Protocol 7 2n+1 + 2 Fixed time algorithm

This paper’s Protocol 8 2n+ 4 Fixed time algorithm

3 and 4 store the intermediate value to calculate Ti.

Execute the following steps for i = 1, 2, . . . , k.

1. Copy vi1 from the input commit(x1) as commit(vi1)
{3,4}. (Note that if vi1 is

x̄1, NOT is taken after the copy).
2. For j = 2, . . . , n, execute the following procedure: Execute the input preserv-

ing AND protocol to commit(·){3,4} and commit(vij) so that input commit(vij)

is preserved. The result is stored as commit(·){3,4}. (Note that if vij is x̄j,
NOT is taken before the AND protocol and NOT is taken again for the pre-
served input.)
At the end of this step, Ti is obtained as commit(vi1 ∧ vi2 ∧ · · · ∧ vin)

{3,4}.
3. If i = 1, copy commit(·){3,4} to commit(·){1,2}. If i > 1, apply the XOR

protocol between commit(·){3,4} and commit(·){1,2}. The result is stored as
commit(·){1,2}.

At the end of the protocol, commit(f(x1, x2, . . . xn))
{1,2} is obtained.

The comparison of protocols to calculate any n-variable Boolean function is
shown in Table 4.

The number of additional cards in [56] with a standard deck of cards is 8.
Thus the number of additional cards is reduced using private operations.

4 Conclusion

This paper showed AND, XOR, and copy protocols that use a standard deck of
cards. The numbers of cards used by the protocols are the minimum. The results
show the effectiveness of private operations. One of the remaining problems is
obtaining protocols when a player is malicious.
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