
Card-based Cryptographic Protocols for
Three-input Functions

Using Private Operations

Yoshifumi Manabe1[0000−0002−6312−257X] and Hibiki Ono1

Kogakuin University, Shinjuku,Tokyo 163–8677 Japan.
manabe@cc.kogakuin.ac.jp

Abstract. This paper shows card-based cryptographic protocols to cal-
culate several Boolean functions using private operations under the semi-
honest model. Private operations, introduced by Nakai et al. are the most
powerful operations for card-based protocols. We showed that copy, logi-
cal AND, and logical XOR can be calculated with the minimum number
of cards using three private operations, private random bisection cuts,
private reverse cuts, and private reveals. This paper shows that by us-
ing these private operations, all of the following Boolean functions can
be calculated without additional cards other than the input cards: (1)
Any three input Boolean functions, (2) Half adder and full adder, and
(3)Any n-input symmetric Boolean functions. The numbers of cards used
in these protocols are smaller than the ones without private operations.

Keywords: card-based cryptographic protocols · multi-party secure com-
putation · Boolean functions · half adder · symmetric functions

1 Introduction

Card-based cryptographic protocols [14,30] have been proposed in which physi-
cal cards are used instead of computers to securely calculate values. They can be
used when computers cannot be used or users cannot trust software in the com-
puters. They can also be used to teach the foundation of cryptography [4, 26].
den Boer [2] first showed a five-card protocol to securely calculate logical AND
of two inputs. Since then, many protocols have been proposed to calculate log-
ical AND, logical XOR, and copy primitives to compute general Boolean func-
tions [1, 5, 8, 13, 15, 18, 31, 32, 36, 37, 39, 42, 45, 55, 58] and specific computations
such as a class of Boolean functions [22, 27, 29, 38, 46, 51], computation using
garbled circuits [52], simulation of universal computation such as Turing ma-
chines [7,16], millionaires’ problem [23,34,40], voting [28,35,59,60], random per-
mutation [9,11,12,33], grouping [10], ranking [56], lottery [53], proof of knowledge
of a puzzle solution [3,6,20,24,25,43,44,47–49], and so on. This paper considers
the calculation of Boolean functions under the semi-honest model.

The protocols are executed by two players, Alice and Bob. Though this paper
and many other papers assume semi-honest model, malicious actions or mistakes

2 Y. Manabe and H. Ono

might occur in real cases. Preventing or detecting such actions were considered
[17,21,42,57].

There are several types of protocols regards to the inputs and outputs of the
computations. The first type is committed inputs, where the inputs are given
as committed values. The players do not know the input values. The other type
is non-committed inputs, where players give their own private inputs to the
protocol. Protocols with committed inputs are desirable since they can be used
for non-committed inputs: each player can give his own private input value as a
committed value. Some protocols output their computation results as committed
values. The players do not know the output values. The other type of protocols
output the result as a non-committed value, that is, the final result is obtained by
opening some or all cards. Protocols with committed outputs are desirable since
the committed output result can be used as an input to another computation. If
further computation is unnecessary, the players just open the committed outputs
and obtain the result. Thus, this paper discusses protocols with committed inputs
and committed outputs.

This paper assumes the standard two-type card model, in which one bit data
is represented by two cards. The detail is shown in Section 2.

Operations that a player executes where the other players cannot see are
called private operations. They are considered to be executed under the table,
in the back, and so on. They were first introduced by Nakai et al. to solve million-
aires’ problem [34]. Using private operations, committed-input and committed-
output logical AND, logical XOR, and copy protocols can be achieved with four
cards, that is, without additional cards other than the input (output) cards,
with finite steps, and without non-uniform shuffles [42]. The AND protocol
in [31] without private operations uses six cards. It is proved to be impossi-
ble to achieve finite-runtime AND with four cards by the model without private
operations [13, 15]. As for the number of cards used for copy protocols, six was
the minimum for finite-runtime copy [31] without private operations. It is proved
to be impossible to achieve a copy with four cards by the model without private
operations [13]. Thus private operations are effective in card-based protocols.

Another type of private operations, we call private input operations, were
introduced to calculate Boolean functions with non-committed inputs [19,54]. A
player uses the private input operations to input his own private values to the
protocol. The operations were used also in millionaires’ problem [40], voting [59],
and so on. Since this paper considers committed inputs, private input operations
are not used.

Though the private operations are powerful, it is shown that we can calcu-
late any n-input Boolean functions with four additional cards [42]. Thus the
research question is obtaining the class of Boolean functions that can be calcu-
lated without additional cards using the private operations. This paper shows
new card-based protocols using private operations to calculate (1) any three in-
put Boolean functions and (2) half adder and full adder, and (3) any n-input
symmetric Boolean functions. All of these protocols need no additional cards
other than the input cards. Thus these protocols are optimal regards to the

Card-based three-input protocols 3

number of cards. In [37, 38] two additional cards were necessary to calculate
these functions without private operations.

In Section 2 basic definitions are shown. Section 3 shows the private opera-
tions introduced by [42]. Section 4 shows the sub-protocols shown in [42] that are
used in this paper. Section 5 shows protocols to calculate three input Boolean
functions. Section 6 shows protocols to calculate half and full adder, and n-input
symmetric Boolean functions. Section 7 concludes the paper.

2 Preliminaries

This section gives the notations and basic definitions of card-based protocols.
This paper is based on the standard two-type card model. In the two-type card
model, there are two kinds of marks, ♣ and ♡ . Cards of the same marks

cannot be distinguished. In addition, the back of both types of cards is ? . It is

impossible to determine the mark in the back of a given card with ? .

One bit of data is represented by two cards as follows: ♣ ♡ = 0 and ♡ ♣ =
1.

One pair of cards that represents one bit x ∈ {0, 1}, whose face is down, is

called a commitment of x, and denoted as commit(x). It is written as ? ?︸ ︷︷ ︸
x

.

Note that when these two cards are swapped, commit(x) can be obtained. Thus,
NOT can be calculated without private operations.

A linearly ordered cards is called a sequence of cards. A sequence of cards S
whose length is n is denoted as S = s1, s2, . . . , sn, where si is i-th card of the
sequence. S = ?︸︷︷︸

s1

?︸︷︷︸
s2

?︸︷︷︸
s3

. . . , ?︸︷︷︸
sn

. A sequence whose length is even is called

an even sequence. S1||S2 is a concatenation of sequence S1 and S2.
All protocols are executed by multiple players. Throughout this paper, all

players are semi-honest, that is, they obey the rule of the protocols, but try to
obtain information x of commit(x). There is no collusion among players execut-
ing one protocol together. No player wants any other player to obtain information
of committed values.

The space complexity of card-based protocols is evaluated by the number of
cards. The time complexity of card-based protocols using private operations is
evaluated by the number of rounds [41]. The first round is (possibly parallel)
local executions by each player using the cards initially given to each player,
from the initial state to the instant when no further local execution is possible
without receiving cards from another player. The local executions in each round
include sending cards to some other players but do not include receiving cards.
The i(> 1)-th round begins with receiving all the cards sent during (i − 1)-th
round. Each player executes local executions using the received cards and the
cards left to the player at the end of the (i− 1)-th round. Each player executes
until no further local execution is possible without receiving cards from another
player. The number of rounds of a protocol is the maximum number of rounds

4 Y. Manabe and H. Ono

necessary to output the result among all possible inputs and all possible choices
of the random values.

3 Private operations

We show three private operations introduced in [42], private random bisection
cuts, private reverse cuts, and private reveals.

Primitive 1 (Private random bisection cut)
A private random bisection cut is the following operation on an even sequence

S0 = s1, s2, . . . , s2m. A player selects a random bit b ∈ {0, 1} and outputs

S1 =

{
S0 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1

The player executes this operation in a place where the other players cannot see.
The player does not disclose the bit b. □

Note that the protocols in this paper uses the operation only when m = 1 and
S0 = commit(x). Given S0 = ? ?︸ ︷︷ ︸

x

, The player’s output S1 = ? ?︸ ︷︷ ︸
x⊕b

, which is

? ?︸ ︷︷ ︸
x

or ? ?︸ ︷︷ ︸
x

.

Note that a private random bisection cut is the same as the random bisection
cut [31], but the operation is executed in a hidden place.

Primitive 2 (Private reverse cut, Private reverse selection)
A private reverse cut is the following operation on an even sequence S2 =

s1, s2, . . . , s2m and a bit b ∈ {0, 1}. A player outputs

S3 =

{
S2 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1

The player executes this operation in a place where the other players cannot see.
The player does not disclose b.

Note that in many protocols below, selecting left m cards is executed after
a private reverse cut. The sequence of these two operations is called a private
reverse selection. A private reverse selection is the following procedure on an
even sequence S2 = s1, s2, . . . , s2m and a bit b ∈ {0, 1}. A player outputs

S3 =

{
s1, s2, . . . sm if b = 0
sm+1, sm+2, . . . , s2m if b = 1 □

The difference between the private random bisection cut and the private reverse
cut is that b is not newly selected by the player.

Next, we define a private reveal.

Card-based three-input protocols 5

Primitive 3 (Private reveal) A player privately opens a given committed bit.
The player does not disclose the obtained value. □

Using the obtained value, the player privately sets a sequence of cards.
Consider the case when Alice executes a private random bisection cut on

commit(x) and Bob executes a private reveal on the bit. Since the committed
bit is randomized by the bit b selected by Alice, the opened bit is x ⊕ b. Bob
obtains no information about x if b is randomly selected and not disclosed by
Alice. Bob must not disclose the obtained value. If Bob discloses the obtained
value to Alice, Alice knows the value of the committed bit.

4 Protocols for XOR, AND, Copy, and other Boolean
functions

This section shows the sub-protocols presented in [41, 42] used in this paper’s
protocols. The correctness proof is shown in [41,42].

4.1 XOR protocol

Protocol 1 (XOR protocol) [41]
Input: commit(x) and commit(y).
Output: commit(x⊕ y).

1. Alice executes a private random bisection cut on input S0 = commit(x)
and S′

0 = commit(y) using the same random bit b. Let the output be S1 =
commit(x′) and S′

1 = commit(y′), respectively. Note that x′ = x ⊕ b and
y′ = y ⊕ b. Alice sends S1 and S′

1 to Bob.
2. Bob executes a private reveal on S1 = commit(x′). Bob executes a private

reverse cut on S′
1 using x′. Let the result be S2. Bob outputs S2. □

The protocol is two rounds. Note that the protocol uses no cards other than the
input cards.

4.2 AND protocol

Protocol 2 (AND protocol) [42]
Input: commit(x) and commit(y).
Output: commit(x ∧ y).

1. Alice executes a private random bisection cut on commit(x). Let the output
be commit(x′). Alice hands commit(x′) and commit(y) to Bob.

2. Bob executes a private reveal on commit(x′). Bob sets

S2 =

{
commit(y)||commit(0) if x′ = 1
commit(0)||commit(y) if x′ = 0

and hands S2 to Alice.

6 Y. Manabe and H. Ono

3. Alice executes a private reverse selection on S2 using the bit b generated
in the private random bisection cut. Let the obtained sequence be S3. Alice
outputs S3. □

In Step 2, the cards of commit(x′) are re-used to set commit(0). Thus the
protocol uses no cards other than the input cards. The protocol is three rounds.

4.3 COPY protocol

Protocol 3 (COPY protocol) [42]
Input: commit(x).
Output: m copies of commit(x).

1. Alice executes a private random bisection cut on commit(x). Let the output
be commit(x′). Alice hands commit(x′) to Bob.

2. Bob executes a private reveal on commit(x′). Bob makes m copies of x′. Bob
faces down these cards. Bob hands these cards, m copies of commit(x′), to
Alice.

3. Alice executes a private reverse cut to each copy of commit(x′) using the
bit b Alice generated in the private random bisection cut. Alice outputs these
copies. □

The protocol is three rounds. Note that the protocol does not need additional
cards other than 2m output cards.

4.4 Any two-input Boolean functions

Though the previous subsection showed AND and XOR, any two-input Boolean
functions can also be calculated by a similar protocol by three rounds and four
cards [42]. Any two-input Boolean function f(x, y) can be written as

f(x, y) =

{
f(1, y) if x = 1
f(0, y) if x = 0

where f(1, y) and f(0, y) are y, y, 0, or 1.
First consider the case when both of f(1, y) and f(0, y) are 0 or 1. (f(1, y),

f(0, y)) = (0, 0) (or (1, 1)) means that f(x, y) = 0 (or f(x, y) = 1), thus we do
not need to calculate f . (f(1, y), f(0, y)) = (1, 0) (or (0, 1)) means the f(x, y) = x
(or f(x, y) = x), thus we do not need to calculate f by a two player protocol.

Next consider the case when both of (f(1, y), f(0, y)) are y (or y). This case
is when f(x, y) = y (or f(x, y) = y), thus we do not need to calculate f by a
two player protocol.

Next case is when (f(1, y), f(0, y)) is (y, y) or (y, y). (f(1, y), f(0, y)) = (y, y)
is x ⊕ y (XOR). (f(1, y), f(0, y)) = (y, y) is x⊕ y, thus this function can be
calculated as follows: use XOR protocol and NOT is taken to the output. Thus,
this function can also be calculated.

Card-based three-input protocols 7

The remaining case is when one of (f(1, y), f(0, y)) is y or y and the other is
0 or 1. We can use the AND protocol and Bob sets

S2 =

{
commit(f(1, y))||commit(f(0, y)) if x′ = 1
commit(f(0, y))||commit(f(1, y)) if x′ = 0

using one commit(y) in the second step of the protocol.

Thus, any two-input Boolean function can be calculated without additional
cards.

4.5 Parallel computations

The above two-input Boolean function calculations can be executed in paral-
lel [42]. Consider the case when commit(x) and commit(yi)(i = 1, 2, . . . , n)
are given and commit(fi(x, yi))(i = 1, 2, . . . , n) need to be calculated. They
can be executed in parallel. Alice executes a private random bisection cut on
commit(x) and hands commit(x′) and commit(yi)(i = 1, 2, . . . , n) to Bob. Bob
sets Si

2(i = 1, 2, . . . , n) using x′ and commit(yi) according to fi. Alice executes
a private reverse cut or a private reverse selection on each of Si

2(i = 1, 2, . . . , n)
using the bit b selected at the private random bisection cut. By the procedure,
commit(fi(x, yi)) (i = 1, 2, . . . , n) are simultaneously obtained.

Note that if fi is calculated by an AND-type protocol, two new cards are
necessary and the two cards of commit(x′) can be used. Thus, when at most
one fi is executed by an AND-type protocol and all the others are executed by
XOR-type protocols, they can be executed in parallel without additional cards.

4.6 Preserving an input

In the above protocols to calculate Boolean functions, the input commitment
values are lost. If the input is not lost, the input commitment can be used as
an input to another calculation. Thus input preserving calculation is discussed
[37,42].

In the XOR protocol, commit(x′) is no more necessary after Bob sets S2.
Thus, Bob can send back commit(x′) to Alice. Then, Alice can recover commit(x)
using the private reverse cut. In this modified protocol, the output is commit(x⊕
y) and commit(x) without additional cards.

An input preserving calculation without increasing the number of cards can
be executed for AND type protocols just like [37]. When we execute the AND
type protocol, two cards are selected by Alice at the final step. The remaining
two cards are used to recover an input value. The unused two cards’ value is{

f(0, y) if x = 1
f(1, y) if x = 0

thus the output is commit((x ∧ f(1, y))⊕ (x ∧ f(0, y))).

8 Y. Manabe and H. Ono

Note that the function f satisfies that one of (f(0, y), f(1, y)) is y or y and
the other is 0 or 1. Otherwise, we do not need to calculate f by the AND type
two player protocol.

The output f(x, y) can be represented as (x∧f(1, y))⊕ (x∧f(0, y)). Execute
the above input preserving XOR protocol for these two output values so that
the input f(x, y) is preserved. The output of XOR protocol is (x ∧ f(1, y)) ⊕
(x ∧ f(0, y)) ⊕ (x ∧ f(1, y)) ⊕ (x ∧ f(0, y)) = f(1, y) ⊕ f(0, y). Since one of
(f(0, y), f(1, y)) is y or y and the other is 0 or 1, the output is y or y (depending
on f). Thus, input y can be recovered without additional cards. Thus, preserving
an input can be realized by 4 cards, which is the minimum. In [37], two additional
cards are necessary.

4.7 n-input Boolean functions

Since any 2-input Boolean function, NOT, and COPY can be executed, any
n-input Boolean function can be calculated by the combination of the above
protocols.

Using the technique in [37] and above input preserving Boolean function
calculations, any n-input Boolean function can be calculated with 2n+ 4 cards
as follows [42].

Any Boolean function f(x1, x2, . . . , xn) can be represented as follows:
f(x1, x2, . . . , xn) = (x1 ∧ x2 ∧ · · · ∧ xn ∧ f(0, 0, . . . , 0))⊕ (x1 ∧ x2 ∧ · · · ∧ xn∧
f(1, 0, . . . , 0))⊕ (x1 ∧ x2 ∧ · · · ∧ xn ∧ f(0, 1, . . . , 0))⊕ · · · ⊕ (x1 ∧ x2 ∧ · · · ∧ xn ∧
f(1, 1, . . . , 1)).

Since the terms with f(i1, i2, . . . , in) = 0 can be removed, this function f can

be written as f =
⊕k

i=1 v
i
1 ∧ vi2 ∧ · · · ∧ vin, where vij = xj or xj . Let us write

Ti = vi1 ∧ vi2 ∧ · · · ∧ vin. The number of terms k(< 2n) depends on f .

Protocol 4 (Protocol for any Boolean function) [42]
Input: commit(xi)(i = 1, 2, . . . , n).
Output: commit(f(x1, x2, . . . , xn)).
The additional four cards (two pairs of cards) p1 and p2 are used as follows.
p1: the intermediate value to calculate f is stored.
p2: the intermediate value to calculate Ti is stored.

Execute the following steps for i = 1, . . . , k.

1. Copy vi1 from the input x1 to p2.
2. For j = 2, . . . , n, execute the following procedure: Apply the input-preserving

AND protocol to p2 and input xj (If AND is taken between xj, first execute
NOT to the input, then apply the AND protocol, and return the input to xj

again.)
At the end of this step, Ti is obtained at p2.

3. If i = 1, move p2 to p1. If i > 1, apply the XOR protocol between p1 and p2.
The result is stored to p1.

At the end of the protocol, f(x1, x2, . . . xn) is obtained at p1. □

Card-based three-input protocols 9

5 Protocols for three-input Boolean functions

This section shows protocols for three-input Boolean functions. [38] has shown
that any three-input Boolean functions can be calculated with at most eight
cards. We show that these functions can be calculated with six cards using
private operations, that is, no additional cards are necessary other than the
input cards.

The arguments to show the protocols with six cards are just the same as the
one in [38]. The main difference is that AND-type functions can be calculated
by four cards using the private operations.

There are 22
3

= 256 different functions with three inputs. However, some of
these functions are equivalent by replacing variables and taking negations. NPN-
classification [50] was considered to reduce the number of different functions
considering the equivalence class of functions. The rules of NPN-classification
are as follows.

1. Negation of input variables (Example: xi ↔ xi).
2. Permutations of input variables (Example: xi ↔ xj).
3. Negation of the output (f ↔ f).

For example, consider f1(x1, x2, x3) = (x1∧x2)∨x3. Several functions in the
same equivalence class that includes f1 are: f2 = (x1∧x2)∨x3, f3 = (x1∧x3)∨x2,
f4 = f3, and so on.

Input negation and output negation can be executed by card-based protocols
without increasing the number of cards. They are executed by just swapping
input cards or output cards. Permutations of input variables can also be executed
without increasing the number of cards. They can be achieved by just changing
the positions of the input values. Therefore, all functions in the same NPN
equivalence class can be calculated with the same number of cards.

Theorem 1. Any three input Boolean functions can be securely calculated with-
out additional cards other than the input cards when we use private operations.

Proof. When the number of inputs is 3, there are the following 14 NPN-
representative functions [50]. (Note that x, y, and z are used to represent input
variables.)

1. NPN1 = 1
2. NPN2 = x
3. NPN3 = x ∨ y
4. NPN4 = x⊕ y
5. NPN5 = x ∧ y ∧ z
6. NPN6 = (x ∧ y ∧ z) ∨ (x ∧ y ∧ z)
7. NPN7 = (x ∧ y) ∨ (x ∧ z)
8. NPN8 = (x ∧ y) ∨ (x ∧ y ∧ z)
9. NPN9 = (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z)
10. NPN10 = (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) = x⊕ y ⊕ z.
11. NPN11 = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)

10 Y. Manabe and H. Ono

12. NPN12 = (x ∧ z) ∨ (y ∧ z)
13. NPN13 = (x ∧ y ∧ z) ∨ (x ∧ y ∧ z)
14. NPN14 = (x ∧ y) ∨ (x ∧ z) ∨ (x ∧ y ∧ z)

Among these 14 functions, NPN1 - NPN4 depend on less than three inputs.
Since any two-variable function can be calculated without additional cards, these
functions can be calculated with at most six cards.

We show a calculation protocol for each of the remaining functions.
For NPN5, x∧ y can be calculated without additional cards. Then x∧ y ∧ z

can be calculated without additional cards other than the input cards, x∧y and
z.

NPN7 can be represented as NPN7 = x∧ (y∨z), thus this function can also
be calculated without additional cards.

NPN10 can be calculated as (x⊕ y)⊕ z without additional cards.
NPN13 can be represented as NPN13 = x ∧ (y ⊕ z), thus this function can

also be calculated without additional cards.
NPN14 can be represented as NPN14 = x⊕ (y ∨ z), thus this function can

also be calculated without additional cards.
NPN6 can be represented as NPN6 = (x⊕ y) ∧ (x⊕ z). First, calculate

x⊕ y and x⊕ z in parallel, where a private random bisection cut is executed to
x. Then NOT is applied to each result. Next, calculate AND to these results.

NPN8 can be represented as NPN8 = (x⊕ y)∧ (y∨z). First, calculate x⊕y
and y∨z in parallel, where a private random bisection cut is executed to y. Then
NOT is applied to the first result. Next, calculate AND to these results.

NPN9 can be represented as NPN9 = (x⊕ y ⊕ z) ∧ (x ∨ z). First, calculate
x⊕ y with preserving input x. Next, calculate (x⊕ y)⊕ z and x ∨ z in parallel,
where a private random bisection cut is executed to z. Then NOT is applied to
the first result. Next, calculate AND to these results.

NPN12 can be calculated as follows. First, calculate x ∧ z with preserving
input z. Next, calculate y ∧ z. Then, calculate OR to these results.

NPN11 can be represented as

NPN11 =

{
z if x⊕ y = 1

x if x⊕ y = 0

This function can be calculated as follows. First, calculate x⊕ y with preserving
input x. Thus, x, z, and x⊕y are obtained. Then, modify the AND-type protocol
as follows.

1. Alice executes private random bisection cut on x⊕ y. The obtained value is
x⊕ y ⊕ b, where b is the random value.

2. Bob executes private reveal on x⊕ y ⊕ b. Bob sets

S2 =

{
commit(z)||commit(x) if x⊕ y ⊕ b = 1
commit(x)||commit(z) if x⊕ y ⊕ b = 0

3. Alice executes a private reverse selection on S2 using the bit b generated in
the private random bisection cut. Let the obtained sequence be S3. Alice
outputs S3.

Card-based three-input protocols 11

The output is commit(z) if (x ⊕ y ⊕ b = 1 and b = 0) or (x ⊕ y ⊕ b = 0 and
b = 1). The case equals to x⊕ y = 1. The output is commit(x) if (x⊕ y ⊕ b = 1
and b = 1) or (x⊕ y ⊕ b = 0 and b = 0). The case equals to x⊕ y = 0. Thus the
result is correct. Therefore, NPN11 can also be calculated without additional
cards. ⊓⊔

6 Half adder and full adder, and symmetric functions

This section first shows a realization of half adder and full adder.
The input and output of the secure half adder are as follows:

– Input: commit(x) and commit(y)
– Output: S = commit(x⊕ y) and C = commit(x ∧ y)

The half adder is realized by the following steps, whose idea is just the same
as the one in [37].

1. Execute XOR protocol with preserving input x. Thus x and x ⊕ y are ob-
tained.

2. Obtain x⊕ y by swapping the two cards of x⊕ y.
3. Execute AND protocol to x and x⊕ y with preserving input x⊕ y. Thus

x⊕ y and x ∧ (x⊕ y) = x ∧ y are obtained.
4. Obtain x⊕ y by swapping the two cards of x⊕ y.

No additional cards are necessary other than the four input cards. The protocol
in [37] needs two additional cards, thus the number of cards is reduced by our
protocol.

The input and output of the secure full adder are as follows:

– Input: commit(x), commit(y), and commit(CI)
– Output: S = commit(x⊕y⊕CI), CO = commit((x∧y)∨(x∧CI)∨(y∧CI))

Since the half adder can be calculated without additional cards, the full adder
can also be calculated without additional cards by the following protocol.

1. Add x and y using the half adder. The outputs are x⊕ y and x ∧ y.
2. Add CI to the result x⊕ y using the half adder. The outputs are x⊕ y⊕CI

and CI ∧ (x⊕ y).
3. Execute OR protocol to CI ∧(x⊕y) and x∧y. Since (CI ∧(x⊕y))∨(x∧y) =

(x ∧ y) ∨ (x ∧ CI) ∨ (y ∧ CI), the carry CO is obtained.

Using the half adder and full adder, calculation of symmetric function can be
done by the technique in [37]. n-input symmetric function f(x1, x2, . . . , xn) de-
pends only on the number of variables such that xi = 1. Let Y =

∑n
i=1 xi. Then

the function f can be written as f(x1, x2, . . . , xn) = g(Y). When Y is given by
a binary representation, Y = ykyk−1....y1, g can be written as g(y1, y2, . . . , yk),
where k = ⌊log n⌋+ 1.

12 Y. Manabe and H. Ono

Given input x1, x2, . . . , xn, first obtain the sum of these inputs using the half
adder and full adder protocols without additional cards. The sum is obtained as
y1, y2, . . . , yk. Then, calculate g using yis. When n ≤ 7, k ≤ 3, thus any three
input Boolean function g can be calculated without additional cards. When
n ≥ 8, Y is represented with k = ⌊log n⌋ + 1 bits. Since n − k ≥ 4, at least
8 input cards are unused after yis are calculated. Any Boolean function can be
calculated with four additional cards, thus g can be calculated without additional
cards other than the input cards.

Theorem 2. Any symmetric Boolean function can be securely calculated without
additional cards other than the input cards when we use private operations.

7 Conclusion

This paper showed card-based cryptographic protocols to calculate three input
Boolean functions, half adder, full adder, and symmetric functions using private
operations. One of the important open problems is obtaining another class of
Boolean functions that can be calculated without additional cards using private
operations.

Acknowledgements The authors would like to thank anonymous referees for
their careful reading of our manuscript and their many insightful comments and
suggestions.

References

1. Abe, Y., Hayashi, Y.i., Mizuki, T., Sone, H.: Five-card and computations in com-
mitted format using only uniform cyclic shuffles. New Generation Computing
39(1), 97–114 (2021)

2. den Boer, B.: More efficient match-making and satisfiability the five card trick. In:
Proc. of EUROCRYPT ’89, LNCS Vol. 434. pp. 208–217 (1990)

3. Bultel, X., Dreier, J., Dumas, J.G., Lafourcade, P., Miyahara, D., Mizuki, T.,
Nagao, A., Sasaki, T., Shinagawa, K., Sone, H.: Physical zero-knowledge proof for
makaro. In: Proc. of 20th International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS 2018), LNCS Vol.11201. pp. 111–125 (2018)

4. Cheung, E., Hawthorne, C., Lee, P.: Cs 758 project: Secure computation with play-
ing cards (2013), http://cdchawthorne.com/writings/secure_playing_cards.

pdf

5. Crépeau, C., Kilian, J.: Discreet solitary games. In: Proc. of 13th Crypto, LNCS
Vol. 773. pp. 319–330 (1993)

6. Dumas, J.G., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: Inter-
active physical zero-knowledge proof for norinori. In: Proc. of 25th International
Computing and Combinatorics Conference(COCOON 2019), LNCS Vol. 11653. pp.
166–177. Springer (2019)

7. Dvořák, P., Kouckỳ, M.: Barrington plays cards: The complexity of card-based
protocols. arXiv preprint arXiv:2010.08445 (2020)

Card-based three-input protocols 13

8. Francis, D., Aljunid, S.R., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Necessary
and sufficient numbers of cards for securely computing two-bit output functions.
In: Proc. of Second International Conference on Cryptology and Malicious Secu-
rity(Mycrypt 2016), LNCS Vol. 10311. pp. 193–211 (2017)

9. Hashimoto, Y., Nuida, K., Shinagawa, K., Inamura, M., Hanaoka, G.: Toward
finite-runtime card-based protocol for generating hidden random permutation
without fixed points. IEICE Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences 101-A(9), 1503–1511 (2018)

10. Hashimoto, Y., Shinagawa, K., Nuida, K., Inamura, M., Hanaoka, G.: Secure group-
ing protocol using a deck of cards. IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences 101(9), 1512–1524 (2018)

11. Ibaraki, T., Manabe, Y.: A more efficient card-based protocol for generating a ran-
dom permutation without fixed points. In: Proc. of 3rd Int. Conf. on Mathematics
and Computers in Sciences and in Industry (MCSI 2016). pp. 252–257 (2016)

12. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a
hidden random permutation without fixed points. In: Proc. of 14th International
Conference on Unconventional Computation and Natural Computation(UCNC
2015), LNCS Vol. 9252. pp. 215–226 (2015)

13. Kastner, J., Koch, A., Walzer, S., Miyahara, D., Hayashi, Y., Mizuki, T., Sone,
H.: The minimum number of cards in practical card-based protocols. In: Proc. of
Asiacrypt 2017, Part III, LNCS Vol. 10626. pp. 126–155 (2017)

14. Koch, A.: The landscape of optimal card-based protocols. IACR Cryptology ePrint
Archive, Report 2018/951 (2018)

15. Koch, A., Schrempp, M., Kirsten, M.: Card-based cryptography meets formal ver-
ification. New Generation Computing 39(1), 115–158 (2021)

16. Koch, A., Walzer, S.: Private function evaluation with cards. Cryptology ePrint
Archive, Report 2018/1113 (2018), https://eprint.iacr.org/2018/1113

17. Koch, A., Walzer, S.: Foundations for actively secure card-based cryptography.
In: Proc. of 10th International Conference on Fun with Algorithms (FUN 2020).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

18. Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a min-
imal number of cards. In: Proc. of Asiacrypt 2015, LNCS Vol. 9452. pp. 783–807
(2015)

19. Kurosawa, K., Shinozaki, T.: Compact card protocol. In: Proc. of 2017 Symposium
on Cryptography and Information Security(SCIS 2017). pp. 1A2–6 (2017), (In
Japanese)

20. Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: A physical zkp for
slitherlink: How to perform physical topology-preserving computation. In: Proc.
of 15th International Conference on Information Security Practice and Experi-
ence(ISPEC 2019), LNCS Vol. 11879. pp. 135–151. Springer (2019)

21. Manabe, Y., Ono, H.: Secure card-based cryptographic protocols using private
operations against malicious players. In: Proc. of 13th International Conference on
Information Technology and Communications Security(SecITC 2020), LNCS Vol.
12596. pp. 55–70. Springer (2020)

22. Marcedone, A., Wen, Z., Shi, E.: Secure dating with four or fewer cards. IACR
Cryptology ePrint Archive, Report 2015/1031 (2015)

23. Miyahara, D., Hayashi, Y.i., Mizuki, T., Sone, H.: Practical card-based implemen-
tations of yao’s millionaire protocol. Theoretical Computer Science 803, 207–221
(2020)

14 Y. Manabe and H. Ono

24. Miyahara, D., Robert, L., Lafourcade, P., Takeshige, S., Mizuki, T., Shinagawa, K.,
Nagao, A., Sone, H.: Card-based zkp protocols for takuzu and juosan. In: Proc.
of 10th International Conference on Fun with Algorithms (FUN 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik (2020)

25. Miyahara, D., Sasaki, T., Mizuki, T., Sone, H.: Card-based physical zero-knowledge
proof for kakuro. IEICE Transactions on Fundamentals of Electronics, Communi-
cations and Computer Sciences 102(9), 1072–1078 (2019)

26. Mizuki, T.: Applications of card-based cryptography to education. In: IEICE Te-
chinical Report ISEC2016-53. pp. 13–17 (2016), (In Japanese)

27. Mizuki, T.: Card-based protocols for securely computing the conjunction of mul-
tiple variables. Theoretical Computer Science 622, 34–44 (2016)

28. Mizuki, T., Asiedu, I.K., Sone, H.: Voting with a logarithmic number of cards. In:
Proc. of 12th International Conference on Unconventional Computing and Natural
Computation (UCNC 2013), LNCS Vol. 7956. pp. 162–173 (2013)

29. Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four
cards. In: Proc. of Asiacrypt 2012, LNCS Vol.7658. pp. 598–606 (2012)

30. Mizuki, T., Shizuya, H.: Computational model of card-based cryptographic pro-
tocols and its applications. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences 100(1), 3–11 (2017)

31. Mizuki, T., Sone, H.: Six-card secure and and four-card secure xor. In: Proc. of 3rd
International Workshop on Frontiers in Algorithms(FAW 2009), LNCS Vol. 5598.
pp. 358–369 (2009)

32. Mizuki, T., Uchiike, F., Sone, H.: Securely computing xor with 10 cards. Aus-
tralasian Journal of Combinatorics 36, 279–293 (2006)

33. Murata, S., Miyahara, D., Mizuki, T., Sone, H.: Efficient generation of a card-
based uniformly distributed random derangement. In: Proc. of 15th International
Workshop on Algorithms and Computation (WALCOM 2021), LNCS Vol. 12635.
pp. 78–89. Springer International Publishing, Cham (2021)

34. Nakai, T., Misawa, Y., Tokushige, Y., Iwamoto, M., Ohta, K.: How to solve million-
aires’ problem with two kinds of cards. New Generation Computing 39(1), 73–96
(2021)

35. Nakai, T., Shirouchi, S., Iwamoto, M., Ohta, K.: Four cards are sufficient for a
card-based three-input voting protocol utilizing private sends. In: Proc. of 10th
International Conference on Information Theoretic Security (ICITS 2017), LNCS
Vol. 10681. pp. 153–165 (2017)

36. Niemi, V., Renvall, A.: Secure multiparty computations without computers. The-
oretical Computer Science 191(1), 173–183 (1998)

37. Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols for any
boolean function. In: Proc. of 15th International Conference on Theory and Ap-
plications of Models of Computation(TAMC 2015), LNCS Vol. 9076. pp. 110–121
(2015)

38. Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Securely computing three-input
functions with eight cards. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences 98(6), 1145–1152 (2015)

39. Nishimura, A., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols
using unequal division shuffles. Soft Computing 22(2), 361–371 (2018)

40. Ono, H., Manabe, Y.: Efficient card-based cryptographic protocols for the mil-
lionaires’ problem using private input operations. In: Proc. of 13th Asia Joint
Conference on Information Security(AsiaJCIS 2018). pp. 23–28 (2018)

Card-based three-input protocols 15

41. Ono, H., Manabe, Y.: Card-based cryptographic protocols with the minimum num-
ber of rounds using private operations. In: Proc. of 14th International Workshop
on Data Privacy Management (DPM 2019) LNCS Vol. 11737. pp. 156–173 (2019)

42. Ono, H., Manabe, Y.: Card-based cryptographic logical computations using private
operations. New Generation Computing 39(1), 19–40 (2021)

43. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Physical zero-knowledge
proof for suguru puzzle. In: Proc. of 22th International Symposium on Stabilizing,
Safety, and Security of Distributed Systems(SSS 2020), LNCS Vol. 12514. pp. 235–
247. Springer (2020)

44. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Interactive physical zkp for
connectivity:applications to nurikabe and hitori. In: Proc. of 17th International
Conference on Computability in Europe(CiE 2021), LNCS (2021)

45. Ruangwises, S., Itoh, T.: And protocols using only uniform shuffles. In: Proc. of
14th International Computer Science Symposium in Russia(CSR 2019), LNCS Vol.
11532. pp. 349–358 (2019)

46. Ruangwises, S., Itoh, T.: Securely computing the n-variable equality function with
2n cards. In: Proc. of 16th International Conference on Theory and Applications
of Models of Computation(TAMC 2020), LNCS Vol. 12337. pp. 25–36. Springer
(2020)

47. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for numberlink puzzle and
k vertex-disjoint paths problem. New Generation Computing 39(1), 3–17 (2021)

48. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for ripple effect. In: Proc. of
15th International Workshop on Algorithms and Computation (WALCOM 2021),
LNCS Vol. 12635. pp. 296–307. Springer International Publishing, Cham (2021)

49. Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge
proof for sudoku. Theoretical Computer Science 839, 135–142 (2020)

50. Sasao, T., Butler, J.T.: Progress in Applications of Boolean Functions. Morgan
and Claypool Publishers (2010)

51. Shinagawa, K., Mizuki, T.: The six-card trick:secure computation of three-input
equality. In: Proc. of 21st International Conference on Information Security and
Cryptology (ICISC 2018), LNCS Vol. 11396. pp. 123–131 (2018)

52. Shinagawa, K., Nuida, K.: A single shuffle is enough for secure card-based compu-
tation of any boolean circuit. Discrete Applied Mathematics 289, 248–261 (2021)

53. Shinoda, Y., Miyahara, D., Shinagawa, K., Mizuki, T., Sone, H.: Card-based covert
lottery. In: Proc. of 13th International Conference on Information Technology and
Communications Security(SecITC 2020), LNCS Vol. 12596. pp. 257–270. Springer
(2020)

54. Shirouchi, S., Nakai, T., Iwamoto, M., Ohta, K.: Efficient card-based cryptographic
protocols for logic gates utilizing private permutations. In: Proc. of 2017 Sympo-
sium on Cryptography and Information Security(SCIS 2017). pp. 1A2–2 (2017),
(In Japanese)

55. Stiglic, A.: Computations with a deck of cards. Theoretical Computer Science
259(1), 671–678 (2001)

56. Takashima, K., Abe, Y., Sasaki, T., Miyahara, D., Shinagawa, K., Mizuki, T., Sone,
H.: Card-based protocols for secure ranking computations. Theoretical Computer
Science 845, 122–135 (2020)

57. Takashima, K., Miyahara, D., Mizuki, T., Sone, H.: Actively revealing card attack
on card-based protocols. Natural Computing pp. 1–14 (2021)

58. Toyoda, K., Miyahara, D., Mizuki, T., Sone, H.: Six-card finite-runtime xor proto-
col with only random cut. In: Proc. of the 7th ACM Workshop on ASIA Public-Key
Cryptography. pp. 2–8 (2020)

16 Y. Manabe and H. Ono

59. Watanabe, Y., Kuroki, Y., Suzuki, S., Koga, Y., Iwamoto, M., Ohta, K.: Card-
based majority voting protocols with three inputs using three cards. In: Proc.
of 2018 International Symposium on Information Theory and Its Applications
(ISITA). pp. 218–222. IEEE (2018)

60. Yasunaga, K.: Practical card-based protocol for three-input majority. IEICE Trans-
actions on Fundamentals of Electronics, Communications and Computer Sciences
E103.A(11), 1296–1298 (2020). https://doi.org/10.1587/transfun.2020EAL2025

