
A More Efficient Card-Based Protocol for
Generating a Random Permutation

Without Fixed Points

Takuya Ibaraki and Yoshifumi Manabe
Faculty of Informatics

Kogakuin University

1-24-2, Nishi-Shinjuku, Shinjuku, Tokyo, 163-8677 Japan

Email: em16001@ns.kogakuin.ac.jp manabe@cc.kogakuin.ac.jp

Abstract—Many works have been done for secure computation
of functions. Most of them assume computation on computers.
The protocols are difficult for the people who has no knowledge
on cryptography. Therefore, secure computation using cards was
considered. Since nothing other than the cards are used, the
protocols are easy to understand for the people who has no
knowledge on cryptography. This paper presents a card-based
protocol that generates a random hidden permutation. This
problem is applicable to a case when players exchange gifts. The
protocol must not output a permutation with a fixed point, which
means that every player does not receive the gift he/she prepared.
Ishikawa et. al proposed a protocol with two-color cards using
random shuffles and a proof of having no fixed points. However,
the success probability of the protocol is not so high. Therefore,
more efficient random permutation protocol is required. In this
paper, we use cyclic shuffles in addition to the random shuffles
to lower the possibility of fixed points. We show the success
probability of obtaining a permutation without fixed points by
our protocol is better than the one by the existing protocol.

I. INTRODUCTION

Many works have been done for secure computation of

functions. Most of them assume computation on computers.

In contrast, cryptographic protocols using physical cards

are considered [1,2,3,4,5,6,7,8,9]. The cards considered to use

are two-color cards [1,3,4,5,8], four-color cards [2], and the

special cards [6,7]. In this paper, we use two-color cards.

Since nothing other than the cards are used, the protocols

are easy to understand for the people who has no knowledge

on cryptography. There is a feature that all participants can

confirm the correctness of the protocol.

Secure computing with cards begins with den Boer’s Five-

Card Trick in 1989[5]. The protocol uses five two-color cards

and executes secret computation of AND of two bits. Then,

basic operations such as AND, OR, XOR, and COPY have

been devised [3,5]. Various application protocols were also

proposed, such as secure voting protocol [7] and secure three-

input majority computation protocol [8]. This paper considers

protocols that generate a random permutation without a fixed

point [1]. The number of cards used by the protocol in [1]

is 2n�log n� + 6, where n is the number of players. In the

protocol, a random permutation is generated and then the

existence of a fixed point is checked. If a fixed point is found, a

random permutation is generated again. Thus the complexity

of the protocol depends on the success probability of each

random permutation generation. However, the probability is

not evaluated in the paper. We use cyclic shuffles in addition

to the random shuffles to lower the possibility of fixed points.

Our protocol uses 4n�log n�+ 6 cards.

In Section 2, the encoding of bits by cards used in this

paper is stated. Then the fundamental protocols used in our

protocol are stated. In Section 3, an existing protocol for

random permutation [1] is stated. Section 4 describes our

protocol. In Section 5, we show the success probabilities and

the amount of computation of the protocols. Finally, we mark

the future challenges and summarize in Section 6.

II. CARD-BASED PROTOCOLS

A. Semi-Honest Model

Throughout this paper, we assume that the players are

semi-honest. All players take actions in accordance with the

protocol, but try to obtain the other players’ secret data. In

the secure computing protocols with cards, operations such as

shuffling are carried out while the other players are watching.

Therefore, this assumption is a natural one.

B. Encoding Rule

We use and cards. Cards of the same marks cannot

be distinguished. In addition, the back of the both types of

cards is . It is impossible to determine the mark in the

back of a given card with .

We commonly use the bit encoding such that = 0

and = 1. We call this encoded bit commitment bit.

For a given bit encoding, NOT of the bit can be obtained

by replacing the left and right of the cards. We use a notation

when a = , ā = .

C. Random Bisection Cut

Random bisection cut is a shuffling method for obtaining

an efficient protocol [3]. Random bisection cut can be carried

out to any even number of cards. We show a case of six cards.

2016 Third International Conference on Mathematics and Computers in Sciences and in Industry

978-1-5090-0973-2/16 $31.00 © 2016 IEEE

DOI 10.1109/MCSI.2016.23

253

2016 Third International Conference on Mathematics and Computers in Sciences and in Industry

978-1-5090-0973-2/16 $31.00 © 2016 IEEE

DOI 10.1109/MCSI.2016.23

252

1. Arrange the six cards as follows:

2. Divide in half in the middle:

3. Shuffle the left and right of cards:

4. Either output is obtained uniformly randomly:

D. Pile-Scramble Shuffle

Pile-scramble shuffle is a random permutation to piles of

the cards. The order of cards in each pile must be unchanged

though the shuffle. This shuffle is executed by all players.

If only one player executes the shuffle, the player may be

possible to know the result. The pile-scramble shuffle can be

easily implemented by people using rubber bands, clips, or

something like that.

E. AND Protocol

Given a pair of commitment bits a, b ∈ {
0, 1

}
, the known

AND protocol [3] generates a comitment bit of a and b, as

follows:

1. Arrange the commitment bits a, b and a commitment bit

of 0 as follows:

2. Rearrange the order as follows:

3. Execute the random bisection cut.

4. Rearrange the order as follows:

5. Reveal the two cards from the left. We get the result as

follows according to the open cards.

Thus, we obtain a commitment of a ∧ b in both cases. It is

proved that no information about a or b can be obtained by

the open cards.

F. XOR Protocol
Given a pair of commitment bits a, b ∈ {

0, 1
}

, the known

XOR protocol [3] generates a commitment bit of a ⊕ b, as

follows:
1. Arrange the commitment bits a, b as follows:

2. Swap the second and the third cards.
3. Execute the random bisection cut.
4. Swap the second and the third cards.
5. Reveal the left two cards. We get the result as follows

according to the open cards.

Thus, we obtain a commitment of a⊕ b in both cases. It is

proved that no information about a or b can be obtained by

the open cards.

G. Copy Protocol
Given a commitment of a bit a together with four additional

cards, the known copy protocol [3] generates two copied

commitments of a, as follows:

254253

1. Arrange the commitment bit a and commitment bits of

0 as follows:

2. Rearrange the order as follows:

3. Execute the random bisection cut.

4. Rearrange the order as follows:

5. Reveal the two cards from the left. We get the result as

follows according to the open cards.

Thus, we obtain two copies of the commitment bit a. In the

case of a, it can be easily converted into a by replacing the

right and left of the cards. It is proved that no information

about a can be obtained by the open cards.

H. One-input-preserving AND Protocol

Given a pair of commitment bits a, b ∈ {
0, 1

}
together

with four additional cards, the known One-input-preserving

AND protocol [1] generates an AND commitment and a

commitment of a, as follows:

1. Arrange the commitment bits a,b and commitment bits

of 0 as follows:

2. Rearrange the order as follows:

3. Execute the random bisection cut.

4. Rearrange the order as follows:

5. Reveal the two cards from the left. We get the result as

follows according to the open cards.

Thus, we obtain commitments of both a ∧ b and a in both

cases. It is proved that no information about a or b can be

obtained by the open cards.

III. KNOWN METHOD

There are n players p1, p2, . . . , pn who would like to ex-

change their gifts. Gifts must not come back to himself/herself.

Even if a player pi accidentally knows the gift to pi came from

player pj , pi must not be able to guess the player who obtains

the gift from any player other than pj . Therefore, in order to

achieve the property, a random permutation without a fixed

point is necessary.

A. How to Check Fixed Points

Each player has a pile of �log n� commitments. After a

pile-scramble shuffle, each player needs to check whether a

fixed point exists. Player pi has a card string obtained by a

pile-scramble shuffle. It is a pile of �log n� commitments:

255254

b is used to identify each player. It is used to check whether

a fixed point exists. b is generated by each player as follows

(i is the player number):

(i− 1)10 = (b�log n�...b2b1)2

1. Arrange �log n� input commitments and six additional

cards as follows:

2. Copy the commitment of a1 using the copy protocol [3]:

3. Apply NOT to b1. Furthermore, apply the XOR protocol

to one of the two a1’s :

4. Repeat the following steps from i = 2 to i = �log n�.
4.1 Apply NOT to bi. Furthermore, apply the XOR protocol

to ai.

4.2 Apply the one-input-preserving AND protocol so that

(a1⊕b1)∧...∧(ai⊕bi) and (ai⊕b̄i) are obtained. Furthermore,

obtain ai by applying the XOR protocol to (ai ⊕ bi) and bi.

5. Reveal the commitment of (a1 ⊕ b1) ∧ ... ∧ (a�log n� ⊕
b�log n�). If the value is 1, then this is a fixed point. Otherwise,

it is a not fixed point. Throughout the protocol, the original

input a1, . . . , a�log n� are kept.

B. The existing random permutation protocol

Suppose the number of players be n. A random permutation

can be obtained using 2n�log n�+ 6 cards.

1. Each player has a tuple of cards that is the commitments

of bits of (i− 1)2 :

2. Each row is regarded as a pile. Apply the pile-scramble

shuffle to the n piles.

3. Each player executes the protocol in 3.A to check the

existence of a fixed point, where the input a is set as the

cards obtained by the shuffle.

4. If a player finds a fixed point, all players go back to step

2. Otherwise, the protocol terminates.

IV. OUR NEW PROTOCOL

The success probability of the protocol in [1] has not

been evaluated. If the probability of having a fixed point

is large, the protocol needs many rounds until obtaining a

permutation without a fixed point and the complexity is large.

We introduce a player ID and cyclic shuffle to improve the

success probability and the amount of computation of the

protocol.

A. Cyclic Shuffle

Define n card piles a = (a0, ..., an−1). Cyclic shuffle

obtains a cyclic permutation of the piles. For example, the

result of two cyclic shifts to a is (a2, a3, . . . , an−1, a0, a1).
Player pi(1 ≤ i ≤ n) performs cyclic shift ri times. Note that

ri is not known to any other players. In total, cyclic shifts are

done r = r1+...+rn(mod n) times and r is a uniform random

number that is unknown to any player. For example, suppose

n = 6. The result of cyclic shift is one of the following six

cases:(a0, a1, a2, a3, a4, a5),(a1, a2, a3, a4, a5, a0), (a2,

a3, a4, a5, a0, a1),(a3, a4, a5, a0, a1, a2),(a4, a5, a0, a1, a2,

a3),(a5, a0, a1, a2, a3, a4). The probability of each occurrence

is 1/6.

B. Our Main Protocol

1. Each player has a tuple of cards that is the commitments

of bits of (i− 1)2 :

256255

Each row of the cards is called gift ID and denoted αi.

2. Generate a player ID. The player ID generated by pi is

denoted βi = (b�log n�, ..., b1), where

(i− 1)10 = (b�log n�, ..., b2b1)2.

3. Apply the pile-scramble shuffle to the pairs of player ID

and gift ID. The shuffle is executed in a public space. π is a

permutation function of
{
1, . . . , n

}→ {
1, 2, . . . , n

}
.

4. Divide the player ID and gift ID. Apply the cyclic shuffle

only to the gift IDs. c is a cyclic shuffle of
{
1, . . . , n

} →{
1, 2, . . . , n

}
.

5. A representative player executes the fixed point check

protocol in 3.1 to the pair of (βπ(1), αc(π(1))) . In order to

execute the check, the player ID , βπ(1) needs to be copied.

If the representative player finds a fixed point, all players go

back to step 4.

6. Apply the pile-scramble shuffle to the pairs of the player

ID and gift ID. Reveal the player ID of every pair. Let i-th
pair be (βxi , αyi). If βxi = βj , pj obtains the gift αyi .

The main differences between the proposed protocol and

the known protocol are introduction of cyclic shuffles and

using the pair of player ID and gift ID. In order to use the

player ID, the increase of the number of cards is 2n�log n�.
In addition, the player ID needs to be copied in step 5. It does

not increase the number of cards, since we can use the six

cards that are added in step 3.A for the additional cards in

the copy protocol and the copy can be executed bit by bit.

However, the number of executions of the copy protocol has

increased �log n� times. Because of the nature of the cyclic

shuffle, either of the following two cases occur: (1) no player

has a fixed point or (2) all players have a fixed point. Thus,

it is sufficient to check the existence of a fixed point to only

one pair of player ID and gift ID. Therefore, the number of

executions of fixed point check protocol decreases. If a cyclic

shift is performed without a random permutation, player pi
knows which gift is given to which player from the gift ID

received by pi. The sequence of a random permutation and

a cyclic shift is not secure either, because the player IDs are

open at the end of the protocol and each player knows the

order of gift IDs is a cyclic shift of current order of player

IDs. Our protocol executes a random permutation before and

after the cyclic shuffle. Therefore, it is impossible to guess the

other player’s obtained gift ID from the player’s obtained gift

ID. Thus, this protocol is secure.

V. EVALUATION OF THE PROTOCOL

This section compares the proposed protocol and the known

protocol by the probability of the success and the number

of shuffles. In this paper, the computation cost of one cyclic

shuffle and one random permutation is considered to be the

same.

A. Known Protocol

The number of different permutation π such that π(i) 	= i
for every i(1 ≤ i ≤ n) is represented as follows:

X(n) =
∑n

m=2
n!
m! · (−1)m

Since the number of all possible permutations of n items is

n!, the success probability of the existing protocol (executing

one random permutation) is

X =
∑n

m=2
1
m! · (−1)m

B. Our Protocol

The number of different cyclic shuffle c such that c(i) 	= i
for every i(1 ≤ i ≤ n) is represented as follows:

Y(n) = n− 1

Since the number of different cyclic shuffle is n, the

success probability of our protocol (executing one random

permutation) is

Y = (n− 1)/n

C. Evaluation

The main difference between the known protocol and our

protocol is the part of shuffle. Therefore, the evaluation is

carried out only for the shuffle part. In the existing protocol,

the random permutation is executed once in each round at

257256

step 3.A. If fixed points are found after each of m−1 random

permutations but not found after the m-th random permutation,

the total number of permutations is m. The proposed protocol

needs to execute the random permutation twice, thus the

number of total shuffles is m + 2 if fixed points are found

after each of m− 1 cyclic shuffles but not found after the m-

th cyclic shuffle. Therefore, in order to compare the success

probabilities of the two protocols for the same computation

costs, we need to compare executing three rounds by the

known protocol and one round by the proposed protocol. The

probabilities when the number of players n is 3, 4, 5, 6, and

7 are shown in Table 1.

TABLE I
SUCCESS PROBABILITY OF THE TWO PROTOCOLS

number of players 3 4 5 6 7
[1]within one round 0.333 0.375 0.367 0.368 0.368
[1]within two rounds 0.556 0.601 0.599 0.600 0.600
[1]within three rounds 0.704 0.755 0.746 0.748 0.747
ours one round 0.666 0.750 0.800 0.833 0.857

In Table 1, we need to compare the probability of success

within three rounds by the known protocol and one round by

our protocol. If the number of players is small (n < 5) the

success probabilities of the known protocol is better. However,

if the number of players n ≥ 5, the success probabilities of our

protocol is better. Next we compare 2 rounds by our protocol

and 4 rounds by the known protocol.

TABLE II
SUCCESS PROBABILITY OF WITHIN TWO ROUNDS BY OUR PROTOCOL

number of people 3 4 5 6 7
[1]within four rounds 0.802 0.847 0.840 0.841 0.840
ours within two rounds 0.888 0.934 0.960 0.972 0.980

From Table 2, if our protocol was carried out twice, even if

the number of players is three, our protocol is better. Next, we

compare the computation costs other than the permutations of

the two protocols. Since random bisection cut is a dominating

procedure for each of the primitive protocols, we evaluate

the number of random bisection cuts. NOT protocol does not

execute a random bisection cut. The other protocols such as

AND, copy, etc. execute one random bisection cut. Therefore,

the cost of these protocols are treated as equivalent. For one

fixed point check, AND, XOR, One-input-preserving AND,

and Copy protocol are executed 3�log n� − 1 times. In the

known protocol, all players need to execute one fixed point

check. Thus the total number of random bisection cuts is

n(3�log n� − 1). In our protocol, a representative player

executes checking the existence of fixed points, thus the

number of executions of random bisection cuts is 3�log n�−1.

Furthermore, in order to save the player ID, the copy protocol

is executed �log n� times. The total number of executions of

random bisection cuts when our prococol is executed once is

4(�log n�−1) ≤ n(3�log n�−1), by the known protocol. Thus

for the computation cost in one round, our protocol is better.

About the number of rounds, our protocol tends to be better

when the number of player is large. Thus our protocol is also

better in the point of computation costs.

VI. CONCLUSION

In this paper, we introduced the cyclic shuffle and player ID

to the card based protocol that calculates a random permutation

without fixed points. The number of cards is 4n�log n� + 6.

In the cace of n ≥ 5, the success probability of our protocol

is better than the known protocol for the same number of

shuffles. Because of the nature of the cyclic shuffle, just one

player executes the ckecking of existence of fxed points, thus

the computation cost is also better than the known protocol.

The proposed protocol cannot suppress the worst-case exe-

cution times. Future challenges is the propose of the protocol

that is guaranteed to finish in constant rounds.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-

ber 26330019.

REFERENCES

[1] Rie Ishikawa, Eikoh Chida, and Takaaki Mizuki: ”Efficient Card-based
Protocols for Generating a Hidden Random Permutation without Fixed
Points.” Unconventional Computation and Natural Computation (UCNC
2015), Lecture Notes in Computer Science, Springer-Verlag, vol.9252,
pp.215-226, 2015.

[2] Claude Crépeau, Joe Kilian: “Discreet Solitary Games.” CRYPTO 1993,
LNCS 773, pp. 319-330, 1994.

[3] Takaaki Mizuki and Hideaki Sone: “Six-Card Secure AND and Four-Card
Secure XOR.” Frontiers in Algorithmics (FAW 2009), Lecture Notes in
Computer Science, Springer-Verlag, vol.5598, pp.358-369, 2009.

[4] B. den Boer: ”More efficient match-making and satisability:the five card
trick.”Proc. EUROCRYPT ‘89, Lecture Notes in Computer Science, vol.
434, pp. 208-217, Springer-Verlag, 1990.

[5] Takaaki Mizuki, Michihito Kumamoto, and Hideaki Sone: “The Five-
Card Trick Can Be Done with Four Cards.” ASIACRYPT 2012, Lecture
Notes in Computer Science, Springer-Verlag, vol.7658, pp.598-606, 2012.

[6] Kazumasa Shinagawa, Naoki Kanayama, Koji Nuida, and Takashi
Nishide: “Card-Based Cryptographic Protocol using Polarization Plates.”
Computer Security Symposium 2014.(In Japanese)

[7] Kazumasa Shinagawa, Takaaki Mizuki, Koji Nuida, Naoki Kanayama,
Takashi Nishide, and Eiji Okamoto: ”Secure Computation Using Regular
Polygon Cards.” Symposium on Cryptography and Information Security
2015:(In Japanese)

[8] Takuya Nishida, Yu-ichi Hayashi, Takkaki Mizuki, and Hideaki Sone:
“Secure Three-Input Majority Computation Using a Deck of Cards.”
Computer Security Symposium 2013.(In Japanese)

[9] Takaaki Mizuki: “Secure Multi-Party Computations Using a Deck of
Cards.” IEICE Fundamentals Review Vol.9 No.3 2015.(In Japanese)

258257

