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Abstract—This paper proposes a new edge-based authen-
tication scheme for network coding. Many authentication
schemes for random linear network coding have been proposed
against pollution attacks. However, random linear network
coding is vulnerable to entropy attacks. An adversary can
generate messages that are verified as correct messages by the
authentication mechanism but obstruct the network coding.
Random linear network coding is shown to be efficient in a
random failure model, but not in an adversary model.

This paper shows a simple solution to tolerate entropy
attacks by changing random linear coding to deterministic
message combining rule. For an example, this paper shows a
modification of RIPPLE, an authentication scheme for random
linear network coding. Lastly, we show that the total delay of
modified RIPPLE can be reduced by an edge-based authen-
tication. RIPPLE and many other authentication schemes are
node-based, that is, verification keys and operations are defined
for each node. We show that we can construct an edge-based
scheme, that is, verification keys and operations are defined for
each edge. We show that the edge-based authentication scheme
is more efficient than the node-based schemes.

Keywords-network coding; random linear network coding;
message authentication code;

I. INTRODUCTION

Network coding was first introduced in [1] as a simple and
elegant way to achieve the capacity of a network for mul-
ticast communications. Network coding allows intermediate
nodes between the source node and the destination nodes
not only to forward but also to encode the received packets
before forwarding them. Random linear network coding [2]–
[4] is one of the most commonly used technique to achieve
high throughput.

Since the intermediate nodes encode packets, there is a
threat that some intermediate nodes do not operate correctly.
Malicious nodes may execute a pollution attack or entropy
attack.

Pollution attack is injecting corrupted packets. Since
correct intermediate nodes encode received packets, the
corrupted packet might corrupt all packets in the network
through encoding at each node. In order to detect pollution
attacks, many authentication schemes have been proposed
[5]–[20]. In these schemes, the intermediate nodes can verify
received packets, thus the neighbor node of the malicious

node can detect the corrupted packets and prevent the pollu-
tion by encoding the corrupted packets with correct packets.
Several schemes have been shown to be insecure [21], [22].
Comparison of the schemes by transmission efficiency is
shown [23].

Though pollution attack is widely considered, the follow-
ing attack called entropy attack is not so much considered. A
malicious node injects a correct packet and makes the final
destination node impossible to recover the original messages
because it cannot receive enough messages to recover. This
type of attack is difficult to detect, since the injected packets
are correct. Most random linear network coding schemes
[5]–[20] do not consider entropy attacks. They are vulnera-
ble to entropy attacks. Very few number of works [24]–[27]
have been done for detecting entropy attacks for random
linear network coding. Most of them collect coefficients of
incoming packets and outgoing packets, and detect that the
outgoing packet is not a random combination or is non-
innovative. Thus, the computation cost of the detection is
high. In addition, the detection is probabilistic, that is, some
honest node really makes a random combination of incoming
packets, but the output packet can be non-innovative.

Although the effectiveness of random linear network
coding is shown in a random failure model [2]–[4], its ef-
fectiveness is not clear in an adversary model. We show that
entropy adversaries do not need complicated computation to
obtain coefficients of non-innovative packets to be injected.
Actually, an adversary copies a correct packet to inject non-
innovative packets in the connectivity attacks shown in this
paper. Thus, randomness of the coefficients is not effective
at all for entropy adversaries, because the attack succeeds
no matter how the coefficients are set. Therefore, some new
scheme for network coding is necessary for the adversary
model, especially for the entropy adversary model.

To detect entropy attacks including connectivity attacks,
we propose not to execute random linear combination of
received packets. We had better go back to the old model
that the sender decides an encoding rule at each intermediate
node in advance and inform the rule to each node. Each
intermediate node can immediately detect entropy attacks at
its neighbor node. This paper shows a modification example



to RIPPLE [5], an authentication scheme for random linear
network coding. This modification is effective to many
other authentication schemes such as [6]–[20] in order to
immediately detect entropy attacks. This paper considers
RIPPLE because the attack and modification is easy to show
since it has an explicit time schedule to send packets.

Above modification has a good side effect to improve
performance of RIPPLE and other network coding schemes.
The message sending in RIPPLE is node-based scheduling,
that is, each node has a single time slot to encode received
packets and send them to the neighbors. It is unnecessary to
send packets to every neighbor at the same time slot, if some
packets are ready to encode from already received packets.
Thus, the schedule must be decided by edge-by-edge. This
paper proposes a new edge-based authentication mechanism
to increase efficiency of network coding. We show that the
total delay is decreased by the edge-based authentication
mechanism.

The rest of this paper is organized as follows. Section 2
shows an outline of RIPPLE, an authentication scheme for
random linear network coding. In Section3, we show the
connectivity attack, a simple entropy attack, and propose
message combining rule for a solution. Section 4 shows an
edge-based efficient authentication scheme.

II. OUTLINE OF RIPPLE

This section shows an outline of RIPPLE [5]. The network
topology is modeled as a directed acyclic graph G = (V,E).
For node v, denote its indegree as d+(v) and outdegree as
d−(v).

The source node S sends messages to the destination
nodes, which is a subset of V −{S}. S separates a stream of
messages into m messages of a fixed size xi(1 ≤ i ≤ m).
Each message xi ∈ Fn

q is a vector of n symbols, where each
symbol is an element of the finite field Fq . All arithmetic
operations are executed over Fq .

In order for each destination node to recover the original
message from random linear combinations of messages, S
generates message

Mi = (xi,

m︷ ︸︸ ︷
0, 0, . . . , 0, 1︸ ︷︷ ︸

i

, 0, . . . , 0) ∈ Fn+m
q ,

where a vector of size m is added to the payload. Initially,
i-th element is 1 and the other elements are 0 for xi.
When internal node v receives message M ′

i(1 ≤ i ≤
d+(v)) from each incoming edge of v, v chooses coefficient
αi,j ∈ Fq(1 ≤ i ≤ d+(v), 1 ≤ j ≤ d−(v)) uniformly
at random. v generates a coded message for j-th outgoing
edge (1 ≤ j ≤ d−(v)) as M ′′

j =
∑d+(v)

i=1 αi,jM
′
i . The

vector added in M ′′
j carries the coefficients of the linear

combination. A destination node can recover the original
message from any m random linear combinations that form

a full rank matrix, where the matrix can be obtained from
the coefficients of each received message.
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Figure 1. An example of message transmission by RIPPLE.

Figure 1 shows an example of message transmission of
x1 and x2 from S to two destination R1, R2 using RIPPLE.
v2 receives message M ′

1 = (x1, 1, 0) from S (Note that
the coefficient vector in each message is not written in
Fig. 1 for simplicity) and M ′

2 = (α1x2, 0, α1) from v1. v2
generates random number α3, α4 ∈ Fq , calculates M ′′

1 =
α3M

′
1 + α4M

′
2 = (α3x1 + α4α1x2, α3, α4α1) and sends

M ′′
1 to v3. v3 receives (α3x1 + α4α1x2, α3, α4α1) from

v2, generates a random number α7, calculates (α7α3x1 +
α7α4α1x2, α7α3, α7α4α1), and sends the message to v4.
The other message sending is similarly executed. R1 re-
ceives message M ′′′

1 = (y1, α8α7α3, α8α7α4α1) from v4
and M ′′′

2 = (y2, α9α5, α9α6α1) from v5, where y1 =
α8α7α3x1 + α8α7α4α1x2 and y2 = α9α5x1 + α9α6α1x2.
Let matrix

A =

(
α8α7α3 α8α7α4α1

α9α5 α9α6α1

)
.

If Rank(A) = 2, x1 and x2 are recovered by(
x1

x2

)
= A−1

(
y1
y2

)
.

RIPPLE uses homomorphic MAC(Message Authentica-
tion Code) to detect pollution attacks by adversaries, that is,
any modification of packets can be detected. Homomorphism
allows combines of tagged messages. Suppose MAC tag t1
for message M1 and t2 for M2 can be verified by key
K. Then, for any constant α1, α2 ∈ Fq , α1t1 + α2t2 is



verified as a valid tag for message α1M1+α2M2 by key K.
Public-key cryptography or symmetric key cryptography can
be used to detect pollution. Since public key cryptography
needs high computation cost compared to symmetric key
cryptography, RIPPLE uses symmetric key cryptography.
Though symmetric key cryptography needs sharing keys in
advance, RIPPLE avoids the procedure by a key disclosure
mechanism during message transmission. The primitives
used in the scheme is as follows.

For a given directed acyclic graph G = (V,E), the
message transmission schedule is defined as follows. For
each node v ∈ V − S, level of node v, Lv(v), is defined
as the length of the maximum directed path from S to
v. For the example in Fig. 1, Lv(v1) = 1, Lv(v2) = 2,
Lv(v3) = Lv(v5) = 3, Lv(v4) = Lv(R2) = 4, and
Lv(R1) = 5. The network level L is defined as

L
def
= max

v∈V−{S}
Lv(v).

L = 5 for the example in Fig. 1.
For edge e = (v, v′), define Te = Lv(v). Te is the time

slot that a packet is sent via edge e.
Four protocols, generate, MAC, verify, combine, are used

in RIPPLE.
• Generate: S generates keys K1,K2, . . . ,KL, where

Kj R← Fn+m+L−j
q . Key Ki is shared with node v

whose level Lv(v) = i.
• MAC: Given message M ∈ Fn+m

q and keys
K1,K2, . . . ,KL, S generates the following L tags
tL, LL−1, . . . , t1 as follows.
tL = ⟨M,KL⟩,
tj = ⟨(M, tL, tL−1, . . . , tj+1),Kj⟩(j = L − 1, L −
2, . . . , 1),
where ⟨X,Y ⟩ is the inner product of X and Y . S sends
packet P = (M, tL, tL−1, . . . , t1) in order to send M .

• Verify: When node v whose level Lv(v) = i receives
packet P = (M, tL, tL−1, . . . , ti), v verifies whether
ti = ⟨(M, tL, tL−1, . . . , ti+1),Ki⟩ using Ki. The tag
ti is removed from P after the verification.

• Combine: After node v whose level Lv(v) = i verifies
each received packet Pj = (Mj , t

L
j , t

L−1
j , . . . , tij)(1 ≤

j ≤ d+(v)), v generates random coefficients
αj,k ∈ Fq(1 ≤ j ≤ d+(v), 1 ≤ k ≤ d−(v)),
outputs combined packet P ′

k =
∑d+(v)

j=1 αj,kPj =

(
∑d+(v)

j=1 αj,kMj ,
∑d+(v)

j=1 αj,kt
L
j , . . . ,

∑d+(v)
j=1 αj,kt

i+1
j ),

for 1 ≤ k ≤ d−(v). v sends P ′
1, . . . , P

′
d−(v) to each

outgoing edge.
Note that if node v whose level Lv(v) = i receives a

packet from v′ whose level Lv(v′) satisfies Lv(v′) < i− 1,
the tags tLv(v′)+1, . . . , ti−1 are removed and then the packet
is verified using ti.

Symmetric keys for verification are defined for each level.
Thus, multiple nodes with the same level share the same

key. Though it seems that sharing the same key causes the
following attack, it is avoided by a key release mechanism.
v1 and v2 shares the same key Ki if Lv(v) = Lv(v′). v1
can generate a false packet P which passes the verification
by v2 because v1 knows v2’s verification key Ki. This type
of attack is impossible in RIPPLE because Ki is received
by the level i nodes at the time just when the packets to
be verified arrives. Even if v1 generates a false packet for
v2 when v1 receives Ki, the false packets are received by
v2 after the scheduled time of the packet arrival. The false
packets are ignored by v2 because of the late arrival. The
detail of the scheduling is written in [5].

III. CONNECTIVITY ATTACK TO RANDOM LINEAR
NETWORK CODING

Though RIPPLE is secure to pollution attacks, it is
vulnerable to entropy attacks. Entropy attack is replacing
a correct packet by another correct packet and making the
receiver impossible to recover the original messages. Since
each node sends a random linear combination of received
packets to each outgoing edge, each node cannot predict
the coefficients of the linear combination of each receiving
packet. As written in the outline of the scheme, each node
just verifies the tag using its symmetric key whatever its
coefficients are. Thus, each node cannot distinguish the
replaced packet from the original packet.

Thus, the following simple entropy attack, connectivity
attack, is possible. A malicious node w selects an edge e0 ∈
E and some number of edges E′ ⊂ E − {e0} such that

1) the number of edge-disjoint paths from S to some
receiver node R is less than m− 1 in G− {e0} −E′

and
2) Te0 < Te for any edge e ∈ E′, that is, a packet is sent

at e0 earlier than at any edge e ∈ E′.
In the example of Fig. 1, the number of edge-disjoint
paths from S to R1 is 2. w selects e0 = (v2, v5) and
E′ = {(v3, v4)}. When these two edges are removed, there
is no edge-disjoint path from S to R1. Te0 = 3 and Te1 = 4,
where e1 = (v3, v4). For the efficiency of the attack, w
should select E′ and e0 such that the size of E′ is as small
as possible. w might select e0 as one of the edges connected
to w, but this condition is not always necessary.
w obtains a copy of the correct packet P sent via e0 at

time Te0 , discards the correct packet P ′ sent via each edge
e ∈ E′ at time Te, and sends P instead.

For the packet P sent via e0 at time Te0 , P =
(M, tL, tL−1, . . . , tTe0 ) for some message M (M =
(
∑m

k=1 αkxk, α1, . . . , αm) for some random coefficients
αk(1 ≤ k ≤ m)). For edge e = (v, v′) ∈ E′,
P ′ = (M, tL, tL−1, . . . , tTe) (removing the tags between
Te0 and Te − 1 from P ) is a valid packet for e. When
v′ receives P ′, v′ verifies P ′ and decides it as a correct
packet. P ′ is actually a valid packet. Since each intermediate
node executes random linear combination, each intermediate



receiving node cannot predict coefficients, thus it cannot
distinguish connectivity attack packets from correct packets.
When the final destination node R receives all packets, R
makes the matrix A that has the coefficients of each received
packet, calculates its rank, and realizes that the rank of A is
less than m. R cannot recover the original messages from the
received packets. This attack succeeds because the number
of edge-disjoint paths from S to R is less than m − 1
in G − {e0} − E′, the information sent from S to R via
G − {e0} − E′ is at most m − 2 and the total information
sent from S to R via G − E′ is at most m − 1. No new
information is sent via E′, thus the total information sent
from S to R by G is at most m− 1.

A connectivity attack for Fig. 1 is as follows. w cap-
tures the packet P sent via (v2, v5) at time 3. P is
(α5x1 + α6α1x2, α5, α6α1). Note that w does not need to
know the coefficients. w discards the packet (α7(α3x1 +
α4α1x2), α7α3, α7α4α1) sent via (v3, v4) at time 4. Instead,
w sends P via (v3, v4) at time 4 as in Fig. 2.

�

��

��

��

����

	�

	�


�	� +



�	�


�	�


�	�

��

��

K�

K�

K�

K�

K�

K�

K�


�	� +


�
�	�


�(
�	� + 

�	�) 
��(
�	� + 

�	�)

copy


�	� +



�	�


�(
�	� +



�	�)

Figure 2. Connectivity attack to RIPPLE.

v4 verifies this packet as a correct packet. In fact, if v2
selects α5/α and α6/α as the random coefficients to send
a packet for v3 (v2 selects some other random coefficients
for the packet sent to v5) and v3 selects α as its random
coefficient, P is received by v4. Thus, v4 cannot reject this
packet.
v4 generates a random number α8, and sends (α8(α5x1+

α6α1x2), α8α5, α8α6α1) to R1. R receives this packet from
v4 and (α9(α5x1+α6α1x2), α9α5, α9α6α1) from v5. These

are the same information, and

rank(A) = rank

(
α8α5 α8α6α1

α9α5 α9α6α1

)
= 1.

R2 cannot recover the original message x1 and x2 from
these received packets. Note that replacing packets at edge
e = (v, v′) can be detected by signing to each sending packet
at v and verifying the signature at e′. This simple signing
mechanism does not work if v colludes. In order to detect
an entropy attack (includes connectivity attack) when some
node v might collude, the detection mechanism needs to
collect all incoming packets and outgoing packets of v and
then the relation must be verified. Thus, the detection needs
complicated mechanism to collect packets.

Note that connectivity attack is possible for any other
schemes that use random linear combination [6]–[20]. This
type of attack can be detected only at the destination node
by receiving insufficient information.

The connectivity attack is fatal for all these authentication
schemes, because they were proposed to detect attacks
at each intermediate node. Connectivity attacks cannot be
detected at the intermediate nodes, thus it is unnecessary to
verify at each intermediate node and just verify at the final
receiver nodes. These authentication schemes lose their most
important characteristics by the connectivity attack.

In order to achieve intermediate node detection, we had
better go back to the old model that the all schedule is
defined by the sender. Though the sender needs to know the
current network topology, the modified scheme is tolerant to
entropy attacks.

Sender S decides the messages at each intermediate node,
that is, the coefficients of each outgoing message are defined
in advance. Sender S decides the vector of coefficient β(e)
for each edge e ∈ E. β(e) = (α1, α2, . . . , αm) means that
the message (

∑m
i=1 αixi, α1, α2, . . . , αm) must be sent via

e. The function β that maps from E to the set of vectors of
coefficients is called the message combining rule.

For the example in Fig. 1, S decides the message com-
bining rule as in Fig. 3. In the example, v2 must send
(x1+x2, 1, 1) to v5 and (x1, 1, 0) to v3 (note again that the
coefficient vectors are not written in Fig. 3 for simplicity).

The message combining rule is sent from S to each
node in advance. For example in Fig. 3, S informs v4 that
the message with coefficients (1, 0) will arrive from v3.
The message combining rule can be sent together with the
symmetric key to verify MAC. The information is signed
by S to detect forgery by some malicious node. This is not
a great additional overhead because the symmetric key to
verify MAC must also be signed by S to detect forgery in
the original RIPPLE.

If an entropy attack, which includes a connectivity attack
is done at some edge, the receiver node immediately detects
the attack by checking whether the coefficients of the
received message is the same as the message combining
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Figure 3. Message combining rule of modified RIPPLE.

rule. In the example of Fig. 3, suppose that a malicious
node w selects e0 = (v2, v5) and E′ = {(v3, v4)}, copies
the packet P sent via e0, discards the correct packet sent via
E′, and sends P via E′. P = (x1+x2, 1, 1) and the message
combining rule β((v3, v4)) = (1, 0). Thus, the receiver node
v4 immediately detects that the packet is not correct. Entropy
attacks can be immediately detected by each intermediate
node.

The detail of the modified RIPPLE is as follows.

• Rule: S decides message combining rule β for given
network G = (V,E). When e = (v, v′), β(e) is sent to
v and v′.

• Generate, MAC: Same as the original scheme.
• Verify: Suppose that node v whose level Lv(v) = i

receives packet P = (M, tL, tL−1, . . . , ti) from edge
e = (·, v).
v verifies whether ti = ⟨(M, tL, tL−1, . . . , ti+1),Ki⟩.
v then checks whether the coefficients of M ,
(α1, . . . , αm) = β(e). If either is not satisfied, reject
the packet.

• Combine: After node v whose level Lv(v) = i verifies
Pj = (Mj , t

L
j , t

L−1
j , . . . , tij)(j = 1, . . . , d+(v)), v

outputs combined packet to send via e′ = (v, ·), P ′
k =

(
∑d+(v)

j=1 αj,kMj ,
∑d+(v)

j=1 αj,kt
L
j , . . . ,

∑d+(v)
j=1 αj,kt

i+1
j ),

for k = 1, . . . , d−(v), where αj,k is decided such that
the coefficients of P ′

k, (αk
1 , . . . , α

k
m) is equal to β(e′).

v sends P ′
1, . . . , P

′
d−(v) to each outgoing edge.

In the example of Fig. 3, suppose that v2 receives packet
P1 = (M1, t

5
1, . . . , t

1
1) from S and P2 = (M2, t

5
2, . . . , t

2
2)

from v1. v2 verifies whether t21 = ⟨(M1, t
5
1, t

4
1, t

3
1),K

2⟩

and M1 = (·, 1, 0). If not, v2 rejects P1. v2 then verifies
whether t22 = ⟨(M2, t

5
2, t

4
2, t

3
2),K

2⟩ and M2 = (·, 0, 1). If
not, v2 rejects P2. If both packets are correct, v2 sends
P ′
1 = (M1, t

5
1, t

4
1, t

3
1) to v3 and P ′

2 = (M1+M2, t
5
1+t52, t

4
1+

t42, t
3
1 + t32) to v5. The other nodes similarly execute the

protocol.

IV. EDGE-BASED EFFICIENT AUTHENTICATION

The modification in the previous section makes possible
to reduce the total delay by introducing a novel edge-
based authentication mechanism. All previous authentication
schemes are node-based, that is, all operations are defined
in a node-centric way. In RIPPLE and other many network
coding authentication schemes, each node receives all pack-
ets from its incoming edges, verifies their tags, combines
packets, and sends the combined packets to each outgoing
edge. In RIPPLE, network level is defined for each node
to decide the time to operate. However, it is unnecessary to
wait for every packet to arrive in some cases.

In the example of Figure 3, at time 1, a packet that carries
x1 arrives at v2 from S. It is unnecessary for v2 to wait for
the arrival of the packet that carries x2 at time 2 from v1,
in order to send x1 to v3. v2 can send a packet that carries
x1 to v3 at time 2. At time 3, v2 sends a packet that carries
x1 + x2 to v5 using the packet that arrives from v1 at time
2 (and the packet that arrived from S at time 1). v3 and v4
send x1 at time 3 and 4, respectively. v5 sends x1+x2 to R1

at time 4. Thus R1 receives all messages at time 4 as in Fig.
4. In the original RIPPLE, R1 receives all messages at time
5. Thus the modified edge-based scheme is more efficient
than the original RIPPLE.

�

��

��

��

����

	�

	�

	� + 	�

	�

	�

��

��

	�

	� + 	�

	�

	�
	� + 	�

1

1 2

2

2
3

3

4

4
4

Figure 4. Edge level for the message combining rule β.



The edge-based authentication mechanism is formally
defined as follows.

The edge level Ev is defined for each edge e ∈ E by a
given message combining rule β.

• For each edge e = (S, ·) ∈ E, Ev(e, β) = 1
(Ev(e, β) = 1 for edge whose source node is S).

• For each edge e = (v, v′) ∈ E whose source node is
not S, let c(e, β) be the set of edges e′ = (·, v) ∈ E′

such that the messages received from e′ can derive a
message whose coefficient is β(e).
Ev(e, β) = 1 +maxe′∈c(e,β)Ev(e′, β).

• The edge-based network level, EL(G, β) is defined as

EL(G, β) = maxe∈EEv(e, β).

Edge level means that v can send a packet P to send via
e = (v, ·) when v receives all packets that are enough to
generate P . The edge-based network level is the total delay
to send all messages to all final destinations.

For the graph G and message combining rule β in Fig.
4, c((v1, v2), β) = {(S, v1)}, c((v2, v3), β) = {(S, v2)},
c((v2, v5), β) = {(S, v2), (v1, v2)} and so on. Thus,
Ev((S, v1), β) = Ev((S, v2), β) = 1, Ev((v2, v3), β) = 2,
Ev((v2, v5), β) = 3, and so on. The edge-based network
level EL(G, β) = 4.

Theorem 1: For any network G = (V,E) and any mes-
sage combining rule β, EL(G, β) ≤ L.

Proof: For each edge e = (v, v′), Ev(e, β) ≤ Lv(v)
holds because in order to send a message via e, all messages
sent to v might not be necessary.

Since EL(G, β) = maxe∈EEv(e, β) and L =
maxv∈V−SLv(v), EL(G, β) ≤ L holds.

The delay of the edge-based authentication is never worse
than RIPPLE. As shown in Fig. 4, there are cases when the
edge-based authentication is better than RIPPLE.

Node v must have multiple keys to verify packets. In the
example of Fig. 4, v2 receives P1 = ((x1, 1, 0), t

4
1, t

3
1, t

2
1, t

1
1)

from S and P2 = ((x2, 0, 1), t
4
2, t

3
2, t

2
2) from v1. Thus, v2

needs K1 to verify P1 and K2 to verify P2. Though some
nodes have multiple keys, the nodes cannot make forged
packets using the keys. Because each node receives each
key just at the verification time, the node cannot make a
false packet that can be verified by other nodes using the
key before the arrival time limit.

The detail of edge-based RIPPLE is as follows.
• Rule: S decides message combining rule β for given

network G = (V,E). When e = (v, v′), β(e) is sent to
v and v′.

• Generate: Sgenerates keys K1,K2, . . . ,KEL(G,β),
where Kj R← Fn+m+EL(G,β)−j

q .
Key Ki is sent to node v that has edge e = (·, v) such
that Ev(e, β) = i.

• MAC: Suppose that from β, M is forwarded at most
z(≤ EL(G, β)) hops.

Given message M ∈ Fn+m
q , keys

K1,K2, . . . ,KEL(G,β), and message sending schedule
β, S generates the following z tags.
tz = ⟨M,Kz⟩.
tj = ⟨(M, tz, tz−1, . . . , tj+1),Kj⟩(j = z − 1, z −
2, . . . , 1).
S sends packet P = (M, tz, tz−1, . . . , t1) to each
outgoing edge according to β.

• Verify: Suppose that node v receives packet P =
(M, tz, tz−1, . . . , ti) from edge e = (·, v) such that
Ev(e, β) = i at time i.
v verifies whether ti = ⟨(M, tz, tz−1, . . . , ti+1),Ki⟩.
v then verifies whether the coefficients of M ,
(α1, . . . , αm) = β(e). If either is not satisfied, reject
the packet.
Note that P might also be used to combine a sending
packet P ′ for edge e′ = (v, v′′) such that Ev(e′) =
j(j > i + 1). In the case, the tags ti+1, . . . , tj−1 are
removed from P at combining P ′.

• Combine: At time j, node v combines sending packet
P ′ to edge e′ = (v, v′′) such that Ev(e′, β) = j from
packets Pk = (Mk, t

z
k, . . . , t

j
k)(1 ≤ k ≤ l) received

before time j − 1.
P ′ = (

∑l
i=1 αiMi,

∑l
i=1 αit

z
i , . . . ,

∑l
i=1 αit

j
i ), where

αi(1 ≤ i ≤ l) are decided such that the coefficients of∑l
i=1 αiMi, (γ1, . . . , γm), is equal to β(e′).

v sends P ′ via e′.

V. CONCLUSION

This paper showed a new type of entropy attack, con-
nectivity attack, to network coding authentication schemes.
We showed an improvement of RIPPLE to tolerate entropy
attacks. Lastly, we showed the total delay can be reduced
by edge-based authentication. This attack is effective for the
other random linear network coding authentication schemes.
The modification technique can also be applied to the other
random linear network coding authentication schemes.
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