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PAPER
A Secure M + 1st Price Auction Protocol Based on Bit Slice Circuits∗

Takuho MITSUNAGA†a), Nonmember, Yoshifumi MANABE††b), and Tatsuaki OKAMOTO†††c), Members

SUMMARY This paper presents an efficient secure auction protocol for
M + 1st price auction. In our proposed protocol, a bidding price of a
player is represented as a binary expression, while in the previous protocol
it is represented as an integer. Thus, when the number of players is m and
the bidding price is an integer up to p, compared to the complexity of the
previous protocol which is a polynomial of m and p, the complexity of our
protocol is a polynomial of m and log p. We apply the Boneh-Goh-Nissim
encryption to the mix-and-match protocol to reduce the computation costs.
key words: secure auction protocol, M+1st price auction, Boneh-Goh-
Nissim encryption, mix-and-match protocol

1. Introduction

1.1 Background

Recently, as the Internet has expanded, many researchers
have become interested in secure auction protocols and var-
ious schemes have been proposed to ensure the safe trans-
action of sealed-bid auctions [18]. A secure auction is a
protocol in which each player can find only the highest bid
and its bidder (called the first price auction) or the second
highest bid and the first price bidder (called the second price
auction). There is also a generalized auction protocol called
M + 1st price auction. The M + 1st price auction is a type
of sealed-bid auction for selling M units of a single kind of
goods, and the M+1st highest price is the winning price. M
bidders who bid prices higher than the winning price are the
winning bidders, and each winning bidder buys one unit of
the goods at the winning price. A simple solution to construct
a secure auction protocol is to assume a trusted auctioneer.
Bidders encrypt their bids and send them to the auctioneer,
and the auctioneer decrypts them to decide the winner. To
remove the trusted auctioneer, some secure multi-party pro-
tocols have been proposed. The common essential idea is the
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use of threshold cryptosystems, where a private decryption
key is shared by the players. Jakobsson and Juels proposed
a secure MPC protocol to evaluate a function comprising
a logical circuit, called mix-and-match [6]. As for a target
function f and the circuit that calculates f , Cf , all players
evaluate each gate in Cf based on their encrypted inputs and
the evaluations of all the gates in turn lead to the evaluation
of f . Based on the mix-and-match protocol, we can easily
find a secure auction protocol by repeating the millionaires’
problem [19] for two players. Kurosawa and Ogata sug-
gested the “bit-slice auction”, which is an auction protocol
that is more efficient than the one based on the millionaire’s
problem [9].

Boneh, Goh and Nissim suggested a public evaluation
system for polynomials of a total degree of two on encrypted
values named 2-DNF [3]. Their scheme has additive homo-
morphism in addition to the bilinear map, which allows one
multiplication on encrypted values. This property in turn
allows the evaluation of multivariate polynomials of a total
degree of two on encrypted values.

Mitsunaga, Manabe and Okamoto proposed an efficient
first and second price auction protocols based on Boneh-
Goh-Nissim encryption [3].

In this paper, we introduce an efficient secure auction
protocol for M + 1st price auction, in which if the bidding
price is an integer up to p and the number of bidders is m,
the complexity of our protocol is a polynomial of log p and
m.

1.2 Related Works

As related works, there are many secure auction protocols,
however, they have problems such as those described here-
after. The secure auction scheme for first price auction pro-
posed by Franklin and Reiter [5] does not provide full pri-
vacy, since at the end of an auction players can know the other
players’ bids. Naor, Pinkas and Sumner achieved a secure
second price auction by combining Yao’s secure computa-
tion with oblivious transfer assuming two types of auction-
eers [11]. However, the cost of the bidder communication
is high because it proceeds bit by bit using the oblivious
transfer protocol. Juels and Szydlo improved the efficiency
and security of this scheme with two types of auctioneers
through verifiable proxy oblivious transfer [7], which still
has a security problem in which if both types of auctioneers
collaborate they can retrieve all bids. Kurosawa and Ogata
have proposed an efficient verifiable auction protocol for the

Copyright © 2016 The Institute of Electronics, Information and Communication Engineers
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first and second price auction with bit-slice approach [9]. To
keep the privacy of players bidding prices, they introduced
mix-and-match protocol to their protocol. Players’ bidding
prices are represented as binary expression, therefore the
complexity of each player is proportional to log p, for po-
tential bidding price p. Mitsunaga, Manabe and Okamoto
suggested secure auction protocols for the first and second
price auction. They applied Boneh-Goh-Nissim Encryption
to the bit-slice auction protocol to improve computation costs
[13].

For M + 1st price auction, Lipmaa, Asokan and Niemi
proposed an efficient secure M+1st auction scheme [10]. In
their scheme, the trusted auction authority can know the bid
statistics. Abe and Suzuki suggested a secure auction scheme
for the M + 1st auction based on homomorphic encryption
[1]. However in their scheme, a player’s bid is not a binary
expression. Thus, its time complexity is O(mlog p) for a
m-player and p-bidding price auction.

1.3 Our Result

This paper presents an efficient secure auction protocol for
M + 1st price auction. By adding bits of players’ statuses
on “bit-slice auction” in [9], we expand the first and second
price auction protocol to M + 1st price auction protocol. In
our proposed protocol, bidding prices are represented as bi-
nary expression. Thus, when the bidding price is an integer
up to p and the number of bidders is m, the complexity of our
protocol is a polynomial of log p and m, while in previous
secure M + 1st price auction protocols [1], the complexity
is a polynomial of p and m. Our proposed protocol is a
generalized protocol of first and second price auction [13].
However, in case of second price auction (M = 1), the pro-
posed protocol is approximately twice faster than the one in
[13]. Since the protocol in [13] needs to execute auction
protocol twice, one for deciding the winner and the other
for deciding the winning price, while in the proposed pro-
tocol both the winner and winning price can be decided by
executing auction protocol once.

2. Preliminaries

2.1 The Model of Auction and Outline of Auction Protocol

This model involves m players, denoted by P1, P2, . . . , Pm

and assumes that there exists a public board. The players
agree in advance on the presentation of the target function,
f as a circuit Cf . For each player Pi’s bidding price Zi , the
aim of the protocol is for players to compute f (Z1, . . . , Zm)
without revealing any additional information. Its outline is
as follows.

1. Input stage: Each Pi (1 ≤ i ≤ m) computes cipher-
texts of the bits of Zi and broadcasts them and proves
that the ciphertext represents 0 or 1 by using the zero-
knowledge proof technique in [3].

2. Mix and Match stage: The players blindly evaluate

each gate, G j in Cf , in order.
3. Output stage: After evaluating the last gate

GM , the players obtain OM , a ciphertext encrypting
f (Z1, . . . , Zm). They jointly decrypt this ciphertext
value to reveal the output of function f .

2.2 Mix and Match Protocol

2.2.1 Requirements for the Encryption Function

Let E be a public-key probabilistic encryption function. We
denote the set of encryptions for a plaintext v by E(v) and a
particular encryption of v by c ∈ E(v).

Function E must satisfy the following properties.

1.Homomorphic property There exist polynomial time
computable operations, −1 and ⊗, as follows. For a
large prime q,

1. If c ∈ E(v ), then c−1 ∈ E(−v mod q).
2. If c1 ∈ E(v1) and c2 ∈ E(v2), then c1 ⊗ c2 ∈

E(v1 + v2 mod q).

For a positive integer a, define
a · c = c ⊗ c ⊗ · · · ⊗ c︸            ︷︷            ︸

a

.

2.Random re-encryption Given c ∈ E(v), there is a prob-
abilistic re-encryption algorithm that outputs c′ ∈ E(v),
where c′ is uniformly distributed over E(v).

3.Threshold decryption For a given ciphertext c ∈ E(v),
any t out of m players can decrypt c along with a zero-
knowledge proof of the correctness. However, any t −1
out of m players cannot decrypt c.

2.2.2 MIX Protocol

The MIX protocol [4] takes a list of ciphertexts, (ξ1, . . . , ξL ),
and outputs a permuted and re-encrypted list of the cipher-
texts (ξ ′1, . . . , ξ

′
L ) without revealing the relationship between

(ξ1, . . . , ξL ) and (ξ ′1, . . . , ξ
′
L ), where ξi and ξ ′i are lists of

l ciphertexts, (c1, . . . , cl), for some l ≥ 1. For all players
to verify the validity of (ξ ′1, . . . , ξ

′
L ), we use the universal

verifiable MIX net protocol described in [17].

2.2.3 Plaintext Equality Test (PET)

Given two ciphertexts c1 ∈ E(v1) and c2 ∈ E(v2), this pro-
tocol checks if v1 = v2. Let c0 = c1 ⊗ c−1

2 .

1. (Step 1) For each player Pi (where i = 1,. . . ,m):
Pi chooses a random element ai ∈ Z∗q and computes
zi = ai · c0. He broadcasts zi and proves the validity of
zi in zero-knowledge.

2. (Step 2) Let z = z1 ⊗ z2 ⊗ · · · ⊗ zm. The players
jointly decrypt z using threshold verifiable decryption
and obtain plaintext v . Then it holds that
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Table 1 Mix-and-match table for AND.
x1 x2 x1 ∧ x2

a′1 ∈ E (0) b′1 ∈ E (0) c′1 ∈ E (0)
a′2 ∈ E (0) b′2 ∈ E (1) c′2 ∈ E (0)
a′3 ∈ E (1) b′3 ∈ E (0) c′3 ∈ E (0)
a′4 ∈ E (1) b′4 ∈ E (1) c′4 ∈ E (1)

v =

{
0 if v1 = v2
random otherwise

There is a case where PET fails with negligible probability
even if v1 , v2. In that case it is hard to detect the failure in
PET scheme.

2.2.4 Mix and Match Stage

For each logical gate, G(x1, x2), of a given circuit, m players
jointly compute E(G(x1, x2)) from c1 ∈ E(x1) and c2 ∈
E(x2) keeping x1 and x2 secret. For simplicity, we show the
mix-and-match stage for AND gate.

1. m players first consider the standard encryption of each
entry in the table shown in Table 1.

2. By applying a MIX protocol to the four rows of the
table, m players jointly compute blinded and permuted
rows of the table. Let the ith row be (a′i, b

′
i, c
′
i ) for i =

1,. . . ,4.
3. m players next jointly find the row i such that the plain-

text of c1 is equal to that of a′i and the plaintext of c2
is equal to that of b′i by using the plaintext equality test
protocol.

4. For the row i, it holds that c′i ∈ E(x1 ∧ x2).

2.3 Evaluating 2-DNF Formulas on Ciphertexts

Given encrypted Boolean variables x1, . . . , xm ∈ {0, 1}, a
mechanism for public evaluation of a 2-DNF formula was
suggested in [3]. They presented a homomorphic public key
encryption scheme based on finite groups of composite or-
der that supports a bilinear map. In addition, the bilinear
map allows for one multiplication on encrypted values. As a
result, their system supports arbitrary additions and one mul-
tiplication on encrypted data. This property in turn allows
the evaluation of multivariate polynomials of a total degree
of two on encrypted values.

2.3.1 Bilinear Groups

The construction in [3] makes use of certain finite groups of
composite order that supports a bilinear map. We use the
following notation.

1. G andG1 are two (multiplicative) cyclic groups of finite
order n.

2. g is a generator of G.
3. e is a bilinear map e : G × G→ G1.

2.3.2 Subgroup Decision Assumption

We define algorithm G such that given security parameter
τ ∈ Z+ outputs a tuple (q1, q2,G,G1, e) where G,G1 are
groups of order n = q1q2 and e : G × G → G1 is a bilinear
map. On input τ, algorithm G works as indicated below,

1. Generate two random τ-bit primes, q1 and q2 and set
n = q1q2 ∈ Z.

2. Generate a bilinear group G of order n as described
above. Let g be a generator of G and e : G × G → G1
be the bilinear map.

3. Output (q1, q2,G,G1, e).
We note that the group action in G and G1 as well as
the bilinear map can be computed in polynomial time.

Let τ ∈ Z+ and let (q1, q2,G,G1, e) be a tuple produced by
G where n = q1q2. Consider the following problem. Given
(n,G,G1, e) and an element x ∈ G, output ‘1’ if the order of
x is q1 and output ‘0’ otherwise, that is, without knowing the
factorization of the group order n, decide if an element x is
in a subgroup ofG. We refer to this problem as the subgroup
decision problem.

2.3.3 Homomorphic Public Key System

We now introduce the public key system which resembles the
Pallier [16] and the Okamoto-Uchiyama encryption schemes
[15]. We describe the three algorithms comprising the sys-
tem.

1.KeyGen Given a security parameter τ ∈ Z+, run G to
obtain a tuple (q1, q2,G,G1, e). Let n = q1q2. Select
two random generators, g and u

R←− G and set h = uq2 .
Then h is a random generator of the subgroup of G of
order q1. The public key is PK = (n,G,G1, e, g, h). The
private key is SK = q1.

2.Encrypt(PK,M) We assume that the message space con-
sists of integers in set {0, 1, ...,T } with T < q2. We
encrypt the binary representation of bids in our main
application, in the case T = 1. To encrypt a message
M = v using public key PK , select a random number
r ∈ Zn and compute

C = gvhr ∈ G.

Output C as the ciphertext.
3.Decrypt(SK,C) To decrypt a ciphertext C using the pri-

vate key SK = q1, observe that Cq1 = (gvhr )q1 = (gq1 )v .
Let ĝ = gq1 . To recover M , it suffices to compute the
discrete log of Cq1 base ĝ.

2.3.4 Homomorphic Properties

The system is clearly additively homomorphic.
Let (n,G,G1, e, g, h) be a public key. Given encryptions C1
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and C2 ∈ G1 of messages v1 and v2 ∈ {0, 1, ...,T } respec-
tively, anyone can create a uniformly distributed encryption
of v1 + v2 mod n by computing the product C = C1C2hr

for a random number r ∈ Zn. More importantly, anyone
can multiply two encrypted messages once using the bilin-
ear map. Set g1 = e(g, g) and h1 = e(g, h). Then g1 is
of order n and h1 is of order q1. Also, write h = gαq2 for
some (unknown)α ∈ Z. Suppose we are given two cipher-
texts C1 = g

v1 hr1 ∈ G and C2 = g
v2 hr2 ∈ G. To build an

encryption of product v1 · v2 mod n given only C1 and C2,
1) select random r ∈ Zn, and 2) set C = e(C1,C2)hr1 ∈ G1.
Then

C = e(C1,C2)hr1 = e(gv1 hr1, gv2 hr2 )hr1
= gv1v2

1 hv1r2+v2r1+q2r1r2α+r
1 = gv1v2

1 hr
′

1 ∈ G1

where r ′ = v1r2+v2r1+q2r1r2α+r is distributed uniformly in
Zn as required. Thus, C is a uniformly distributed encryption
of v1v2 mod n, but in the group G1 rather than G (this is why
we allow for just one multiplication). We note that the system
is still additively homomorphic in G1. For simplicity, in this
paper we denote an encryption of message v in G as EG (v)
and one in G1 as EG1 (v).

2.4 Key Sharing

In [2], efficient protocols are presented for a number of play-
ers to jointly generate RSA modulus N = pq where p and q
are prime, and each player retains a share of N . In this pro-
tocol, none of the players can know the factorization of N .
They then show how the players can proceed to compute a
public exponent e and the shares of the corresponding private
exponent. At the end of the computation, N becomes public
and the players are convinced that N is a product of two large
primes by using zero-knowledge proof. Then, following the
algorithm introduced 2.3.2, Bilinear group (G,G1, e) is also
generated from N . Their protocol was based on the threshold
decryption that m out of m players can decrypt the secret.
The cost of key generation for the shared RSA private key
is approximately 11 times greater than that for simple RSA
key generation. However the cost for computation is still
practical. We use this protocol to share private keys among
auction managers. We can assume that auction managers
are either a subset of players or a different group such as
management group for auctions.

3. New Efficient Auction Protocol

In this section, we show an efficient M + 1st price auction
based on bit-slice auction protocols. Compared to previous
works on secure M + 1st price auctions, the proposed proto-
col is more efficient because bidding prices are represented
as binary numbers. However if a quite large number of play-
ers participate in an auction, it still needs high computation
costs, because the complexity of proposed protocol is a poly-
nomial of m for the m-player auction. If some players bid
the same price which is more than M highest price, such as

a case 2 players bid the same price as 3rd highest price for 5-
player auction for 3 goods, this protocol does not work well.
(Regarding to this situation called Tie-Break, see [12] for
more details.) At the end of auction, winners and winning
price can not be decided.

3.1 Proposed M + 1st Price Auction Protocol

We show how to find the winners and the winning bidding
price with unencrypted bidding prices. Through an auc-
tion, players are labeled as three types of players’ statuses,
winner(s), candidate(s) and survivor(s) described as follow.

• Winner: a player who decided to be a winner.
• Candidate: a player who is not decided to be a winner

but has a possibility of M + 1st highest bidder.
• Survivor: a candidate on the current and his bid on the

bit is 1.

This auction protocol starts from the highest bit of players’
bidding prices and proceeds to lower one bit by one bit.
At the beginning of the auction, all players are Candidates
since no player is decided as a Winner and all players have
possibilities to win the auction. On each bit, a status of a
player is decided by comparing players’ bidding prices. If
a player’s bidding price is found to be larger than M + 1st
highest bit, his status becomes a Winner. On the other hand,
the bidding prices is found to be smaller than M+1st highest
bit, he loses a status of a Candidate, because he no longer has
a possibility to win the auction. Otherwise, while he has a
chance to be a Winner or M+1st highest bidder, he keeps his
status a Candidate. At the end of the auction, the winners and
the winning price is found according to the players’ bidding
prices. To explain precisely, we also define the players in
the variables of winner(s), candidate(s) and survivor(s) on
j-th bid as Wj , Cj and Sj respectively and the numbers of
elements whose value is 1 in Wj and Sj as |Wj | and |Sj |.

• Wj[1 . . .m]: Wj[i]=1 if player Pi is decided to be a
winner by upper k − j bits of the bid.

• Cj[1 . . .m]: Cj[i]=1 if player Pi is not decided to be a
winner but has a possibility of M + 1st highest bidder
by upper k − j bits of the bid.

• Sj[1 . . .m]: Sj[i]=1 if player Pi is a candidate on j-th
bit (Cj[i]=1) and his bid on j-th bit is 1.

Suppose that Zi = (z(k−1)
i , . . . , z(0)

i )2 is the bid of player i,
and ZM+1st = (z(k−1)

M+1st, . . . , z
(0)
M+1st )2 is the M + 1st highest

bidding price where ()2 is the binary expression. The win-
ners and winning price are found by the following protocol.

As initial setting, we set Wk[i] = 0 (1 ≤ i ≤ m) and
Ck[i] = 1 ( 1 ≤ i ≤ m).
For j = k − 1 to 0

Sj[i] = Cj+1[i] ∧ z( j)
i (1 ≤ i ≤ m)

if |Wj+1 | + |Sj | ≥ M + 1 then
Wj[i] = Wj+1[i] (1 ≤ i ≤ m)
Cj[i] = Sj[i] ( 1 ≤ i ≤ m)
z( j)
M+1st = 1
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Table 2 Example of 5-player auction for 3 goods.
j = 4 j = 3 j = 2 j = 1 j = 0

C4 W4 K3 S3 C3 W3 K2 S2 C2 W2 K1 S1 C1 W1 K0 S0 C0 W0
Z1 = (1011)2 1 0 1 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1
Z2 = (0111)2 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1
Z3 = (0101)2 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 1
Z4 = (0100)2 1 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 1 0
Z5 = (0001)2 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
|W | and |S | 0 1 1 3 1 1 2 1 3
ZM+1st 0 1 0 0

else
Wj[i] = Wj+1[i] ∨ Sj[i] (1 ≤ i ≤ m)
Cj[i] = Cj+1[i] ∧ Sj[i] (1 ≤ i ≤ m)
z( j)
M+1st = 0

end
end
For a player Pi (1 ≤ i ≤ m), if Pi is decided to be a winner
by j-th bit from high-order bits of the bid, then Wj[i] = 1. If
player Pi is not decided to be a winner but has a possibility
of M + 1st highest bidder on the j-th bit, then Cj[i]=1. If
Cj[i]=1 and j-th bit of Pi’s bid is 1, then Sj[i] = 1.

If the number of Winners on ( j+1)-th bit and Survivors
on j-th bit is more than or equal to M + 1, we keep Winners
remained and update players’ status Candidates to eliminate
players i whose bidding prices are 0 on this bit. If the number
of Winners on ( j + 1)-th bit and Survivors on j-th bit is less
than M+1, Survivors on j-th bid are determined as Winners,
so we update Wj as Wj+1[i]∨Sj[i] and eliminate player i that
satisfies Sj[i]=1.

Theorem 1. In the above algorithm,

• For the vector W0, Pi is the winner of the auction if and
only if W0[i] = 1.

• ZM+1st is the M+1st bidding price.

Proo f . We show the values of Winners, Candidates
and Survivors satisfy the definition for all l bits by induction
and the winning price, ZM+1st , is consistent with the bidding
prices of players.
We show that the variables satisfy the definitions through the
proposed auction protocol by induction. In this proof, we
denote the M + 1st bidding players by PM+1st .
- Initial Step:

When l = k, following the initial setting, Winner is
a null vector, and the statuses of all players are Candidate.
z(1)
M+1st is a blank(not defined). Thus this situation satisfies

the definition of the players statuses.
- Inductive step:

When l = j + 1 we assume the definition of each player
status holds on ( j + 1)-th and upper bits, then we show that
the definition of each player status holds when l = j that is;
(1). If the number of Winners by the upper ( j + 1)-th bits
of Zi and Survivors on j-th bit is more than or equal to
M +1(|Wj+1 |+ |Sj | ≥ M +1), new Winners can not selected
on this bit, because if Survivors become Winners, the number
of Winners exceeds the number of goods M . The players in

the status of Winners do not change. Survivors (Candidates
whose bids on this bit are 1) become Candidates of next bit
because they have a chance to be a Winner or PM+1st . The
rest of Candidates(Cj+1 − Sj) lose the auction since their
bidding prices are found to be smaller than ZM+1st . Thus,
the definition of players’ status holds. In this case, ZM+1st is
bigger than or equal to the lowest bid of Survivors, which is
the (|Wj+1 |+ |Sj |)-th highest bid, then PM+1st is categorized
as a Survivor. Thus Z ( j)

M+1st is 1.
(2). If the number of Winners by the upper ( j + 1)-th bits
and Survivors on j-th bit is is less than M +1(|Wj+1 |+ |Sj | <
M + 1), Survivors are decided to be Winners, since their
bidding prices are found to be larger than ZM+1st . On the
other hands, the players in Cj+1 − Sj become Candidates,
since they still have a chance to be a Winner or PM+1st .
Thereby showing that in the both situation the definition of
each player status holds when l = j. In this case, ZM+1st is
smaller than the (|Wj+1 | + |Sj |)-th highest bid and PM+1st is
in the group of Cj+1 − Sj . Thus, Z ( j)

M+1st is 0.
□

3.2 Example

We show an example of 5-player auction for 3 goods (M = 3)
in Table 2. The information we need to find is the first, second
and third highest bidders as the winners of the auction and
the forth highest bidding price as the winning price. Assume
each player’s bid as follows,
Z1 = (1011)2 = 11
Z2 = (0111)2 = 7
Z3 = (0101)2 = 5
Z4 = (0100)2 = 4
Z5 = (0001)2 = 1
So, the winners are P1, P2 and P3 and the winning price is
Z4 = (0100)2 = 4. In Table 2, we denote by K j the vector
comprising the k − j-th MSB of each player’s bid.
For initial setting j = 4, all players are Candidates, since all
players have possibilities to win the auction according to the
definition of the player status. They are not decided to win
the auction yet, so none of players’ statuses is Winners.

Next step j = 3, only z4
1 is 1, so P1 is decided to be

Survivor and the number of Winner on upper bit and Survivor
on 4th bid is 1. Then, by following the protocol, P1 becomes
Winner and is removed from Candidate. The other players
are kept to be Candidates to compete the auction. Next step
j = 2, bids of Z2, Z3 and Z4 are 1, so they are decided as
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Survivors. The number of Winner on upper bit and Survivor
on 3rd bid is 4, which means P2, P3 and P4 can not decided
to be Winners but kept to be Candidates and P5 already loses
the auction. Following the protocol, from the 1st bits of the
bids P1, P2 and P3 are decided to be Winners. The winning
price Z4 = (0100)2 is shown in the row of ZM+1st in the
Table 2.

3.3 Secure M + 1st Price Auction Using 2-DNF Scheme
and Mix-and-Match Protocol

We assume m players, P1, . . . , Pm and a set of auction man-
agers, AM . The players bid their encrypted prices and
broadcast them. The AM runs an auction protocol with
the encrypted bids and after the auction AM jointly de-
crypts the results of the protocol and broadcast it to the
players. Players can verify the winning price (the M + 1st
price) and the winners from the encrypted bidding prices
by using verification protocols. To maintain secrecy of
the players’ bidding prices through the protocol, we need
to use the mix-and-match protocol. Here, we define two
types of new tables, MAP1 and MAP2. In the proposed
protocol, the MAP1 and MAP2 tables are created among
AM before an auction. The AM jointly computes val-
ues in the mix-and-match table for distributed decryption
of plaintext equality test. The function of table MAP1 is
used for transferring encrypted values of 0 and 1 in G1 to
encrypted values of 0 and 1 inG respectively. This mapping,
x1 ∈ {EG1 (0), EG1 (1)} 7→ x2 ∈ {EG (0), EG (1)}, is shown
in Table 3. The table MAP2 is a function for mapping x1 ∈
{EG1 (0), EG1 (1), . . . , EG1 (m)} 7→ x2 ∈ {EG (0), EG (1)}.
This is used for transferring encrypted values of {0,...,M}
and M + 1,...,m} in G1 to encrypted values of 0 and 1 in
G, respectively as described in Table 4. These tables can
be constructed using the mix-and-match protocol because
the Boneh-Goh-Nissim encryption has homomorphic prop-
erties.

3.3.1 Setting

AM jointly generates and shares private keys among them-
selves using the technique described in [2].

3.3.2 Bidding Phase

Suppose that a bid of a player i is Zi = (z(k−1)
i , . . . , z(0)

i )2

and ZM+1st = (z(k−1)
M+1st, . . . , z

(0)
M+1st )2 is the M + 1st highest

bidding price, where ()2 is the binary expression. Each
player Pi computes a ciphertext of his bidding price, Zi , as

ENCi = (bk−1
i , . . . , b

0
i )

where bj
i ∈ EG (z( j)

i ), and publishes ENCi on the bulletin
board. He also proves in zero-knowledge that z( j)

i = 0 or 1
by using the technique described in [3].

Table 3 Table for MAP1.
x1 x2

a1 ∈ EG1 (0) b1 ∈ EG (0)
a2 ∈ EG1 (1) b2 ∈ EG (1)

Table 4 Table for MAP2.
x1 x2

a1 ∈ EG1 (0) b1 ∈ EG (0)
a2 ∈ EG1 (1) b2 ∈ EG (0)

· · · bi ∈ EG (0)
aM+1 ∈ EG1 (M ) bM+1 ∈ EG (0)

aM+2 ∈ EG1 (M + 1) bM+2 ∈ EG (1)
· · · bi ∈ EG (1)

am+1 ∈ EG1 (m) bm+1 ∈ EG (1)

3.3.3 Opening Phase

Suppose that c1 = g
b1 hr1 ∈ EG (b1) and c2 = g

b2 hr2 ∈
EG (b2), where b1, b2 are binary, r1, r2 ∈ Z∗n are random
numbers and c′1 ∈ EG1 (b1) and c′2 ∈ EG1 (b2). We define two
polynomial time computable operations Mul by applying a
2-DNF formula for AND, and ⊗ by the operation of addition.

Mul(c1, c2) = e(c1, c2) = e(gb1 hr1, gb2 hr2 ) ∈ EG1 (b1 ∧ b2)
c′1 ⊗ c′2 ∈ EG1 (b1 + b2)

AM executes PET for MAP1 and MAP2 in this open phase
to keep the secrecy of players bidding prices through the
auction. Let Ck = (ck1 , . . . , c

k
m), where each cki ∈ EG (1) and

Wk = (wk1 , . . . , w
k
m), where each wki ∈ EG1 (0).

(Step 1) For j = k -1 to 0, perform the following.
(Step 1-a) For Cj = (c j

1, . . . , c
j
m), AM computes s ji =

Mul (c j+1
i , b

j
i ) for each player i, and

Sj = (s j1, . . . , s
j
m) = (Mul(c j+1

1 , b
j
1), . . . ,Mul(c j+1

m , b
j
m))

h j = Mul(c j+1
1 , b

j
1) ⊗ · · · ⊗ Mul(c j+1

m , b
j
m)

d j = w
j
1 ⊗ · · · ⊗ w

j
m

(Step 1-b) The AM uses table MAP1 for s ji for each i and
finds the values of s̃ ji . Let S̃j = (s̃ j1, . . . , s̃

j
m).

(Step 1-c) AM uses table MAP2 for d j ⊗ h j and decrypts the
output value. The reason MAP2 is used here is to prevent
AM finding any other information except d j ⊗ h j is more
than M + 1 or not. If the output value is 1, the number of
winners and survivors are more than or equal to M+1. Then,
AM updates

Wj = Wj+1 = (w j+1
1 , . . . , w

j+1
m )

Cj = S̃j = (s̃ j1, . . . , s̃
j
m)

z( j)
M+1st = 1

If the output value is 0, then
Wj = Wj+1 + Sj = (w j+1

1 ⊗ s j1, . . . , w
j+1
m ⊗ s jm)

Cj = Cj+1 − S̃j = (c j+1
1 ⊗ (s̃ j1)−1, . . . , c j+1

m ⊗ (s̃ jm)−1)
z( j)
M+1st = 0

There is no case where Cj+1[i] = 0 and S̃j[i] = 1 for all
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players (1 ≤ i ≤ m). Thus Cj+1[i] − S̃j[i] can be properly
calculated.

(Step 2) For the final W0 = (w0
1, . . . , w

0
m), AM decrypts each

w0
i with verification protocols and obtains the winners of the

auction. Pi is the winners if and only if plaintext of w0
i = 1

and
∑m

i=1 w
0
i = M . The M + 1st highest price is obtained as

ZM+1st = (z(k−1)
M+1st, . . . , z

(0)
M+1st )2.

Verification protocols
Verification protocols are the protocols for players to confirm
that AM decrypts the ciphertext correctly. By using the
protocols, each player can verify the results of the auction are
correct. We denote b as a plaintext, C as a BGN encryption
of b (C = gbhr ), where g, h and r are elements used in
BGN scheme and f as an inverse of the ciphertext C( f =
C(gb)−1). Before a player verifies whether b is the plaintext
of C, the player must prove that a challenge ciphertext C ′ =
gx f r is created by himself with zero-knowledge proof that
he has the value of x.

1. A player proves that he has random element x ∈ Z∗n
with zero-knowledge proof.

2. The player computes f = C(gb)−1 from the published
values, h, g and b, and select a random integer r ∈ Z∗n.
He sends C ′ = gx f r to AM .

3. The AM decrypts C ′ and sends value x ′ to the player.
4. The player verifies whether x = x ′. AM can decrypt

C ′ correctly only if order( f ) = q1, which means that
the AM correctly decrypts C and publishes b as the
plaintext of C.

3.4 Security

1. Privacy for bidding prices
Each player can not retrieve any information except
for the winners and the M + 1st highest price. An
auction scheme is secure if there is no polynomial
time adversary that breaks privacy with non-negligible
advantage ϵ (τ). We prove that the privacy for bid-
ding prices in the proposed auction protocols under
the assumption that BGN encryption with the mix-
and-match oracle is semantically secure. Given a
message m, the mix-and-match oracle receives an en-
crypted value x1 ∈ EG1 (m) and returns the encrypted
value x2 ∈ EG (m) according to the mix-and-match
table shown in Table 4. (which has the same func-
tion as MAP2). Given a message m and the ciphertext
x1 ∈ EG1 (m), the function of mix-and-match table is
to map x1 ∈ EG1 (m) → x2 ∈ EG (m). The range of
the input value is supposed to be {0,1,. . . ,m} and the
range of the output is {0,1}. We do not consider cases
where the input values are out of the range. Using
this mix-and-match oracle, an adversary can compute
any logical function without the limit where BGN en-
cryption scheme can use only one multiplication on

(PK, SK)← KeyGen
(m0,m1, s)← A

o1
1 (PK )

b ← {0, 1}
c ← Encr ypt (PK,mb )

b′ ← A
o1
2 (c, s)

return 1 iff b = b′

Fig. 1 EXPTA,Π .

encrypted values. MAP1 can also be computed if the
range of the input value is restricted in {0,1}. Here, we
define two semantically secure games and advantages
for BGN encryption scheme and the proposed auction
protocols. We also show that if there is adversary B
that breaks the proposed auction protocol, we can com-
pose adversary A that breaks the semantic security of
the BGN encryption with the mix-and-match oracle by
using B.

Definition 1.
Let Π = (KeyGen,Encrypt,Decrypt) be a BGN encryp-
tion scheme, and let AO1 = (AO1

1 , A
O1
2 ), be a prob-

abilistic polynomial-time algorithm, that can use the
mix-and-match oracle O1.

BGN-Adv (τ) = Pr[EX PTA,Π (τ) = 1] − 1/2

where, EX PTA,Π is a semantic security game of the
BGN encryption scheme with the mix-and-match oracle
shown in Fig. 1.
We then define an adversary B for an auction protocol
and an advantage for B.

Definition 2. Let Π = (KeyGen, Bid,
WinnerDecision) be a secure auction protocol, and let
B be two probabilistic polynomial-time algorithm B1
and B2.

Auction-Adv (τ) = Pr[EX PTB,Π = 1] − 1/2

where EX PTB,Π is a semantic security game of the
privacy of the auction protocol shown in Fig. 2. Bid
is the function of encrypting the bidding price of each
player. WinnerDecision is the function of executing the
auction with encrypted bids in order to find the winner
and winning price. First of all, B1 generates k-bit in-
tegers, b1, b2, . . . , bm−1 as plaintexts of bidding prices
for player 1 to m − 1, and two challenge k-bit integers
as bm0, bm1 where bm0 and bm1 are the same bits ex-
cept for i-th bit mi

0 and mi
1. We assume bm0 and bm1

are not the M + 1st highest price. Then the function
Bid is used for encrypting players’ bidding prices such
as (c1 = Bid(PK, b1), c2 = Bid(PK, b2), . . . , cm−1 =

Bid(PK, bm−1), cm = Bid(PK, bmb
)) where b

r←−
{0,1}. Finally the auction is executed with the function
WinnerDecision(c1, c2, . . . , cm−1, cm) as the players’ en-
crypted bidding prices. After the auction, B2 outputs
b′ ∈ {0,1} as a guess for b. B wins if b = b′.

Theorem 2. The privacy of the auction protocols is
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(PK, SK)← KeyGen
(b1, b2, . . . , bm−1, bm0, bm1, s) ← B1 (PK )

b ← {0, 1}
c1 ← Bid(PK, b1), c2 ← Bid(PK, b2), . . . , cm−1 ← Bid(PK, bm−1), cm ← Bid(PK, bmb

)
(winner, winning price) ← WinnerDecision(c1, c2, . . . , cm−1, cm )

b′ ← B2 (winner, winning price, s, viewWinnerDecision)
return 1 iff b = b′

Fig. 2 EXPTB,Π .

Table 5 The comparison of computational complexity.
[1] Proposed

Bidding(per one bidder) p encryptions log p encryptions
Running auction (Calculation over group) 2mp multiplications mlog p multiplications mlog

p pairing
Running auction(PET) log p(M + 1) times log p(M + 1) + mp times

Decrypting to decide the winners m decryptions m decryptions
Decrypting to decide the winning price log p decryptions log p decryptions

secure under the assumption that the BGN encryption
is semantically secure with a mix-and-match oracle.

Proo f .We show if there is adversary B that breaks the
security of the proposed auction protocol, we can com-
pose adversary A that breaks the semantic security of
the BGN encryption with the mix-and-match oracle. B
generates k-bit integers, b1, b2, . . . , bm−1 and two chal-
lenge k-bit integers as bm0, bm1 where bm0 and bm1 are
the same bits except for i-th bit mi

0 and mi
1 following

the definition. A receives two challenge k-bit integers
as bm0 and bm1 from B and then A uses mi

0 and mi
1 as

challenge bits for the challenger of the BGN encryption.
ThenA receives c as a result of Encr ypt(PK,mi

b
) and

send it to B. B receives c1, . . . , cm−1, and c as cm as the
result of function Bid and uses WinnerDecision function
to execute a secure auction protocol with the mix-and-
match oracle. When calculation of plain equality test
or mix-and-match is needed such as checking whether
h j is 0 and updating W , A uses mix-and-match oracle
to transfer encrypted value over EG1 to EG . bm0 and
bm1 are not the winning bidding prices and A knows
all the input values, b1, b2, . . . , bm−1 except the i-th bit
of bmb

. So,A with mix-and-match oracle can simulate
an auction for the adversary of auction B. Through the
auction, B observes the calculation of the encrypted
values and the results of the auction. After the auction,
B outputs b′, which is the guess for b. A outputs b′,
which is the same guess with B’s output for bmb

. If
B can break the privacy of the bidding prices in the
proposed auction protocol with advantage ϵ (τ), A can
break the semantic security of the BGN encryption with
the same advantage. □

2. Correctness
For correct players’ inputs, the protocol outputs the
correct winner and price. From Theorem 1 introduced
in Section 1.4, the bit-slice auction protocol obviously
satisfies the correctness.

3. Verification of the evaluation
To verify whether the protocol works, players need to
validate whether the AM decrypts the evaluations of
the circuit on ciphertexts through the protocol. We use
the verification protocols introduced above so that each
player can verify whether the protocol is computed cor-
rectly. There is a case where PET fails with negligible
probability as described in 2.2.3. However, the failure
of PET brings the miscalculation of auction result. For
example, if PET used for the transformation of sij fails,
it brings a false winner or loser. We assume that AM
proceeds the auction properly with verification proto-
col, thus in that kind of case players can detect the
failure of PET with verification protocol.

4. Comparison of Auction Protocols

The protocol proposed in [1] is based on homomorphic en-
cryption. In their protocol, each player encrypts his bidding
price is not represented as binary bit. Therefore, for a po-
tential bidding price p and m players, each player needs to
execute encryption p times for bidding, and AM calculates
multiplications of ciphertexts 2mp times to run the auction.
PET (plaintext equality test) is used in the opening phase to
check whether the number of i-th bid is more than M + 1 or
not with using binary search for each price i in [1, p]. Binary
search for p needs log p comparisons and one comparison
needs PET M + 1 times for each bid to check whether it is
more than M + 1. In the end of auction, m and log p decryp-
tions are used to decide the winner and winning price of the
auction.

Our auction protocol is based on BGN encryption where
each player’s bidding price is represented as a binary expres-
sion. We use PET mp times when AM calculates s̃ ji from
player j’s i-th bid for all i and j. We also use PET when AM
detects whether b(i)

M+1st is more than M or not. log p decryp-
tions are used to open the winning price and m decryptions
are used to open the winners of auction. A comparison
between the proposed protocol and that in [1] is shown in
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Table 5. Although the number of encryption and multipli-
cation in the proposed protocol is reduced compared to the
protocol in [1], the proposed protocol needs mlog p paring
calculation. The computation cost of paring calculation is
approximately 4 times than that of group calculation in the
worst case [8]. Therefore, for the evaluation of efficiency,
the proposed protocol is certainly more efficient than that in
[1]. As for the communication costs, communication during
Bidding and Opening phase in [1] and proposed protocol is
the same, so it depends on the encrypted message sizes(that
is, proportional to the key sizes) of each protocol.

A secure auction protocol for the first and second price
auction was shown in [13]. However, in case of second price
auction (M = 1), the proposed protocol is approximately
twice faster than the one in [13]. In order to obtain the
second highest bidding price, the protocol in [12] executes
the first price auction protocol again after eliminating the
highest bid.

5. Conclusion

We introduced new efficient secure M + 1st price auction
protocols based on the mix-and-match protocol and the BGN
encryption. As a topic of future work, we will try to compose
a secure auction protocol without using the mix-and-match
protocol.
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