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Abstract

This paper shows new kinds of card-based cryptographic protocols with a
standard deck of cards using private operations. They are multi-party secure
computations executed by multiple players without computers. Most card-based
cryptographic protocols use a special deck of cards that consists of many cards
with two kinds of marks. Though these protocols are simple and efficient, the
users need to prepare such special cards. Few protocols were shown that use a
standard deck of playing cards. Though the protocols with a standard deck of
cards can be easily executed in our daily lives, the numbers of cards used by
these protocols are larger than the ones that use the special deck of cards. This
paper shows logical AND, logical XOR, and copy protocols for a standard deck
of cards that use the minimum number of cards. Any Boolean functions can be
computed with a combination of the above protocols. The new protocols use pri-
vate operations that are executed by a player at a place where the other players
cannot see. The results show the effectiveness of private operations in card-based
cryptographic protocols. This paper also shows protocols that use private input
operations. When each player privately inputs his/her secret value, this type of
protocol is used. Last, we show asymmetric card protocols to further reduce the
number of cards.

Keywords: Multi-party secure computation, card-based cryptographic protocols,
private operations, logical computations, copy, playing cards
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1 Introduction

1.1 Overview of card-based cryptographic protocols

Card-based cryptographic protocols [1–3] were proposed in which physical cards are
used instead of computers to securely compute values. They can be used when com-
puters cannot be used or users cannot trust the software on the computer. Also, the
protocols are easy to understand, thus the protocols can be used to teach the basics of
cryptography [4, 5] to accelerate the social implementation of advanced cryptography
[6]. den Boer [7] first showed a five-card protocol to securely compute the logical AND
of two inputs. Since then, many protocols have been proposed to realize primitives
to compute any Boolean functions [8–15] and specific computations such as a specific
class of Boolean functions [16–34], universal computation such as Turing machines
[35, 36], millionaires’ problem [37–40], voting [41–48], random permutation [49–52],
garbled circuits [15, 53–55], grouping [56], ranking [57], lottery [58], and so on.

This paper considers computations of logical AND and logical XOR functions and
copy operations since any Boolean function can be realized with a combination of
these computations.

Note that in this paper, all players are assumed to be semi-honest. Few works are
done for the case when some players are malicious or make mistakes [59–64].

1.2 Standard deck of cards

Most of the above works are based on a two-color card model. In the two-color card
model, there are two kinds of cards, ♣ and ♡ . Cards of the same marks cannot be

distinguished. In addition, the back of both types of cards is ? . It is impossible to

determine the mark in the back of a given card of ? . Though the model is simple,
such special cards are not available in our daily lives.

To solve the problem, card-based cryptographic protocols using a standard deck
of playing cards were shown [14, 26, 38, 64–69]. Playing cards are available at many
houses and are easy to buy. The standard deck of playing cards is also used for zero-
knowledge proof of puzzle solutions [70, 71]. This paper discusses protocols to calculate
logical functions. Niemi and Renvall first showed protocols that use a standard deck
of playing cards [65]. They showed logical XOR, logical AND, and copy protocols
since any Boolean functions can be realized by a combination of these protocols. Their
protocols are ‘Las Vegas’ type protocols, that is, the execution times of the protocols
are not limited. The protocols are expected to terminate within a finite time, but if
the sequence of the random numbers is bad, the protocols do not terminate forever.
Mizuki showed fixed time logical XOR, logical AND, and copy protocols [66]. Though
the number of cards used by the XOR protocol is the minimum, the ones used by
the logical AND and copy protocols are not the minimum. Koch et al. showed a four-
card ‘Las Vegas’ type AND protocol and it is impossible to obtain a four-card finite
time protocol with the model without private operations [67]. Koyama et al. showed a
three-input ‘Las Vegas’ type AND protocol with the minimum number of cards [68].
Koyama et al. showed an efficient ‘Las Vegas’ type copy protocol [26]. Shinagawa and
Mizuki showed protocols to compute any n-variable function using a standard deck of
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playing cards and a deck of UNO1 cards [14]. Miyahara et al. showed a protocol that
solves Yao’s millionares’ problem using a standard deck of playing cards [38]. Miyahara
and Mizuki showed new protocols that use a special primitive that opens the suit of a
playing card [69]. This paper discusses protocols that publically or privately open the
cards.

1.3 Private operations

Randomization or a private operation is the most important primitive in these card-
based protocols. If every primitive executed in a card-based protocol is deterministic
and public, the relationship between the private input values and the output values is
known to the players. When the output value is disclosed, the private input value can
be known to the players from the relationship. Thus, all protocols need some random
or private operation.

First, public randomization primitives have been discussed and then recently, pri-
vate operations are considered. Many protocols use random bisection cuts [8], which
randomly execute swapping two decks of cards or not swapping. If the random value
used in the randomization is disclosed, the secret input value is known to the players.
If some player privately brings a high-speed camera, the random value selected by the
randomization might be known by analyzing the image. Though the size of a high-
speed camera is very large, the size might become very small shortly. To prepare for
the situation, we need to consider using private operations.

Operations that a player executes in a place where the other players cannot see are
called private operations. These operations are considered to be executed under the
table or in the back. Private operations are shown to be the most powerful primitives
in card-based cryptographic protocols. They were first introduced to solve the mil-
lionaires’ problem [39]. Using three private operations shown later, committed-input
and committed-output logical AND, logical XOR, and copy protocols can be achieved
with the minimum number of cards on the two-color card model [12].

So the research question is whether we can achieve the minimum number of cards
for a standard deck of cards if we use private operations. We show positive results to
the question.

1.4 Our results

This paper shows new logical AND and copy protocols with a standard deck of play-
ing cards that achieves the minimum number of cards by using private operations.
The comparisons of AND protocols, copy protocols, XOR protocols, and protocols to
compute any n-variable Boolean function are shown in Table 1, Table 2, Table 3, and
Table 4, respectively. The results show that private operations are also effective for a
standard deck of cards.

Another class of private operations is private input operations that are used when
each player inputs his/her private value [37, 44, 72, 73]. All of the above works are
based on the two-color model. We show primitives to calculate Boolean functions using
private operations for a standard deck of cards.

1https://www.letsplayuno.com
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Table 1 Comparison of AND protocols with a standard deck of cards.

Article # of cards Note

Niemi et al. [65] 5 Las Vegas algorithm
Koch et al. [67] 4 Las Vegas algorithm
Mizuki [66] 8 Fixed time algorithm
This paper 4 Fixed time algorithm

Table 2 Comparison of copy protocols with a standard deck of cards

Article # of cards Note

Niemi et al. [65] 6 Las Vegas algorithm
Koyama et al. [26] 6 Las Vegas algorithm
Mizuki [66] 6 Fixed time algorithm
This paper 4 Fixed time algorithm

Table 3 Comparison of XOR protocols with a standard deck of cards.

Article # of cards Note

Niemi et al. [65] 4 Las Vegas algorithm
Mizuki [66] 4 Fixed time algorithm
This paper 4 Fixed time algorithm

Several protocols that use asymmetric cards [12, 60, 73, 74] are shown. Asymmetric
cards are also used to evaluate the closeness of two values in the Likert scale [75–78].
Since one-bit data can be represented using one asymmetric card, the number of cards
can be reduced. Since a standard deck of cards has some number of asymmetric cards,
we can execute asymmetric card protocols using a standard deck of cards.

In Section 2, basic notations and the private operations introduced in [12] are
shown. Section 3 shows logical AND, copy, and logical XOR protocols. Then, protocols
to compute any n-variable Boolean function are shown. Section 4 shows protocols that
use private input operations. Section 5 shows asymmetric card protocols. Section 6
concludes the paper.

The preliminary version of this paper was presented as ”Yoshifumi Manabe and
Hibiki Ono: Card-based Cryptographic Protocols with a Standard Deck of Cards Using
Private Operations, Proc. of 18th International Colloquium on Theoretical Aspects of
Computing (ICTAC 2021), LNCS Vol.12819, pp.256-274 (2021). This paper improved
the AND protocol in Section 3 to simplify the algorithm. Section 4 and Section 5 are
new sections that show protocols that use private input operations and asymmetric
card protocols.
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Table 4 Comparison of protocols to compute any n-variable Boolean function with a standard
deck of cards.

Article # of cards Note

Shinagawa et al. [14] 2n+ 8 Fixed time algorithm
This paper’s Protocol 7 2n+1 + 2 Fixed time algorithm
This paper’s Protocol 8 2n+ 4 Fixed time algorithm

2 Preliminaries

2.1 Basic notations

This section gives the notations and basic definitions of card-based protocols with a
standard deck of cards. A deck of playing cards consists of 52 distinct mark cards,
which are named as 1 to 52. The number of each card (for example, 1 is the ace of
spade and 52 is the king of club) is common knowledge among the players. The back

of all cards is the same ? . It is impossible to determine the mark in the back of a

given card of ? .

One-bit data is represented by two cards as follows: i j = 0 and j i = 1 if
i < j.

One pair of cards that represents one bit x ∈ {0, 1}, whose face is down, is called

a commitment of x, and denoted as commit(x). It is written as ? ?︸ ︷︷ ︸
x

. The base of

a commitment is the pair of cards used for the commitment. If card i and j(i < j)

are used to set commit(x) (That is, set i j if x = 0 and set j i if x = 1),

the commitment is written as commit(x){i,j} and written as ? ?︸ ︷︷ ︸
x{i,j}

. When the base

information is obvious or unnecessary, it is not written.
Note that when these two cards are swapped, commit(x̄){i,j} can be obtained.

Thus, logical negation can be computed without private operations.
A set of cards placed in a row is called a sequence of cards. A sequence of cards

S whose length is n is denoted as S = s1, s2, . . . , sn, where si is i-th card of the
sequence. S = ?︸︷︷︸

s1

?︸︷︷︸
s2

?︸︷︷︸
s3

. . . , ?︸︷︷︸
sn

. A sequence whose length is even is called an

even sequence. S1||S2 is a concatenation of sequence S1 and S2.
All protocols are executed by two players, Alice and Bob. The players are semi-

honest, that is, they obey the rules of the protocols but try to obtain secret values.
Section 3 consider the case when the inputs of the protocols are given in a com-

mitted format, that is, the players do not know the input values. Section 4 assumes
that each player has his/her input bit that must not be known to the other player.

The output of the protocol must be given in a committed format so that the result
can be used as an input to further computation. If the players need to obtain the output
value, they just open the committed output. Thus committed output is desirable.

A protocol is secure when the following two conditions are satisfied: (1) If the
output cards are not opened, each player obtains no information about the private
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input values from the view of the protocol for the player (the sequence of the cards
opened to the player). (2) When the output cards are opened, each player obtains no
additional information about the private input values other than the information by
the output of the protocol. For example, if the output cards of an AND protocol for
input x and y are opened and the value is 1, the players can know that x = 1 and
y = 1. If the output value is 0, the players must not know whether the input (x, y) is
(0, 0), (0, 1), or (1, 0).

The following protocols use random numbers. Random numbers can be generated
without computers using coin-flipping or some similar methods. During the protocol
executions, cards are sent and received between the players. The communication is
executed by handing the cards between the players to avoid information leakage dur-
ing the communication. If the players are not in the same place during the protocol
execution, a trusted third party (for example, the post office) is necessary to send and
receive cards between players.

2.2 Private operations

We show three private operations introduced in [12]: private random bisection cuts,
private reverse cuts, and private reveals.
Primitive 1. (Private random bisection cut)

A private random bisection cut is the following operation on an even sequence
S0 = s1, s2, . . . , s2m. A player selects a random bit b ∈ {0, 1} and outputs

S1 =

{
S0 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1

The player executes this operation in a place where the other players cannot see. The
player must not disclose the bit b.

Note that if the private random cut is executed when m = 1 and S0 = commit(x),

given S0 = ? ?︸ ︷︷ ︸
x

, The player’s output S1 = ? ?︸ ︷︷ ︸
x⊕b

, which is ? ?︸ ︷︷ ︸
x

or ? ?︸ ︷︷ ︸
x

.

Note that a private random bisection cut is the same as the random bisection
cut[8], but the operation is executed in a hidden place.
Primitive 2. (Private reverse cut, Private reverse selection)

A private reverse cut is the following operation on an even sequence S2 =
s1, s2, . . . , s2m and a bit b ∈ {0, 1}. A player outputs

S3 =

{
S2 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1

The player executes this operation in a place where the other players cannot see. The
player must not disclose b.

Note that the bit b is not newly selected by the player. This is the difference between
the primitive in Primitive 1, where a random bit must be newly selected by the player.

Note that in some protocols below, selecting left m cards is executed after a pri-
vate reverse cut. The sequence of these two operations is called a private reverse
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selection. A private reverse selection is the following procedure on an even sequence
S2 = s1, s2, . . . , s2m and a bit b ∈ {0, 1}. A player outputs

S3 =

{
s1, s2, . . . , sm if b = 0
sm+1, sm+2, . . . , s2m if b = 1

Primitive 3. (Private reveal) A player privately opens a given committed bit. The
player must not disclose the obtained value.

Using the obtained value, the player privately sets a sequence of cards.
Consider the case when Alice executes a private random bisection cut on commit(x)

and Bob executes a private reveal on the bit. Since the committed bit is randomized
by the bit b selected by Alice, the opened bit is x⊕ b. Even if Bob privately opens the
cards, Bob obtains no information about x if b is randomly selected and not disclosed
by Alice. Bob must not disclose the obtained value. If Bob discloses the obtained value
to Alice, Alice knows the value of the committed bit.

2.3 Opaque commitment pair

An opaque commitment pair is defined as a useful situation for to design a secure
protocol using a standard deck of cards [66]. It is a pair of commitments whose bases
are unknown to a player. Let us consider the following two commitments using cards
i, j, i′ and j′. The left (right) commitment has value x (y), respectively, but it is
unknown that (1) the left (right) commitment is made using i and j (i′ and j′),
respectively, or (2) the left (right) commitment is made using i′ and j′ (i and j),
respectively. Such a pair of commitments is called an opaque commitment pair and
written as commit(x){i,j},{i

′,j′}||commit(y){i,j},{i
′,j′}.

The protocols in this paper use a little different kind of pair, called semi-opaque
commitment pair. A player thinks a pair is an opaque commitment pair but another
player knows the bases of the commitments. Let us consider the case when a protocol
is executed by Alice and Bob. Bob privately makes the pair of commitments with the
knowledge of x and y. For example, Bob randomly selects a bit b ∈ {0, 1} and

S =

{
commit(x){i,j}||commit(y){i

′,j′} if b = 0

commit(x){i
′,j′}||commit(y){i,j} if b = 1

then S = commit(x){i,j},{i
′,j′}||commit(y){i,j},{i

′,j′} for Alice. Such a pair is
called a semi-opaque commitment pair and written as commit(x){i,j},{i

′,j′}|Alice||
commit(y){i,j},{i

′,j′}|Alice, where the name(s) of the players who think the pair is a
opaque commitment pair is written. Note that a name is not written does not mean
the player knows the bases of the commitments. For example, the above example says
nothing about whether Bob knows the bases or not. Note that the name of the player
is written with the initial when it is not ambiguous.
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2.4 Space and time complexities

The space complexity of card-based protocols is evaluated by the number of cards.
Minimizing the number of cards is discussed in many works.

The number of rounds was proposed as a criterion to evaluate the time complexity
of card-based protocols using private operations [13]. The first round begins from the
initial state. The first round is (possibly parallel) local executions by each player using
the cards initially given to each player. It ends at the instant when no further local
execution is possible without receiving cards from another player. The local executions
in each round include sending cards to some other players but do not include receiving
cards. The result of every private execution is known to the player. For example,
shuffling whose result is unknown to the player himself is not executed. Since the
private operations are executed in a place where the other players cannot see, it is hard
to force the player to execute such operations whose result is unknown to the player.
The i(> 1)-th round begins with receiving all the cards sent during the (i−1)-th round.
Each player executes local executions using the received cards and the cards left to the
player at the end of the (i− 1)-th round. Each player executes local executions until
no further local execution is possible without receiving cards from another player. The
number of rounds of a protocol is the maximum number of rounds necessary to output
the result among all possible inputs and random values. If the local execution needs
many operations, for example, O(n) operations where n is the size of the problem, we
might need another criterion to consider the cost of local executions.

Let us show an example of a protocol execution, its space complexity, and time
complexity with the conventional two-color card model. In the two-color card model,
there are two kinds of marks, ♣ and ♡ . One-bit data is represented by two cards as

follows: ♣ ♡ = 0 and ♡ ♣ = 1.
Protocol 1. (two-color model AND protocol in [12])
Input: commit(x) and commit(y).
Output: commit(x ∧ y).

1. Alice executes a private random bisection cut on commit(x). Let the output be
commit(x′). Alice sends commit(x′) and commit(y) to Bob.

2. Bob executes a private reveal on commit(x′). Bob privately sets

S2 =

{
commit(y)||commit(0) if x′ = 1
commit(0)||commit(y) if x′ = 0

and sends S2 to Alice.
3. Alice executes a private reverse selection on S2 using the bit b generated in the

private random bisection cut. Let the obtained sequence be S3. Alice outputs S3.

The AND protocol realizes the following equation.

x ∧ y =

{
y if x = 1
0 if x = 0
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The correctness of the protocol is shown in [12]. The number of cards is four since the
cards of commit(x′) are re-used to set commit(0).

Let us consider the time complexity of the protocol. The first round ends at the
instant when Alice sends commit(x′) and commit(y) to Bob. The second round begins
with receiving the cards by Bob. The second round ends at the instant when Bob sends
S2 to Alice. The third round begins with receiving the cards by Alice. The number of
rounds of this protocol is three.

Since each operation is relatively simple, the dominating time to execute protocols
with private operations is the time to send cards between players and set up so that
the cards are not seen by the other players. Thus the number of rounds is the criterion
to evaluate the time complexity of card-based protocols with private operations.

2.5 Problems with a standard deck of cards

The above AND protocol cannot be executed as it is with a standard deck of cards.
The protocol uses the property that all ♡ cards (♣ cards) are indistinguishable.

Even if the final cards are opened to see the result, it is impossible to know that the
opened cards are the cards of commit(y) or commit(0). If it is possible to detect the
above information, the value of x is known to the players.

First, let us consider a simple encoding using a standard deck of a playing card
that heart and diamond cards mean ♡ and all club and spade cards mean ♣ . With
this simple encoding, let us consider the case when the aces of diamond and spade are
used to set commit(x) and the aces of heart and club are used to set commit(y).

Suppose that x = 1 and y = 0. In this case, the result is commit(y), thus the result
is correct since y = 0. In Step 2 of the protocol, aces of diamond and spade are re-used
to set commit(0). Since x = 1, the result is commit(y). When the cards are opened
to see the result, the cards are the aces of heart and club. The players can know that
y is selected as the output, thus x must be 1. The execution reveals the information
of inputs from the cards used to set the input commitments.

Next, consider the case when the encoding rule i j = 0, j i = 1 if i < j is used
to the standard deck of playing cards. Suppose again that x = 1 and y = 0. When two
inputs are given as commit(x){1,2} and commit(y){3,4}, commit(0) and commit(y)
are set as commit(0){1,2} and commit(y){3,4}, respectively in Step 2. Since x = 1, the
result is commit(y){3,4}. When the cards are opened to see the result, the cards are 3
and 4. The players can know that y is selected as the output, thus x must be 1. This
execution also reveals the information of inputs from the base of the commitments.

When we design a protocol with a standard deck of cards, we must consider the
information leakage from the base of the commitment.

3 AND, XOR, and copy with a standard deck of
cards

This section shows our new protocols for AND, and copy operation with the minimum
number of cards using private operations. We also show XOR protocol using private
operations to show the minimum number of cards can also be achieved using private

9



operations. Before we show the protocols, we show subroutines to change the base of
a given commitment.

3.1 Base-fixed Protocols

A base change protocol changes the base of a commitment without changing the value
of the commitment. A base change protocol is also shown in [66], but the protocol
uses a public shuffle, thus we show a new protocol that uses private operations.
Protocol 2. (Base change protocol)

Input: commit(x){1,2} and two new cards 3 and 4.
Output: commit(x){3,4}.

1. Bob executes a private random bisection cut on commit(x){1,2}. Let b ∈ {0, 1} be
the bit Bob selected. The result is S1 = commit(x⊕ b){1,2}. Bob sends S1 to Alice.

2. Alice executes a private reveal on S1. Alice sees x⊕b. Alice makes S2 = commit(x⊕
b){3,4} and sends S2 to Bob.

3. Bob executes a private reverse cut using b on S2. The result is commit(x){3,4}.

The protocol is three rounds. The security of the protocol is as follows. When Alice
sees the cards in Step 2, the value is x ⊕ b. Since b is a random value unknown to
Alice, Alice has no information about x by the reveal. Bob sees no open cards, thus
Bob has no information about x. Note again that Bob must not disclose b to Alice.

Next, we show a base-fixed protocol that changes a semi-opaque commitment pair
to a standard commitment. Note that base-fixed protocols that do not use private
operations were shown in [66, 79].
Protocol 3. (Base-fixed protocol)

Input: commit(x){1,2},{3,4}|A||commit(y){1,2},{3,4}|A.
(Note: y is a private value that must not be known to the players)

Output: commit(x){1,2}.

1. Bob executes a private random bisection cut on both pairs using two distinct random
bits br1, br2 ∈ {0, 1}. The result S1 = commit(x ⊕ br1)

{1,2},{3,4}|A||commit(y ⊕
br2)

{1,2},{3,4}|A. Bob sends S1 to Alice.
2. Alice executes a private reveal on S1. Alice sees x⊕br1 and y⊕br2. If the base of the

left pair is {1, 2}, Alice just faces down the left pair and the cards, S2, are the result.
Otherwise, the base of the right pair is {1, 2}. Alice makes S2 = commit(x⊕br1)

{1,2}

using the right cards. Alice sends S2 to Bob.
3. Bob executes a private reverse cut using br1 on S2. The result is commit(x){1,2}.

In this protocol, Alice knows the bases of the input commitments. The protocol
can be used only when this information leakage does not cause a security problem, for
example, the bases are randomly set by Bob. The example case is as follows. Initially,
Bob knows the relation between the bases and the private input values. If the result
is opened and the base becomes public, Bob knows the private input value from the
base of the result. Thus, Bob first randomizes the relation between the bases and the
values. Since Bob changed the bases, Bob still knows the relation between the bases
and the values, but Alice cannot know the relation because of the randomization by
Bob. Thus, when Alice privately opens the cards, Alice knows no information from the
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bases of the cards. Alice privately opens the cards and fixes the base of the output.
When the base is fixed, Bob cannot know the private input value from the base of
the commitment. Therefore, when the final output is opened, no information about
private input value is known to the players from the base.

The security of the input value x is just the same as the base change protocol.

3.2 AND protocol

In the following AND, copy, and XOR protocols, the bases of the output commitments
are fixed to avoid information leakage from the bases when the outputs are opened.
Protocol 4. (AND protocol)

Input: commit(x){1,2} and commit(y){3,4}.
Output: commit(x ∧ y){1,2}.

1. Alice executes a private random bisection cut on commit(x){1,2} using random bit
a1. Alice sends the results, S1 = commit(x⊕ a1)

{1,2} and S2 = commit(y){3,4} to
Bob.

2. Bob executes a private reveal on S1. Bob sees x⊕ a1. Bob privately sets

S3,0 =

{
commit(0){1,2}||commit(y){3,4} if x⊕ a1 = 0
commit(y){3,4}||commit(0){1,2} if x⊕ a1 = 1

Bob sends S3,0 to Alice.
3. Alice executes private random bisection cuts on each of pairs in S3,0 using two

distinct random bits a2 and a3. Let the result be S3,1.

S3,1 =

{
commit(0⊕ a2)

{1,2}||commit(y ⊕ a3)
{3,4} if x⊕ a1 = 0

commit(y ⊕ a2)
{3,4}||commit(0⊕ a3)

{1,2} if x⊕ a1 = 1

Alice sends S3,1 to Bob.
4. Bob randomly selects bit b1 ∈ {0, 1}. Bob reveals S3,1 and exchanges the bases of

the two commitments if b1 = 1. Let the result be S3,2.

S3,2 =

{
commit(0⊕ a2)

{1,2},{3,4}|A||commit(y ⊕ a3)
{1,2},{3,4}|A if x⊕ a1 = 0

commit(y ⊕ a2)
{1,2},{3,4}|A||commit(0⊕ a3)

{1,2},{3,4}|A if x⊕ a1 = 1

Bob sends S3,2 to Alice.
5. Alice executes private reverse cuts on the two pairs of S3,2 using a2 and a3,

respectively. Let the result be S4.

S4 =

{
commit(0){1,2},{3,4}|A||commit(y){1,2},{3,4}|A if x⊕ a1 = 0
commit(y){1,2},{3,4}|A||commit(0){1,2},{3,4}|A if x⊕ a1 = 1

Alice then executes a private reverse selection on S4 using a1. Let S5 be the
result and the remaining two cards be S6. The result S5 = commit(y){1,2},{3,4}|A if
(a1 = 0 and x⊕ a1 = 1) or (a1 = 1 and x⊕ a1 = 0). The condition equals x = 1.
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S5 = commit(0){1,2},{3,4}|A if (a1 = 0 and x⊕ a1 = 0) or (a1 = 1 and x⊕ a1 =
1). The condition equals x = 0. Thus,

S5 =

{
commit(y){1,2},{3,4}|A if x = 1
commit(0){1,2},{3,4}|A if x = 0

= commit(x ∧ y){1,2},{3,4}|A

Alice sends S5 and S6 to Bob.
6. Bob and Alice execute Protocol 3 (Base-fixed protocol) to S5||S6. Then they obtain

commit(x ∧ y){1,2}.

Note that this protocol has been changed from the proceedings version [80]. In
the proceedings version, Bob first executes a base randomization and after that, Bob
reveals randomized x and sets the result just like Step 2 in this paper’s protocol. Thus,
Alice’s randomization of value y was necessary before Bob’s base randomization. In
this paper’s protocol, Bob’s reveal and setting the result is first executed and then
Bob’s base randomization is executed. By changing the order, Alice does not need to
randomize y in Step 1 and the protocol becomes close to the original two-color model
protocol [12].

The protocol is eight rounds. The number of cards is four. Since four cards are
necessary to input x and y, the number of cards is the minimum. The correctness of
the output value is shown in the protocol, thus we show the security.
Theorem 1. The AND protocol is secure.

Proof. First, we show the security for Bob. Though Bob sees cards in Step 2, the cards,
S1 = commit(x ⊕ a1)

{1,2} are randomized by a1. Thus Bob obtains no information
about x. Bob then sees the cards of S3,1 in Step 4. Since Bob knows x⊕ a1, he knows
S3,1 was commit(0)||commit(y) or commit(y)||commit(0) before the randomization
by Alice. However, the opened values are randomized by a2 and a3. Thus, Bob obtains
no information about y from the opened values.

Alice sees cards in Step 2 of the base-fixed protocol. In Step 4 after the base
randomization by Bob,

S3,2 =


commit(0⊕ a2)

{1,2}||commit(y ⊕ a3)
{3,4} if x⊕ a1 = 0 and b1 = 0

commit(0⊕ a2)
{3,4}||commit(y ⊕ a3)

{1,2} if x⊕ a1 = 0 and b1 = 1
commit(y ⊕ a2)

{3,4}||commit(0⊕ a3)
{1,2} if x⊕ a1 = 1 and b1 = 0

commit(y ⊕ a2)
{1,2}||commit(0⊕ a3)

{3,4} if x⊕ a1 = 1 and b1 = 1

Thus, after the reverse cuts in Step 5,

S4 =


commit(0){1,2}||commit(y){3,4} if x⊕ a1 = 0 and b1 = 0
commit(0){3,4}||commit(y){1,2} if x⊕ a1 = 0 and b1 = 1
commit(y){3,4}||commit(0){1,2} if x⊕ a1 = 1 and b1 = 0
commit(y){1,2}||commit(0){3,4} if x⊕ a1 = 1 and b1 = 1
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After the private reverse selection by Alice,

S5 =


commit(0){1,2} if x = 0 and b1 = 0
commit(0){3,4} if x = 0 and b1 = 1
commit(y){3,4} if x = 1 and b1 = 0
commit(y){1,2} if x = 1 and b1 = 1

Similarly,

S6 =


commit(y){3,4} if x = 0 and b1 = 0
commit(y){1,2} if x = 0 and b1 = 1
commit(0){1,2} if x = 1 and b1 = 0
commit(0){3,4} if x = 1 and b1 = 1

These values are then randomized using br1 and br2 in Step 1 of the base-fixed
protocol. Thus, Alice sees the randomized cards of S5||S6, which are

commit(br1)
{1,2}||commit(y ⊕ br2)

{3,4} if x = 0 and b1 = 0
commit(br1)

{3,4}||commit(y ⊕ br2)
{1,2} if x = 0 and b1 = 1

commit(y ⊕ br1)
{3,4}||commit(br2)

{1,2} if x = 1 and b1 = 0
commit(y ⊕ br1)

{1,2}||commit(br2)
{3,4} if x = 1 and b1 = 1

Therefore, Alice sees

commit(0){1,2}||commit(0){3,4}

if (x = 0 ∧ b1 = 0 ∧ br1 = 0 ∧ y ⊕ br2 = 0) ∨ (x = 1 ∧ b1 = 1 ∧ y ⊕ br1 = 0 ∧ br2 = 0)
commit(0){1,2}||commit(1){3,4}

if (x = 0 ∧ b1 = 0 ∧ br1 = 0 ∧ y ⊕ br2 = 1) ∨ (x = 1 ∧ b1 = 1 ∧ y ⊕ br1 = 0 ∧ br2 = 1)
commit(1){1,2}||commit(0){3,4}

if (x = 0 ∧ b1 = 0 ∧ br1 = 1 ∧ y ⊕ br2 = 0) ∨ (x = 1 ∧ b1 = 1 ∧ y ⊕ br1 = 1 ∧ br2 = 0)
commit(1){1,2}||commit(1){3,4}

if (x = 0 ∧ b1 = 0 ∧ br1 = 1 ∧ y ⊕ br2 = 1) ∨ (x = 1 ∧ b1 = 1 ∧ y ⊕ br1 = 1 ∧ br2 = 1)
commit(0){3,4}||commit(0){1,2}

if (x = 0 ∧ b1 = 1 ∧ br1 = 0 ∧ y ⊕ br2 = 0) ∨ (x = 1 ∧ b1 = 0 ∧ y ⊕ br1 = 0 ∧ br2 = 0)
commit(0){3,4}||commit(1){1,2}

if (x = 0 ∧ b1 = 1 ∧ br1 = 0 ∧ y ⊕ br2 = 1) ∨ (x = 1 ∧ b1 = 0 ∧ y ⊕ br1 = 0 ∧ br2 = 1)
commit(1){3,4}||commit(0){1,2}

if (x = 0 ∧ b1 = 1 ∧ br1 = 1 ∧ y ⊕ br2 = 0) ∨ (x = 1 ∧ b1 = 0 ∧ y ⊕ br1 = 1 ∧ br2 = 0)
commit(1){3,4}||commit(1){1,2}

if (x = 0 ∧ b1 = 1 ∧ br1 = 1 ∧ y ⊕ br2 = 1) ∨ (x = 1 ∧ b1 = 0 ∧ y ⊕ br1 = 1 ∧ br2 = 1)

Let Pij(i ∈ {0, 1}, j ∈ {0, 1}) be the probability when x = i and
y = j. The probabilities P (br1 = 0), P (br1 = 1), P (br2 = 0), P (br2 =
1), P (b1 = 0), and P (b1 = 1) are 1/2, thus the probabilities when Alice sees
commit(v){i,i+1}||commit(w){4−i,5−i}(v, w ∈ {0, 1}, i ∈ {1, 3}) are the same value
(P00 + P01 + P10 + P11)/8. Thus, Alice obtains no information from the cards she
sees.
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The comparison of AND protocols is shown in Table 1.
Note that by the discussion in [12], any two-variable Boolean function can be

computed by a protocol similar to Protocol 4.

3.3 Copy protocol

Next, we show a new copy protocol. Note that the protocol is essentially the same as
the one in [12] for the two-color card model. The number of cards is the minimum.
Protocol 5. (Copy protocol)

Input: commit(x){1,2} and two new cards 3 and 4.
Output: commit(x){1,2} and commit(x){3,4}

1. Alice executes a private random bisection cut on commit(x){1,2}. Let b be the
random bit Alice selects. Alice sends the result, commit(x⊕ b){1,2}, to Bob.

2. Bob executes a private reveal on commit(x⊕ b){1,2} and sees x⊕ b. Bob privately
makes commit(x ⊕ b){3,4}. Bob sends commit(x ⊕ b){1,2} and commit(x ⊕ b){3,4}

to Alice.
3. Alice executes a private reverse cut on each of the pairs using b. The result is

commit(x){1,2} and commit(x){3,4}.

The protocol is three rounds.
Theorem 2. The copy protocol is secure.

Proof. Since Alice sees no open cards, Alice obtains no information about the input
value. Though Bob sees x ⊕ b, input x is randomized by b and Bob obtains no
information about x.

The comparison of copy protocols is shown in Table 2.

3.4 XOR protocol

Though the minimum number of cards is already achieved in [66], the protocol uses
public shuffles. We show a new protocol that uses private operations. The protocol is
essentially the same as the one in [13] for the two-color card model.
Protocol 6. (XOR protocol)

Input: commit(x){1,2} and commit(y){3,4}.
Output: commit(x⊕ y){1,2}.

1. Alice executes a private random bisection cut on commit(x){1,2} and
commit(y){3,4} using the same random bit b ∈ {0, 1}. The result is commit(x ⊕
b){1,2} and commit(y ⊕ b){3,4}. Alice sends these cards to Bob.

2. Bob executes a private reveal on commit(y ⊕ b){3,4}. Bob sees y ⊕ b. Bob executes
a private reverse cut on commit(x⊕ b){1,2} using y⊕ b. The result is commit((x⊕
b)⊕ (y ⊕ b)){1,2} = commit(x⊕ y){1,2}.

The protocol is two rounds. The protocol uses four cards. Since any protocol needs
four cards to input x and y, the number of cards is the minimum.
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Note that if Bob sends commit(y ⊕ b){3,4} in Step 2 to Alice and Alice executes a
private reverse cut using b, an input commit(y){3,4} can be obtained without additional
cards. This protocol is called an input preserving XOR and it is used in Section 3.6.
Theorem 3. The XOR protocol is secure.

Proof. Since Alice sees no open cards, Alice obtains no information about the input
values. Though Bob sees y ⊕ b, input y is randomized by b and Bob obtains no
information about y.

The comparison of XOR protocols is shown in Table 3.

3.5 Difference between AND and XOR protocols

The AND protocol (Protocol 4) is much more complicated compared to the XOR
protocol (Protocol 6) and the copy protocol (protocol 5). The reason is the result of
XOR does not change after the randomization of input values, but the result of AND
changes the value.

Some randomization of input values is necessary for any card-based protocols to
hide the relation between the input values and the output values. After a random-
ization, the input value x is changed to x ⊕ b for some random bit b ∈ {0, 1}. Since
(x ⊕ b) ⊕ (y ⊕ b) = x ⊕ y is satisfied, thus the randomization by b is canceled by
the XOR calculation of two randomized input values. This is the reason the XOR
protocol is simple. On the other hand, AND does not have the property, that is,
(x ⊕ b) ∧ (y ⊕ b) ̸= x ∧ y. Thus, additional steps are necessary to obtain the result
using randomized input values and the AND protocol is more complicated than the
XOR protocol.

For the protocols using a standard deck of cards, the above fact leads the informa-
tion leakage from the base of the cards. In the XOR protocol (Protocol 6), the base
of output is always the same as the one used in the input commit(x). Just swapping
the two cards (or doing nothing) can output the result, thus the base is not changed
during the execution. In the copy protocol (Protocol 5), the bases of the outputs are
the same as the one used in the input commit(x) and the new cards. The base of the
output commit(x) is unchanged and the base of the new copy of x is the base of the
new cards. Thus, there is no information leakage from the bases of the cards if the
cards are opened to see the value. Therefore, complicated steps to hide the bases of
the cards are unnecessary in these protocols.

On the other hand, the AND protocol must output commit(y) if x = 1 and
commit(0) if x = 0. The base of commit(y) is {3, 4}. The base of commit(0) differs
from the base of commit(y) (in order to minimize the number of cards, the base of
commit(0) is {1, 2}). If the protocol just outputs commit(y){3,4} or commit(0){1,2},
the players know the value of x from the base of the output when the final result
is opened. Thus, the base of the output must be fixed to {1, 2} in either case and
complicated steps are necessary in Protocol 4.

15



3.6 Any Boolean function

We show two kinds of protocols to compute any n-variable Boolean function. The first
one uses many cards but the number of rounds is constant. The second one uses fewer
cards but needs many rounds. Let f(x1, x2, . . . , xn) be an n-variable Boolean function.
Protocol 7. (Protocol for any n-variable Boolean function (1))

Input: commit(xi)
{2i−1,2i}(i = 1, 2, . . . , n).

Output: commit(f(x1, x2, . . . , xn))
{1,2}.

1. Alice executes a private random bisection cut on commit(xi)
{2i−1,2i}(i =

1, 2, . . . , n). Let the output be commit(x′
i)

{2i−1,2i}(i = 1, 2, . . . , n). Note that one
distinct random bit bi is selected for each xi(i = 1, 2, . . . , n). x′

i = xi ⊕ bi(i =
1, 2, . . . , n). Alice sends commit(x′

i)
{2i−1,2i}(i = 1, 2, . . . , n) to Bob.

2. Bob executes a private reveal on commit(x′
i)

{2i−1,2i}(i = 1, 2, . . . , n). Bob selects a
random bit b ∈ {0, 1}. Bob privately makes 2n commitments Sa1,a2,...,an

(ai ∈ {0, 1}, i = 1, 2, . . . , n) as Sa1,a2,...,an = commit(f(a1 ⊕ x′
1, a2 ⊕ x′

2, . . . , an ⊕
x′
n)⊕ b) using card 3, 4, . . . , 2n+1+1, 2n+1+2. Note that the cards used to set each

commitment are randomly selected by Bob. Bob executes a private random bisection
cut on commit(·){1,2} to erase the value. Bob sends these commitments to Alice.

3. Alice privately reveals Sb1,b2,...,bn . Alice sees f(b1 ⊕ x′
1, b2 ⊕ x′

2, . . . , bn ⊕ x′
n)⊕ b =

f(x1, x2, . . . , xn) ⊕ b, since x′
i = xi ⊕ bi(i = 1, 2, . . . , n). Alice privately makes

S = commit(f(x1, x2, . . . , xn)⊕ b){1,2} and sends S to Bob.
4. Bob executes a private reverse cut using b on S. The result is

commit(f(x1, x2, . . . , xn))
{1,2}. Bob outputs the result.

Note that Bob can re-use cards of 3, 4, . . . , 2n − 1, and 2n to set Sa1,a2,...,an
. The

protocol uses 2n+1 + 2 cards. The number of rounds is four.
Theorem 4. Protocol 7 is secure.

Proof. Bob sees x′
i = xi⊕ bi, but the input xi is randomized by bi and Bob obtains no

information about xi. Alice sees f(x1, x2, . . . , xn)⊕b, but the value is randomized by b
and Alice obtains no information about f(x1, x2, . . . , xn). Alice obtains no information
from the base of the commitment since the base is randomly selected by Bob.

The main idea of the other protocol is the same as the one in [12] for the two-color
card model, which uses an input preserving AND protocol. After the AND protocol,
the unused pair of cards has g = x̄ ∧ y [12]. Let h = x ∧ y. The last step of the
AND protocol (the first step of the base-fixed protocol) is changed so that Alice sets
commit(h ⊕ br1)

{1,2} and commit(g ⊕ br2)
{3,4}. By the private reverse cut by Bob,

Bob obtains commit(h){1,2} and commit(g){3,4}. Execute the input preserving XOR
protocol to g and h so that h is preserved. The output g⊕ h = x∧ y⊕ x̄∧ y = y, thus
we can obtain commit(x∧ y){1,2} and commit(y){3,4}. Therefore, one input value can
be preserved without additional cards by the AND protocol.

Any Boolean function f(x1, x2, . . . , xn) can be represented as follows:
f(x1, x2, . . . , xn) = x̄1 ∧ x̄2 ∧ · · · x̄n ∧ f(0, 0, . . . , 0)⊕ x1 ∧ x̄2 ∧ · · · x̄n ∧ f(1, 0, . . . , 0)⊕
x̄1 ∧ x2 ∧ · · · x̄n ∧ f(0, 1, . . . , 0)⊕ · · · ⊕ x1 ∧ x2 ∧ · · ·xn ∧ f(1, 1, . . . , 1).
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Since the terms with f(i1, i2, . . . , in) = 0 can be removed, this function f can

be written as f =
⊕k

i=1 v
i
1 ∧ vi2 ∧ · · · ∧ vin, where vij = xj or x̄j . Let us write Ti =

vi1 ∧ vi2 ∧ · · · ∧ vin. The number of terms k(< 2n) depends on f .
Protocol 8. (Protocol for any n-variable Boolean function (2))

Input: commit(xi)
{2i+3,2i+4}(i = 1, 2, . . . , n).

Output: commit(f(x1, x2, . . . , xn))
{1,2}.

The additional four cards (two pairs of cards) 1,2,3, and 4 are used as follows.
1 and 2 store the intermediate value to compute f .
3 and 4 store the intermediate value to compute Ti.

Execute the following steps for i = 1, 2, . . . , k.

1. Copy vi1 from the input commit(x1) as commit(vi1)
{3,4}. (Note that if vi1 is x̄1,

NOT is taken after the copy).
2. For j = 2, . . . , n, execute the following procedure: Execute the input preserving AND

protocol to commit(·){3,4} and commit(vij) so that input commit(vij) is preserved.

The result is stored as commit(·){3,4}. (Note that if vij is x̄j, NOT is taken before
the AND protocol, and NOT is taken again for the preserved input.)

At the end of this step, Ti is obtained as commit(vi1 ∧ vi2 ∧ · · · ∧ vin)
{3,4}.

3. If i = 1, copy commit(·){3,4} to commit(·){1,2}. If i > 1, apply the XOR protocol
between commit(·){3,4} and commit(·){1,2}. The result is stored as commit(·){1,2}.

At the end of the protocol, commit(f(x1, x2, . . . xn))
{1,2} is obtained.

The comparison of protocols to compute any n-variable Boolean function is shown
in Table 4.

The number of additional cards in [14] with a standard deck of cards is 8. Thus
the number of additional cards is reduced using private operations.

4 Private input protocols

This section shows protocols when each player has his/her secret value and they
securely input the value into the protocol. The protocols for the two-color model
were shown in [72, 73, 81]. The main idea of these protocols is as follows: when Alice
has input x, Bob has input y, and they calculate f(x, y), Alice prepares the pairs
commit(f(x, 0))||commit(f(x, 1)). Bob privately selects the one with his input value
y from the two pairs, then they can obtain commit(f(x, y)).

Using the idea, we can obtain the following protocols for any two-variable function
f(x, y) that includes x ∧ y. Note that a procedure to fix the base of the output is
necessary to prevent information leakage from the bases of the cards. In the following
protocol, fixing the base can be executed before the selection of the output, since Bob
knows which pairs are the final output. This reduces the number of rounds.
Protocol 9. (Private input AND-type protocol)

Input: Alice has x. Bob has y.
Output: commit(f(x, y)){1,2}.

1. Alice selects two random bits a1, a2 ∈ {0, 1} and makes S1 = commit(f(x, 0) ⊕
a1)

{1,2}||commit(f(x, 1)⊕ a2)
{3,4} and sends S1 to Bob.

17



2. Bob does nothing if y = 0. Otherwise, Bob privately reveals S1 and swaps the bases
of the two pairs, that is, the result is commit(f(x, 0)⊕ a1)

{3,4}||commit(f(x, 1)⊕
a2)

{1,2}. By the step, the base of commit(f(x, y)) becomes {1, 2}. The result S2 =
commit(f(x, 0)⊕ a1)

{1,2},{3,4}|A||commit(f(x, 1)⊕ a2)
{1,2}{3,4}|A. Bob sends S2 to

Alice.
3. Alice executes private reverse cuts on each pair of cards in S2 using a1 and a2. The

result S3 = commit(f(x, 0)){1,2},{3,4}|A||commit(f(x, 1)){1,2}{3,4}|A Alice sends S3

to Bob.
4. Bob executes a private reverse selection on S3 using y. The result is S4 =

commit(f(x, y)){1,2}.

The protocol is four rounds. The security for Alice is obvious since Alice sees no
open cards. Though Bob sees some cards, the values are randomized thus Bob has
no information about a and f(x, y). From the bases of the cards, Bob obtains no
information since the sequence of the bases (whether {1, 2}, {3, 4} or {3, 4}, {1, 2}) is
decided by Bob.

For XOR, a more simple protocol can be obtained, since executing a base-fixed
protocol is unnecessary.
Protocol 10. (Private input XOR protocol)

Input: Alice has x. Bob has y.
Output: commit(x⊕ y){1,2}.

1. Alice makes S1 = commit(x){1,2} and sends S1 to Bob.
2. Bob executes a private reverse cut using y, that is, the left and the right are swapped

if y = 1 and do nothing if y = 0. The result S2 = commit(x⊕ y){1,2}.

The protocol is two rounds. Both players see no cards, thus the security is obvious.

5 Asymmetric card protocol

A standard deck of cards has some number of asymmetric cards (Ace, 3, 5, 6, 7, and 9
of spade, heart, and club). If the back of the cards is symmetric, one-bit commitment

can be represented by one card such as ♣=0 and

♣

=1. For each asymmetric card,
Alice and Bob decide which is the upward or the downward in advance.

Protocols with asymmetric cards are first considered in [60] and then several pro-
tocols are shown in [12, 73–78]. These works consider the case when there are many
cards with the same asymmetric mark. Thus, this is the first protocol that uses distinct
asymmetric cards.

In this section, distinct asymmetric cards are numbered as 1, 2, . . . ,m and sym-
metric cards are not used. i =0 and

i

=1. Commitment of x using card i is written

as commit(x){i}.
For such an encoding method, a private random bisection cut on a committed bit

is changed to upside down the card according to the random bit. A private reverse cut
and a private reverse selection on an even sequence are unchanged. A private reverse
cut and a private reverse selection on a single card are changed upside down the card
according to the bit. Using these private operations, all protocols shown above work
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for the asymmetric cards. The number of cards used by this protocol is half of the
symmetric card protocols.

First, we show AND, XOR, and copy protocols whose inputs are given in a
committed manner.
Protocol 11. (Asymmetric card base-fixed protocol)

Input: commit(x){1},{2}|A||commit(y){1},{2}|A.
(Note: y is a private value that must not be known to the players)

Output: commit(x){1}.

1. Bob selects two random bisection bits br1, br2 ∈ {0, 1}. If br1 = 1, Bob turns upside
down commit(x). If br2 = 1, Bob turns upside down commit(y). The result S1 =
commit(x⊕ br1)

{1},{2}|A||commit(y ⊕ br2)
{1},{2}|A. Bob sends S1 to Alice.

2. Alice executes a private reveal on S1. Alice sees x⊕ br1 and y ⊕ br2. If the base of
the left card is {1}, Alice just faces down the left card and the card, S2, is the result.
Otherwise, the base of the right card is {1}. Alice makes S2 = commit(x⊕ br1)

{1}

using the right card. Alice sends S2 to Bob.
3. Bob turns upside down S2 if br1 = 1. The result is commit(x){1}.

The protocol is three rounds.
Protocol 12. (Asymmetric card AND protocol)

Input: commit(x){1} and commit(y){2}.
Output: commit(x ∧ y){1}.

1. Alice selects a random bit a1. Alice turns upside down commit(x){1} if a1 = 1.
Alice sends the result, S1 = commit(x⊕ a1)

{1} and S2 = commit(y){2} to Bob.
2. Bob executes a private reveal on S1. Bob sees x⊕ a1. Bob privately sets

S3,0 =

{
commit(0){1}||commit(y){2} if x⊕ a1 = 0
commit(y){2}||commit(0){1} if x⊕ a1 = 1

Bob sends S3,0 to Alice.
3. Alice selects two random bits a2 and a3. Alice turns upside down the left card of

S3,0 if a2 = 1. Alice turns upside down the right card of S3,0 if a3 = 1. Let the
result be S3,1.

S3,1 =

{
commit(0⊕ a2)

{1}||commit(y ⊕ a3)
{2} if x⊕ a1 = 0

commit(y ⊕ a2)
{2}||commit(0⊕ a3)

{1} if x⊕ a1 = 1

Alice sends S3,1 to Bob.
4. Bob randomly selects bit b1 ∈ {0, 1}. Bob reveals S3,1 and exchanges the bases of

the two commitments if b1 = 1. Let the result be S3,2.

S3,2 =

{
commit(0⊕ a2)

{1},{2}|A||commit(y ⊕ a3)
{1},{2}|A if x⊕ a1 = 0

commit(y ⊕ a2)
{1},{2}|A||commit(0⊕ a3)

{1},{2}|A if x⊕ a1 = 1

Bob sends S3,2 to Alice.
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5. Alice turns upside down the left card of S3,2 if a2 = 1. Alice turns upside down the
right card of S3,2 if a3 = 1. Let the result be S4.

S4 =

{
commit(0){1},{2}|A||commit(y){1},{2}|A if x⊕ a1 = 0
commit(y){1},{2}|A||commit(0){1},{2}|A if x⊕ a1 = 1

Alice then executes a private reverse selection on S4 using a1. Let S5 be the
result and the remaining card be S6. The result S5 = commit(y){1},{2}|A if (a1 = 0
and x⊕ a1 = 1) or (a1 = 1 and x⊕ a1 = 0). The condition equals x = 1.

S5 = commit(0){1},{2}|A if (a1 = 0 and x⊕a1 = 0) or (a1 = 1 and x⊕a1 = 1).
The condition equals x = 0. Thus,

S5 =

{
commit(y){1},{2}|A if x = 1
commit(0){1},{2}|A if x = 0

= commit(x ∧ y){1},{2}|A

Alice sends S5 and S6 to Bob.
6. Bob and Alice execute an asymmetric card base-fixed protocol to S5||S6. Then they

obtain commit(x ∧ y){1}.

The eight-round protocol uses two cards.
Protocol 13. (Asymmetric card XOR protocol)

Input: commit(x){1} and commit(y){2}.
Output: commit(x⊕ y){1}.

1. Alice selects random bit b. Alice turns down commit(x){1} and commit(y){2} if
b = 1. The result is commit(x⊕b){1} and commit(y⊕b){2}. Alice sends these cards
to Bob.

2. Bob executes a private reveal on commit(y⊕b){2}. Bob sees y⊕b. Bob turns upside
down commit(x⊕ b){1} if y ⊕ b = 1. The result is commit((x⊕ b)⊕ (y ⊕ b)){1} =
commit(x⊕ y){1}.

The two-round protocol uses two cards.
Protocol 14. (asymmetric card Copy protocol)

Input: commit(x){1} and new card 2.
Output: commit(x){1} and commit(x){2}.

1. Alice selects a random bit b ∈ {0, 1}. If b = 1, Alice turns upside down
commit(x){1}. Alice sends the result, commit(x⊕ b){1}, to Bob.

2. Bob executes a private reveal on commit(x ⊕ b){1} and sees x ⊕ b. Bob privately
makes commit(x ⊕ b){2}. Bob sends commit(x ⊕ b){1} and commit(x ⊕ b){2} to
Alice.

3. Alice turns upside down each card if b = 1. The result is commit(x){1} and
commit(x){2}.

The three-round protocol uses two cards.
Next, we show private input protocols.
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Protocol 15. (Asymmetric card private input AND-type protocol)
Input: Alice has x. Bob has y.
Output: commit(f(x, y)){1}.

1. Alice selects two random bits a1, a2 ∈ {0, 1} and makes S1 = commit(f(x, 0) ⊕
a1)

{1}||commit(f(x, 1)⊕ a2)
{2} and sends S1 to Bob.

2. Bob does nothing if y = 0. Otherwise, Bob privately reveals S1 and swaps the bases
of the two cards, that is, the result is commit(f(x, 0) ⊕ a1)

{2}||commit(f(x, 1) ⊕
a2)

{1}. By the step, the base of commit(f(x, y)) becomes {1}. The result S2 =
commit(f(x, 0)⊕a1)

{1},{2}|A||commit(f(x, 1)⊕a2)
{1}{2}|A. Bob sends S2 to Alice.

3. Alice turns upside down the left (right) card if a1 = 1(a2 = 1), respectively. The
result S3 = commit(f(x, 0)){1},{2}|A||commit(f(x, 1)){1}{2}|A Alice sends S3 to
Bob.

4. Bob executes private reverse cut on S3 using y. The result is S4 =
commit(f(x, y)){1}.

The four-round protocol uses two cards.
Protocol 16. (Asymmetric card private input XOR protocol)

Input: Alice has x. Bob has y.
Output: commit(x⊕ y){1}.

1. Alice makes S1 = commit(x){1} and sends S1 to Bob.
2. Bob turns upside down S1 if y = 1. The result S2 = commit(x⊕ y){1}.

The two-round protocol uses one card.
The correctness and security proofs are just the same as the ones for the standard

deck of symmetric card protocols.

6 Conclusion

This paper showed AND, XOR, and copy protocols that use a standard deck of cards.
The number of cards used by the protocols is the minimum. The results show the effec-
tiveness of private operations. One of the remaining problems is obtaining protocols
when a player is malicious.
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