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Abstract. The relationship of three cryptographic channels, secure channels (SC),
anonymous channels (AC) and direction-indeterminable channels (DIC), was in-
vestigated by Okamoto. He showed that the three cryptographic channels are re-
ducible to each other, but did not consider communication schedules clearly as
well as composable security. This paper refines the relationship of the three chan-
nels in the light of communication schedules and composable security. We model
parties by the task-probabilistic input/output automata (PIOA) to treat commu-
nication schedules, and adopt the universally composable (UC) framework by
Canetti to treat composable security. We show that a class of anonymous chan-
nels, two-anonymous channels (2AC), and DIC are reducible to each other under
any schedule and that DIC and SC are reducible to each other under some types
of schedules, in the UC framework with the PIOA model.
Key words: Secure Channel (SC), Two-Anonymous Channel (2AC), Direction-
Indeterminable Channel (DIC), Universal Composability (UC), Probabilistic In-
put/Output Automaton (PIOA)

1 Introduction

One of the most important results in cryptography is the relationship amongcompu-
tational cryptographic assumptions. For example, several of the most important cryp-
tographic primitives such as pseudo-random generators, secure bit-commitment, and
secure signature schemes have been proven to exist if and only if one-way functions
exist [8–11, 13].

Apart from thecomputationalassumptions made in the above-mentioned works,
somephysicalor unconditionally secureassumptions and primitives, which rely on
no computational condition/assumption, are known to be essential in unconditionally
secure (or information theoretically) cryptography. For example, unconditionally secure
multi-party protocols can be constructed assumingsecure channels[1, 7].

The relationship of suchphysical(unconditionally secure) assumptions for channels
has been studied by [12]. The paper shows that three physical assumptions about chan-
nels are equivalent (or reducible to each other). Here, the three physical assumptions are
the existence of the anonymous channel(AC), direction-indeterminable channel(DIC),
and secure channel(SC).
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However, paper [12] did not consider communication schedules clearly as well as
composable security, although the communication schedule like synchronous or asyn-
chronous communication is critical in the reductions of the three channels, and compos-
able security is crucial for channels since channels are always lower level components
of systems and applications.

In this paper, we refine the relationship of the three channels in the light of commu-
nication schedules and composable security.

This paper adopts the universally composable (UC) framework by Canetti [2] to
treat composable security, since UC is the most powerful and well-studied framework
for composable security and is flexible enough to cover the security of physical (uncon-
ditionally secure) primitives like channels.

Although parties are usually modeled by interactive Turing machines (ITMs) in the
standard settings in cryptography including the UC framework [2], this paper models
parties by not ITMs but by task-probabilistic input/output automata (PIOA) [3–6] to
treat communication schedules. This is because: ITMs cannot treat flexible communi-
cation schedules like various types of asynchronous and nondeterministic schedules,
but task PIOA is one of the most powerful models to treat a variety of communication
schedules. The master schedule in task PIOA can control timing of activation among
party with flexible schedule.

This paper shows that a class of anonymous channels, two-anonymous channels
(2AC), and DIC are reducible to each other under any schedule in the UC framework
with the PIOA model. We also show that DIC and SC are reducible to each other under
some types of schedules in the UC framework with the PIOA model.

2 Preliminaries

This section introduces the basic notion of (task) Probabilistic Input/Output Automata
(PIOA) and security notion of Universally Composability(UC). (See papers [6] and [2]
for PIOA and UC, respectively, if you need more details.)

2.1 (Task) Probabilistic I/O Automata

We recall the basic definitions of PIOA and task-PIOA from [3, 4, 6].

Definition 1. [Probabilistic I /O Automaton (PIOA)] Let Q,q, I, O, H and D be,
respectively, a countable set of states, a start state (satisfyingq ∈ Q), a countable set of
input actions, a countable set of output actions, a countable set of internal actions and
a transition relation satisfying D⊆ Q× (I ∪ O∪ H) × Disc(Q), where Disc(Q) is the
set of discrete probability measures on Q. Let PIOAP be the tuple of(Q,q, I ,O,H,D).

Definition 2. [Task Probabilistic I /O Automaton (Task PIOA)] Let T = (P,R) be
a task-PIOA , whereP = (Q,q, I ,O,H,D) is a PIOA (satisfying the transition deter-
minism and input enabling properties), andR is an equivalence relation on the locally-
controlled actions L= O∪ H.
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Execution Fragment and Trace Let qi and ai for i ∈ {0,1,2, · · · } be states and
actions, respectively. We consider that an execution fragment of task-PIOAT is the
following infinite or finite sequenceα = q0a1q1a2 . . . . If the sequenceα is a finite
sequence, the last state ofα is denoted by lst(α). If α is a finite sequence with lst(α) =
qi+1, for each (qi ,ai+1,qi+1) there exists a transition (qi ,ai+1, µ) ∈ D with qi+1 ∈ supp(µ),
where supp(µ) is a support ofµ. If there exists an execution fragmentα of an automaton
P, we denote bytrace(α) the input and output (external actions) sequence obtained from
α.

In this paper, we formally model partiesP1, · · · ,Pn in a protocol by task-PIOA
T1, · · · ,Tn. Each partyPi has a local schedulerρi for the task-PIOATi . There exists a
master schedulerM for all parties,P1, · · · ,Pn in a protocol.

Definition 3. [Local Scheduler] Let T be a closed task-PIOA for a party P. A local
scheduler,ρ, for T is defined to be a finite or infinite sequence of tasks, t1, t2, · · · ; i.e.,
ρ = t1, t2, · · · . ρ specifies the executing order of tasks in T. (We often omit the explicit
description ofρ in the specification of a task-PIOA ifρ is trivial from the specification.)

Definition 4. [Master Scheduler] A master scheduler, M, is defined to be a finite or
infinite sequence of party identifiers, i1, i2, · · · ; i.e., M = i1, i2, · · · . M grobally specifies
the executing order of tasks in a protocol of (P1, · · · ,Pn) with preserving the local
schedulings of all parties.

For example, letρi of party i be ti1, ti2, · · · (i = 1,2,3), and M= 1, 2,2,2,3,1,1,3.
Then the grobal executing order of task is t11, t21, t22, t23, t31, t12, t13, t32.

The master schedule is not under the control of adversary although the local sched-
ule is under the control of adversary. In other words, the adversary can not to intervene
the master schedule, but he can encumber the local schedule.

2.2 Universal Composability

UC Security Let Env, Adv, andS imbe an environment, an adversary, and a simulator,
respectively. LetRealdenote the output of environmentEnvwhen interacting with ad-
versaryAdvand partiesInit andRecrunning channel protocolπ. Let Ideal denote the
output of environmentEnvafter interacting in the ideal world with simulatorS imand
ideal functionalityF . We say thatRealUC-realizesF , if for any adversaryAdv∈ PPT
(probabilistic polynomial time) there exists a simulatorS im∈ PPT such that for any
environmentEnv∈ PPT, IdealF ,S im,Env ≈ Realπ,Adv,Env, where≈ denotes statistically
indistinguishable andPPT denotes a class of polynomial-time bounded machines.

Hereafter, we use the bold style, Real and Ideal, to express systems of the PIOA
notion to distinguish the real and ideal world of UC security. We then use the roman
style also means the task-PIOA to divide the notions between task-PIOA and UC notion.

3 Three Cryptographic Channels and Definitions

3.1 Secure Channel (SC)

A secure channel is a channel such that the initiator (message sender) and the receiver
can safely transmit messages to each other without the content being retrieved by a third
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party or adversary. This secure channel consists of three sessions, establish session, data
sending session, and expire session: 1. The establish session creates a session between
the initiator and the receiver to start message sending. 2. The data sending session sends
a message to the receiver safely. 3. The expire session terminates the the existing session
and clears the secret key.

Definition 5. The code for secure channel,FSC, is defined in Fig. 1. (̄X, where(X ∈
Init,Rec}), means that if X= Init thenX̄ = Recelse if X= RecthenX̄ = Init.)

Code for Secure Channel Functionality, FSC, whereX ∈ {Init,Rec} and

sidSC = (Init,Rec, sid′SC).

State: estcondX ∈ {⊥,⊤}, initially ⊥, active ∈ {⊥,⊤}, initially ⊥, okcondAdv ∈ {⊥,⊤}, initially ⊥, mes∈
({0,1}) ∪ {⊥}, initially ⊥, ntask∈ ({0,1}∗) ∪ {⊥}, initially ⊥
Transitions:
– Establish Session:
ESS1.receive(EstablishSC, sidSC)X Precondition:active= ⊥, Effect:estcondX B ⊤, If estcondX = ⊤ for

all X thenactiveB ⊤.

ESS2.send(SID, sidSC)Adv Precondition:active= ⊤, Effect: none

– Data Sending Session:
DSS1.receive(Send, sidSC,m)X Precondition:active= ⊤ andmes= ⊥, Effect:mesB m

DSS2.send(Send, sidSC, |m|)Adv Precondition:active= ⊤, mes, ⊥, okcondAdv = ⊥ andmB mes, Effect:
none

DSS3.receive(Response, sidSC,ok)Adv Precondition:active= ⊤ andokcondAdv = ⊥, Effect:okcondAdv B
⊤

DSS4.send(Receive, sidSC,mes)X Precondition:active,mes = ⊤ and okcondAdv , ⊥, Effect: mesand
okcondAdv B ⊥

– Expire Session:
EXS1. receive(ExpireSC, sidSC)X Precondition:active, ⊥ andmes= ⊥, Effect:ntaskB EXS2

EXS2. send(ExpireSC, sidSC)Adv Precondition:ntask= EXS2, Effect:active, ntaskandestcondX B ⊥ for
all X

Fig. 1.Code for Secure Channel Functionality, FSC

3.2 Two-anonymous Channel (2AC)

An anonymous channel is one of the three cryptographic channels and is able to send
some messages to the receiver from unknown senders (”anonymously”). The adversary
can know the identity of the receiver and the message content, but cannot know who
sent the message to the receiver. When two senders and a receiver anonymously com-
municate by a channel, we say the channel is a two-anonymous channel. That is, one of
the two senders sends a message to the receiver. Note that two-anonymous channel can
also be used when the receiver and one of the senders is the same process.

Definition 6. The code for two-anonymous channel,F2AC, is defined in Fig. 2.
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Code for Two Anonymous Channel Functionality, F2AC, where forX ∈ {Init i ,Rec} and
sid2AC = ({Init1, Init2},Rec, sid′2AC).

State: estcondX ∈ {⊥,⊤}, initially ⊥, okcondAdv ∈ {⊥,⊤}, initially ⊥, mes ∈ ({0,1}) ∪ {⊥}, initially ⊥,
active∈ {⊥,⊤}, initially ⊥, ntask∈ ({0, 1}∗) ∪ {⊥}, initially ⊥
Transitions:
– Establish Session:
ESS1.receive(Establish2AC, sid2AC)X Precondition:active= ⊥ andntask= ⊥, Effect:estcondX B ⊤ If

estcondX for all X thenactiveB ⊤.

ESS2.send(SID, sid2AC)Adv Precondition:active= ⊤ andntask= ESS2, Effect:ntaskB ⊥
– Data Sending Session:
DSS1.receive(Send, sid2AC,m)Initi (i ∈ {1, 2}) Precondition:active = ⊤, mes= ⊥ andntask = ⊥, Effect:

mesB m andntaskB DSS2

DSS2.send(Send, sid2AC,mes)Adv Precondition:okcondAdv = ⊥, mesB m and ntask = DSS2, Effect:
ntaskB DSS3

DSS3.receive(Response, sid2AC, ok)Adv Precondition:ntask= DSS3, Effect:okcondAdv B ⊤ andntaskB
DSS4

DSS4.send(Receive, sid2AC,mes)Rec Precondition:ntask= DSS4, Effect:okcondAdv, mesandntaskB ⊥
– Expire Session:
EXS1. receive(Expire2AC, sid2AC)X Precondition:active= ⊤, mesandntask= ⊥, Effect:ntaskB EXS2

EXS2. send(Expire2AC, sid2AC)Adv Precondition:ntask= EXS2, Effect: active,estcondX andntaskB ⊥
for all X

Fig. 2.Code for Two Anonymous Channel Functionality, F2AC

3.3 Direction-indeterminable Channel (DIC)

A direction-indeterminable channel is one of the three cryptographic channels and is
able to send some messages to the receiver direction-indeterminably. The adversary can
know the identities of both parties and the transmitted message, but cannot know who
the sender was. That is, the direction of message transmission is indeterminable.

Definition 7. The code for direction-indeterminable channel,FDIC, is defined in Fig. 3.

3.4 Security Definitions

We define the security notion on PIOA considering the synchronous and asynchronous
schedule as follows:

Definition 8. [Perfect Implementation] LetEnv, RealandIdeal be an environment
task-PIOA, a real protocol task-PIOA system and an ideal functionality task-PIOA sys-
tem, respectively. Letsch be the some (synchronous or asynchronous) schedule. We
say thatReal perfectly implementsIdeal under some (synchronous or asynchronous)
schedule (orReal ≤sch.0 Ideal), if trace(Real||Env) = trace(Ideal||Env) for every envi-
ronmentEnv under synchronous or asynchronous schedule.

Definition 9. [Perfect Hybrid Implementation] LetHybrid be a real protocol task-
PIOA system with hybrid model. We say thatHybrid perfectly hybrid implementsIdeal
under some (synchronous or asynchronous) schedule (orHyb. ≤sch.0 Ideal}), if trace
(Hybrid ||Env) = trace(Ideal||Env) for every environmentEnv under some (synchronous
or asynchronous) schedule.
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Code for Direction-Indeterminable Channel Functionality, FDIC,

whereX ∈ {Init,Rec} andsidDIC = ({Init,Rec}, sid′DIC).

State: estcondX ∈ {⊥,⊤}, initially ⊥, mes ∈ ({0, 1}) ∪ {⊥}, initially ⊥, okcondAdv ∈ {⊥,⊤}, initially ⊥,
active∈ {⊥,⊤}, initially ⊥, ntask∈ ({0, 1}∗) ∪ {⊥}, initially ⊥
Transitions:
– Establish Session:
ESS1.receive(EstablishDIC, sidDIC)X Precondition:active= ⊥ andntask= ⊥, Effect:estcondX B ⊤ If

estcondX = ⊤ for all X thenactiveB ⊤ andntaskB ESS2.

ESS2.send(SID, sidDIC)Adv Precondition:active= ⊤ andntask= ESS2, Effect:ntaskB ⊥
– Data Sending Session:
DSS1.receive(Send, sidDIC,m)X Precondition:active = ⊤, mesand ntask = ⊥, Effect: mesB m and

ntaskB DSS2

DSS2.send(Send, sidDIC,m)Adv Precondition:okcondAdv = ⊥, mes B m and ntask = DSS2, Effect:
ntaskB DSS3

DSS3.receive(Response, sidDIC, ok)Adv Precondition:ntask= DSS3, Effect:okcondAdv B ⊤ andntaskB
DSS4

DSS4.send(Send, sidDIC,mes)X Precondition:ntask= DSS4, Effect:okcondAdv, mesandntaskB ⊥
– Expire Session:
EXS1. receive(ExpireDIC, sidDIC)X Precondition:active = ⊤, mes= ⊥ andntask= ⊥, Effect: ntaskB

EXS2

EXS2. send(ExpireDIC, sidDIC)Adv Precondition:ntask= EXS2, Effect: active, estcondX andntaskB ⊥
for all X

Fig. 3.Code for Direction-Indeterminable Channel Functionality, FDIC

4 Equivalence Between DIC and 2AC

In this section, we prove that the direction indeterminable channel (DIC) is equivalent
to the two-anonymous channel (2AC) under any schedule. That is, the task-PIOA of
DIC perfectly implements the task-PIOA of 2AC under any schedule. To prove this,
we show two reductions of DIC to 2AC and 2AC to DIC. Here, we consider the one
bit message exchange, that is,|m| = 1. Informally, the reduction of DIC to 2AC is
proven as follows: The direction-indeterminable property is made by using two 2AC
functionalities, FI2AC and FR2AC. Here, the two senders of FI2AC are Init and Rec, and the
receiver of FI2AC is Init. Then, the two senders of FR2AC are Init and Rec, and the receiver
of FR2AC is Rec. When Init sends a message to the receiver Rec, Init sends the message
by FI2AC and FR2AC. That is, FI2AC forwards the message to Init and FR2AC forwards the
message to Rec. The adversary cannot detect the message direction because Init and
Rec receive the same messagem transfered by the two 2ACs. The other reduction, 2AC
to DIC, is proven as follows: First, the message sending party (Init1 or Init2) sends a
messagem to the other party by DIC. Init1 and Init2 then sendm to the receiver Rec
directly. The adversary cannot detect which is the sender because the message direction
among senders Init1 and Init2 is indeterminable.

4.1 Reduction of DIC to 2AC

Let πDIC be a protocol of direction-indeterminable channel. We assume thatMπDIC , the
master schedule ofπDIC, is any schedule. Let InitDIC and RecDIC be the initiator’s code
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and receiver’s code for a real system, respectively, see Fig.4, Fig.5. LetInitDIC and
RecDIC be the initiator’s code and receiver’s code for an ideal system, respectively, see
Fig.7 and Fig.8. Finally, let AdvDIC and SimDIC be the adversary’s code and the simu-
lator’s code in Fig.6 and Fig.9, respectively. LetRealDIC andIdealDIC be a direction-
indeterminable channel protocol system and a direction-indeterminable channel func-
tionality system, respectively, defined as follows:

RealDIC B InitDIC||RecDIC||AdvDIC||FI2AC||FR2AC,

IdealDIC B InitDIC||RecDIC||SimDIC||FDIC.

Code for Initiator of Direction-Indeterminable Channel, InitDIC, whereX ∈ {I, R},
wheresidDIC = ({Init,Rec}, sid′DIC), sidI2AC = ({Init,Rec}, Init, sid′I2AC) andsidR2AC = ({Init,Rec},Rec, sid′R2AC).

State: smes, rmes∈ {0, 1}∗ ∪ {⊥}, initially ⊥, ntask∈ ({0,1}∗) ∪ {⊥}, initially ⊥, active∈ {⊥,⊤}, initially ⊥
Transitions:
– Establish Session:
ESS1.in(EstablishDIC, sidDIC)Init Precondition:active,ntask= ⊥, Effect:ntaskB ESS2

ESS2.send(Establish2AC, sidX2AC)FX2AC
Precondition:ntask = ESS2 (Note that each task forX ∈ {I ,R}

activates arbitrarily order. Hereafter, we stand by this manner.), Effect:activeB ⊤ andntaskB ⊥
– Data Sending Session:
DSS1.in(Send, sidDIC,m)Init Precondition:active= ⊤, smesandntask= ⊥, Effect:smesB mandntaskB

DSS2

DSS2.send(Send, sidX2AC,m)FX2AC
Precondition:mB smesandntask= DSS2, Effect:ntaskB ⊥

DSS3.receive(Receive, sidI2AC,m)FI2AC
Precondition:active= ⊤, rmesandntask= ⊥, Effect: If smes= ⊥,

thenrmesB m andntaskB DSS4. ElsesmesB ⊥ andntaskB ⊥
DSS4.out(Receive, sidDIC, r)Init Precondition:r B rmesandntask= DSS4, Effect:rmesandntaskB ⊥
– Expire Session:
EXS1. in(ExpireDIC, sidDIC)Init Precondition:active= ⊤ andntask= ⊥, Effect:ntaskB EXS2

EXS2. send(Expire2AC, sidX2AC)FX2AC
Precondition:ntask= EXS2, Effect:activeandntaskB ⊥

Fig. 4.Code for Initiator of Direction-Indeterminable Channel, InitDIC

TasksInitDIC andRecDIC relay the input messages from the environment to the ideal
functionality task and relay the receive messages from the ideal functionality task to the
environment as interface parties in the ideal system.

Theorem 1. Direction-indeterminable channel protocol systemRealDIC perfectly hy-
brid implements direction-indeterminable channel functionality systemIdealDIC with
respect to adaptive adversary under any master schedule. (A direction-indeterminable
channel is reducible to a two-anonymous channel with respect to adaptive adversary
under any master schedule.)

Let ϵR andϵI be discrete probability measures on finite executions ofRealDIC ||Env
and IdealDIC ||Env, respectively. We prove the Theorem 1 by showing thatϵR and ϵI
satisfy the trace distribution property :tdist(ϵR) = tdist(ϵI). Here, we define correspon-
denceRbetween the states inRealDIC ||Env and the states inIdealDIC ||Env. We say (ϵR,
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Code for Receiver of Direction-Indeterminable Channel, RecDIC, wheresidDIC = ({Init,Rec}, sid′DIC),
sidI2AC = ({Init,Rec}, Init, sid′I2AC) andsidR2AC = ({Init,Rec},Rec, sid′R2AC).

State: smes, rmes∈ {0, 1}∗ ∪ {⊥}, initially ⊥, ntask∈ ({0,1}∗) ∪ {⊥}, initially ⊥, active∈ {⊥,⊤}, initially ⊥
Transitions:
– Establish Session:
ESS1.in(EstablishDIC, sidDIC)Rec Precondition:activeandntask= ⊥, Effect:ntaskB ESS2

ESS2.send(Establish2AC, sidX2AC)FX2AC
Precondition:ntask= ESS2, Effect:activeB ⊤ andntaskB ⊥

– Data Sending Session:
DSS1.in(Send, sidDIC,m)Rec Precondition:active= ⊤, smesandntask= ⊥, Effect:smesB mandntaskB

DSS2

DSS2.send(Send, sidX2AC,m)FX2AC
Precondition:mB smesandntask= DSS2, Effect:ntaskB ⊥

DSS3.receive(Receive, sidR2AC,m)FR2AC
Precondition:active= ⊤, rmesandntask= ⊥, Effect: If smes= ⊥,

thenrmesB m andntaskB DSS4. ElsesmesB ⊥ andntaskB ⊥.

DSS4.out(Receive, sidDIC, r)Rec Precondition:r B rmesandntask= DSS4, Effect:rmes, ntaskB ⊥
– Expire Session:
EXS1. in(ExpireDIC, sidDIC)Rec Precondition:active= ⊤ andntask= ⊥, Effect:ntaskB EXS2

EXS2. send(Expire2AC, sidX2AC)FX2AC
Precondition:ntask= EXS2, Effect:activeandntaskB ⊥

Fig. 5.Code for Receiver of Direction-Indeterminable Channel, RecDIC

Code fot Adversary for Direction Indeterminable Channel, AdvDIC, whereX ∈ {I, R}, wheresidI2AC = ({I1, I2}, I1, sid
′
2AC)

andsidR2AC = ({I1, I2}, I2, sid
′
2AC).

State:active∈ {⊥,⊤}, initially ⊥, ntask∈ ({0, 1}∗) ∪ {⊥}, initially ⊥, smesX ∈ ({0, 1}) ∪ {⊥}, initially ⊥
Transitions:
– Establish Session:
ESS1.receive(SID, sidX2AC)FX2AC

Precondition:active= ⊥, Effect:activeB ⊤
– Data Sending Session:
DSS1. receive(Send, sidX2AC,mes)FX2AC

Precondition:active = ⊤, ntask = ⊥, Effect: smesX B mesand

ntaskB DSS2

DSS2. send(Response, sidX2AC,ok)FX2AC
Precondition:ntask= DSS2, Effect:ntaskB ⊥

– Expire Session:
EXS1. receive(Expire2AC, sidX2AC)FX2AC

Precondition:active= ⊤, Effect:activeB ⊥
– Other tasks:
This adversary makes other arbitary tasks.

Fig. 6.Code fot Adversary for Direction Indeterminable Channel, AdvDIC

ϵI) ∈ R if and only if for everys ∈ supp.lst(ϵR) andu ∈ supp.lst(ϵI), all of the state cor-
respondences in the Table 1 hold. We then proveR is a simulation relation in Lemma
1.

Lemma 1. The relation R defined above is a simulation relation fromRealDIC ||Env to
IdealDIC ||Env. For each step ofRealDIC ||Env, the step in the establish, data sending and
expire session correspond with at most two steps ofIdealDIC ||Env. This means that there
is a mapping corrtasks under the relation R such that, for everyρ, T , |corrtasks(ρ,T)| ≤
2, whereρ is a local schedule.
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Code for ideal Initiator of Direction-Indeterminable Channel,InitDIC, wheresidDIC = ({Init,Rec}, sid′DIC).

State: smes, rmes∈ {0, 1}∗ ∪ {⊥}, initially ⊥, ntask∈ ({0,1}∗) ∪ {⊥}, initially ⊥, active∈ {⊥,⊤}, initially ⊥
Transitions:
– Establish Session:
ESS1.in(EstablishDIC, sidDIC)Init Precondition:active,ntask= ⊥, Effect:ntaskB ESS2

ESS2.send(EstablishDIC, sidDIC)FDIC Precondition:ntask= ESS2, Effect:activeB ⊤ andntaskB ⊥
– Data Sending Session:
DSS1.in(Send, sidDIC,m)Init Precondition:active= ⊤, smesandntask= ⊥, Effect:smesB mandntaskB

DSS2

DSS2.send(Send, sidDIC,m)FDIC Precondition:mB smesandntask= DSS2, Effect:smesandntaskB ⊥
DSS3.receive(Send, sidDIC,m)FDIC Precondition:active= ⊤, rmesandntask= ⊥, Effect: rmesB m and

ntaskB DSS4

DSS4.out(Receive, sidDIC,m)Init Precondition:mB rmesandntask= DSS4, Effect:rmesandntaskB ⊥
– Expire Session:
EXS1. in(ExpireDIC, sidDIC)Init Precondition:active= ⊤ andntask= ⊥, Effect:ntaskB EXS2

EXS2. send(ExpireDIC, sidDIC)FDIC Precondition:ntask= EXS2, Effect:activeandntaskB ⊥

Fig. 7.Code for Initiator of Direction-Indeterminable Channel,InitDIC

Code for ideal Receiver of Direction-Indeterminable Channel,RecDIC, wheresidDIC = ({Init,Rec}, sid′DIC).

State: smes, rmes∈ {0, 1}∗ ∪ {⊥}, initially ⊥, ntask∈ ({0,1}∗) ∪ {⊥}, initially ⊥, active∈ {⊥,⊤}, initially ⊥
Transitions:
– Establish Session:
ESS1.in(EstablishDIC, sidDIC)Rec Precondition:activeandntask= ⊥, Effect:ntaskB ESS2

ESS2.send(EstablishDIC, sidDIC)FDIC Precondition:ntask= ESS2, Effect:activeB ⊤ andntaskB ⊥
– Data Sending Session:
DSS1.in(Send, sidDIC,m)Rec Precondition:active= ⊤, smesandntask= ⊥, Effect:smesB m andntaskB

DSS2

DSS2.send(Send, sidDIC,m)FDIC Precondition:mB smesandntask= DSS2, Effect:smesandntaskB ⊥
DSS3.receive(Send, sidDIC,m)FDIC Precondition:rmesand ntask = ⊥, Effect: rmesB m and ntaskB

DSS4

DSS4.out(Receive, sidDIC,m)Rec Precondition:mB rmesandntask= DSS4, Effect:rmes ntaskB ⊥
– Expire Session:
EXS1. in(ExpireDIC, sidDIC)Rec Precondition:active= ⊤, smes, rmesandntask= ⊥, Effect:ntaskB EXS2

EXS2. send(ExpireDIC, sidDIC)FDIC Precondition:ntask= EXS2, Effect:activeandntaskB ⊥

Fig. 8.Code for ideal Receiver of Direction-Indeterminable Channel,RecDIC

Proof. (sketch)
We prove thatR is a simulation relation fromRealDIC ||Env to IdealDIC ||Env using

the mapping corrtasks :R∗RealDIC ||Env × RRealDIC ||Env → R∗IdealDIC ||Env, which is defined as
follows (we write hereafterT =corr. T′ alternating to write corrtasks(ρ,T) = T′.):

For any (ρ,T) ∈ (R∗RealDIC ||Env × RRealDIC ||Env), the following task correspondences
hold.

1. Establish Session
(a) InitDIC.send(Establish2AC, sidX2AC)FX2AC

=corr. InitDIC.send(EstablishDIC, sidDIC)FDIC
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Code for Simulator for Direction Indeterminable Channel, SimDIC, wheresidDIC = ({Init,Rec}, sid′DIC).

State:active∈ {⊥,⊤}, initially ⊥, smes∈ {0,1}∗ ∪ {⊥}, initially ⊥, ntask∈ ({0, 1}∗) ∪ {⊥}, initially ⊥
Other arbitrary variables; call ”new” variables.

Transitions:
– Establish Session:
ESS1.receive(SID, sidDIC)FDIC Precondition:activeandntask= ⊥, Effect:activeB ⊤ This task generates

the parties Init and Rec in theRealDIC system to simulate the real world. To make establish session in

the simulation world, inputsin(EstablishDIC, sidDIC)Init andin(EstablishDIC, sidDIC)Rec to Init and
Rec, respectively. Finally, the parties establish the two 2ACs in the simulation world.

– Data Sending Session:
DSS1.receive(Send, sidDIC,m)FDIC Precondition:active= ⊤, ntask= ⊥, Effect: smesB m andntaskB

DSS2

DSS2.simulation(Send, sidDIC,mes) Precondition:mesB smesandntask= DSS2, Effect: This task inputs
in(Send, sidDIC,m)Init to Init in the simulation world. During the simulation, if the adversary in this sim-

ulation wants to output message to the environment, this simulator outputs the message after receiving

from the adversary. After simulating the real world, the simulator receivesout(Receive, sidDIC, r)Rec
from the receiver Rec and setsntaskB DSS3

DSS3.send(Response, sidDIC,ok)FDIC Precondition:ntask= DSS3, Effect:ntaskB ⊥
– Expire Session:
EXS1. receive(ExpireDIC, sidDIC)FDIC Precondition:active= ⊤, Effect:activeB ⊥
– Other tasks:
This simulator makes arbitary tasks to simulate the real world protocol systemRealDIC . The tasks can be the
input and output tasks with the internal tasks copied fromRealDIC . Espectialy, this simulator can output the
message from the adversary in the simiulating world to the environment.

Fig. 9.Code fot Simulator for Direction Indeterminable Channel, SimDIC

(b) RecDIC.send(Establish2AC, sidX2AC)FX2AC
=corr. RecDIC.send(EstablishDIC, sidDIC)FDIC

(c) FX2AC.send(SID, sid2AC)Adv =corr. FDIC.send(SID, sidDIC)Adv

2. Data Sending Session
(a) InitDIC.send(Send, sidX2AC,m)FX2AC

=corr. InitDIC.send(Send, sidDIC,m)FDIC

(b) RecDIC.send(Send, sidX2AC,m)FX2AC
=corr. RecDIC.send(Send, sidDIC,m)FDIC

(c) FX2AC.send(Send, sid2AC,mes)Adv

=corr. FDIC.send(Send, sidDIC,m)Adv · SimDIC.simulation(Send, sidDIC,mes)
(d) FX2AC.send(Receive, sid2AC,mes)Rec=corr. FDIC.send(Send, sidDIC,mes)X

(e) InitDIC.out(Receive, sidDIC, r)Init =corr. InitDIC.out(Receive, sidDIC,m)Init

(f) RecDIC.out(Receive, sidDIC, r)Rec=corr. RecDIC.out(Receive, sidDIC,mes)Rec

(g) AdvDIC.send(Response, sidX2AC, ok)FX2AC
=corr. SimDIC.send(Response, sidDIC, ok)FDIC

3. Expire Session
(a) InitDIC.send(Expire2AC, sidX2AC)FX2AC

=corr. InitDIC.send(ExpireDIC, sidDIC)FDIC

(b) RecDIC.send(Expire2AC, sidX2AC)FX2AC
=corr. RecDIC.send(ExpireDIC, sidDIC)FDIC

(c) FX2AC.send(Expire2AC, sid2AC)Adv =corr. FDIC.send(ExpireDIC, sidDIC)Adv

4. All tasks of environmentEnv in RealDIC are correspondent with the tasks of environment in
IdealDIC .

The simulation of SimDIC is perfectly done for establish session, data sending ses-
sion and expire session with respect to the no corruption, static corruption and adaptive
corruption by adversary.
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Functionality Receiver
(a) u.FDIC.estcondInit = s.FX2AC.estcondInit i (k) u.RecDIC.smes = s.RecDIC.smes
(b) u.FDIC.estcondRec = s.FX2AC.estcondRec (l) u.RecDIC.rmes = s.RecDIC.rmes
(c) u.FDIC.okcondAdv = s.FX2AC.okcondAdv (m) u.RecDIC.active = s.RecDIC.active
(d) u.FDIC.active = s.FX2AC.active (n) u.RecDIC.ntask = s.RecDIC.ntask
(e) u.FDIC.mes = s.FX2AC.mes
(f) u.FDIC.ntask = s.FX2AC.ntask

Initiator Adversary andEnv
(g) u.InitDIC.smes = s.InitDIC.smes (o) u.SimDIC = s.AdvDIC

(h) u.InitDIC.rmes = s.InitDIC.rmes (p) u.SimDIC.FX2AC.∗ = s.FX2AC.∗
(i) u.InitDIC.active = s.InitDIC.active (q) u.SimDIC.InitDIC.∗ = s.InitDIC.∗
(j) u.InitDIC.ntask = s.InitDIC.ntask (r) u.SimDIC.RecDIC.∗ = s.RecDIC.∗

(s) u.SimDIC.AdvDIC.∗ = s.AdvDIC.∗
(t) u.Env = s.Env

Note thatntask ∈ {ESS1,ESS2,DSS1,DSS2,DSS3,DSS4,EXS1,EXS2}, i ∈ {1,2}
andX ∈ {I ,R}.

Table 1.State correspondence : Reduction of DIC to 2AC

1. No corruption

First, in the establish session, environment Env sends the establish session mes-
sagein(EstablishDIC, sidDIC)Init andin(EstablishDIC, sidDIC)Rec to the initiator
InitDIC and the receiverRecDIC, respectively. They send the establish session mes-
sagessend(EstablishDIC, sidDIC)FDIC to FDIC. They sendsend(SID, sidDIC)Adv to
the SimDIC. After SimDIC receives the message, SimDIC generates the parties Init
and Rec in his simulation world to make the real world situation which Init and
Rec exchange messages by using F2AC. SimDIC then make establish session in the
simulation world. That is, he inputs two messages,in(EstablishDIC, sidDIC)Init

andin(EstablishDIC, sidDIC)Rec, to Init and Rec, respectively. Finally, the parties
establish two 2ACs in the simulation world.

Next, in the data sending session, Env sends the messagein(Send, sidDIC,m)Init (or
in(Send, sidDIC,m)Rec) to InitDIC (orRecDIC). InitDIC sendssend(Send, sidDIC,m)FDIC

to FDIC. FDIC then sendssend(Send, sidDIC,m)Adv to SimDIC. After receiving the
message, SimDIC executessimulation(Send, sidDIC,mes) to mimic the data send-
ing session of the real world. That is, he inputs the messagein(Send, sidDIC,m)Init

(or in(Send, sidDIC,m)Rec) to Init and Rec in the simulation world.

Finally, in the expire session, Env sends the messagesin(ExpireDIC, sidDIC)Init and
in(ExpireDIC, sidDIC)Rec to InitDIC andRecDIC, respectively. They relay the mes-
sagesend(ExpireDIC, sidDIC)FDIC to FDIC. After receivingsend(ExpireDIC, sidDIC)Adv

from FDIC, SimDIC expires the session in the simulation world. That is, he inputs
the messgaein(ExpireDIC, sidDIC)Init andin(ExpireDIC, sidDIC)Rec to Init and Rec
in the simulation world.

2. Static corruption
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In this case, the advesary corrupt some parties before the protocol starts. This case
also is simulated by the simulator, but the direction of message sending does not
conceal to the advesary.

3. Adaptive corruption
In this case, the advesary corrupt some parties when he want to do so. This case
also is simulated by the simulator, but the direction of message sending does not
conceal to the advesary after he corrupts some parties.

As a result, the simulation is perfectly done because SimDIC can simulate the real
world from the information message through FDIC. The tasks of the real world perfectly
correspond with the the tasks of ideal world. That is,

RealDIC ||Env Hyb. ≤MπDIC

0 IdealDIC ||Env.

The task sequence of the systemRealDIC ||Env are perfectively corresponded with
the task sequence of the systemIdealDIC ||Env under the scheduleMπDIC . Formally, to
prove thatR is simulation relation fromRealDIC ||Env to IdealDIC ||Env, we need to show
R satisfies start condition and step condition for each corresponding tasks, but we omit
to mention it due to the paper limitation. See full paper that will be available soon.

4.2 Reduction of 2AC to DIC

Let π2AC be a protocol of two-anonymous channel. We assume thatMπ2AC, the master
schedule ofπ2AC, is any schedule. Let Init2AC and Rec2AC be the initiator’s code and
receiver’s code for a real system, respectively. LetInit2AC and Rec2AC be the initia-
tor’s code and receiver’s code for an ideal system, respectively. Finally, let Adv2AC and
Sim2AC be the adversary’s code and the simulator’s code, respectively. LetReal2AC and
Ideal2AC be a two-anonymous channel protocol system and a two-anonymous channel
functionality system, respectively, defined as follows:

Real2AC B Init2AC||Rec2AC||Adv2AC||FDIC,
Ideal2AC B Init2AC||Rec2AC||Sim2AC||F2AC.

TasksInit2AC andRec2AC relay the input messages from the environment to the ideal
functionality task and relay the messages received from the ideal functionality task to
the environment as interface parties in the ideal system. Several codes for each tasks are
omitted in this paper, see full paper version.

Theorem 2. Two-anonymous channel protocol systemReal2AC perfectly hybrid im-
plements two-anonymous channel functionality systemIdeal2AC with respect to adap-
tive adversary under any master schedule. (An anonymous channel is reducible to a
direction-indeterminable channel with respect to adaptive adversary under any master
schedule.)

The proof of theorem 2 is described like theorem 1. We omit the proof in this paper,
see the full paper version.
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5 Equivalence Between DIC and SC

In this section, we prove that the direction indeterminable channel (DIC) is equivalent to
secure channel (SC) under a specific type of some schedules. That is, the task-PIOA of
DIC perfectly implements task-PIOA of SC under an asynchronous schedule. To prove
this, we show two reductions of SC to DIC and one of DIC to SC. Here, we consider
the one bit message exchange, that is,|m| = 1. Informally, the reduction of SC to DIC
is proven as follows: To make the channel between Init and Rec secure, the parties
exchange a random bit (as a secret shared key) by DIC. The encrypted message by the
shared key is exchanged using a public channel. The communication is done not by a
DIC channel but by a public channel. When the next message sending is occured, party
restart from key exchange. Here, the key exchange is done under the master schedule.
After the key exchange, the cipher text generated by the secret key is sent. The other
reduction of DIC to SC is proven as follows: the parties Init and Rec exchange two
messages by SC. The one is the messagem which the sender wants to send. The other
message is a dummy message to conceal the message direction. That is, sender Init
sends messagem and the receiver sends dummy messages under a specific type of
schedules byM. We make a random messagesby FSRC. Note that, the adversary cannot
know the direction of message because the messages are exchanged under a specific
type of schedules. In this section, we need to consider the schedules (key exchange
schedule and message exchange schedule) to avoid some infromation to adversary. In
the UC framework, all schedule is under control of adversary. So, we use task PIOA
framework.

5.1 Reduction of SC to DIC

Let n be the number of parties. LetMpsync(t∗1, · · · , t∗n) andMrasync(t∗1, · · · , t∗n) be master
schedules, respectively, wheret∗i is a task in partyPi .

Definition 10. [Mpsync(t∗1, · · · , t∗n)] Let t∗i be a task in party Pi . Let ptask(t∗i ) be the
task just before t∗i in the local schedulerρi . For example, letρi = ti1, ti2, ti3 for party Pi .
Then ptask(ti3) is the task ti2.

– 1. Alignment property: After the master scheduler M activates ptask(t∗i ), M does
not activate Pi until all of ptask(t∗1), · · · , ptask(t∗n) are scheduled. This situation say
that M satisfies the alinment property for the specified tasks t∗

1, . . . , t
∗
n.

– 2. Random executing property: The master scheduler, M, grobally executes the
specified tasks, t∗1, . . . , t

∗
n in a random order. Note that the other tasks are not sched-

uled until all of the specified tasks, t∗1, . . . , t
∗
n, finish executing.

Mpsync(t∗1, · · · , t∗n) is defined to be a master schedule such that a master schedulerM
satisfies the avobe mentioned two properties for the specified taskst∗1, . . . , t

∗
n.

Definition 11. [Mrasync(t∗1, · · · , t∗n, k)] Let k be a integer. Let t∗i be a task specified by
ρi for party Pi . Let ci be the number of times t∗i is scheduled by M. M schedules the task
acctivations of t∗1, · · · , t∗n so that|ci − c j | ≤ k for all i, j in a random order.
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We need to consider like chernov bound property if we treat this master schedule to
use the message exchange or key exchange among party.

LetπSC be a protocol of secure channel. LetMπSC beMpsync(send(Send, sidDIC, s)FDIC ,
send(Send, sidDIC, t)FDIC ). Let InitSC and RecSC be the initiator’s code and receiver’s
code for a real system, respectively. LetInitDIC andRecDIC be the initiator’s code and
receiver’s code for an ideal system, respectively. Finally, let AdvSC, SimSC and FSRC
be the adversary’s code, the simulator’s code and the random bit generator’s code, re-
spectively. LetRealSC and IdealSC be a secure channel protocol system and a secure
channel functionality system, respectively, defined as follows:

RealSCB InitSC||RecSC||AdvSC||FSRC||FDIC,
IdealSCB InitSC||RecSC||SimSC||FSC.

TasksInitSC andRecSC relay the input messages from the environment to the ideal
functionality task and relay the receive messages from the ideal functionality task to
the environment, respectively, as interface parties in the ideal system. Several codes for
each tasks are omitted in this paper, see full paper version.

Theorem 3. Secure channel protocol systemRealSC perfectly hybrid implements se-
cure channel functionality systemIdealSC with respect to adaptive adversary under a
master schedule Mpsync(send(Send, sidDIC, s)FDIC , send(Send, sidDIC, t)FDIC). (A secure
channel is reducible to a direction-indeterminable channel with respect to adaptive ad-
versary under a master schedule Mpsync(send(Send, sidDICs)FDIC , send(Send, sidDIC,
t)FDIC).)

The proof of theorem 3 is described like theorem 1. We omit the proof in this paper,
see the full paper version. The master schedule can beMrasync instead ofMpsync.

5.2 Reduction of DIC to SC

Let π′DIC be a protocol of direction-indeterminable channel. LetMpsync(send(Send,
sidSC,m)FSC, send(Send, sidSC,m)FSC) be the master schedule forπ′DIC.

Let Init′DIC and Rec′DIC be the initiator’s code and receiver’s code for a real sys-
tem, respectively. LetInit′DIC and Rec′DIC be the initiator’s code and receiver’s code
for an ideal system, respectively. Finally, let Adv′DIC and Sim′DIC be the adversary’s
code and the simulator’s code, respectively. LetReal′

DIC
and Ideal′

DIC
be a direction-

indeterminable channel protocol system and a direction-indeterminable channel func-
tionality system defined, respectively, as follows:

Real′
DIC
B Init′DIC||Rec′DIC||Adv′DIC||FSRC||FSC,

Ideal′
DIC
B Init′DIC||Rec′DIC||Sim′DIC||FDIC.

TasksInit′DIC andRec′DIC relay the input messages from the environment to the ideal
functionality task and relay the receive messages from the ideal functionality task to
the environment, respectively, as interface parties in the ideal system. Several codes for
each tasks are omitted in this paper, see full paper version.
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Theorem 4. Direction-indeterminable channel protocol systemReal′
DIC

perfectly hy-
brid implements direction-indeterminable channel functionality systemIdeal′

DIC
with

respect to adaptive adversary under a master schedule Mpsync(send(Send, sidSC,m)FSC,
send(Send, sidSC,m)FSC). (A direction-indeterminable channel is reducible to a secure
channel with respect to adaptive adversary under a master schedule Mpsync(send(Send,
sidSC,m)FSC, send(Send, sidSC,m)FSC).)

The proof of theorem 4 is described like theorem 1. We omit the proof in this paper,
see the full paper version.

6 Conclusion

This paper studied the relationship of the three cryptographic channels, secure channels
(SC), two-anonymous channels (2AC) and direction-indeterminable channels (DIC),
by considering communication schedules and composable security. For this purpose,
we adopted the universally composable (UC) framework with the task-probabilistic in-
put/output automata (PIOA) model. We showed that the three channels are reducible to
each other under some types of schedules in the UC framework with the PIOA model.
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