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Abstract
This paper proposes new card-based cryptographic protocols to calculate logic func-
tions with the minimum number of cards using private operations under the semi-
honest model. Though various card-based cryptographic protocols were shown, the 
minimum number of cards used in the protocol has not been achieved yet for many 
problems. Operations executed by a player where the other players cannot see are 
called private operations. Private operations have been introduced in some protocols 
to solve a particular problem or to input private values. However, the effectiveness 
of introducing private operations to the calculation of general logic functions has not 
been considered. This paper introduces three new private operations: private random 
bisection cuts, private reverse cuts, and private reveals. With these three new opera-
tions, we show that all of AND, XOR, and copy protocols are achieved with the 
minimum number of cards by simple three-round protocols. This paper then shows 
a protocol to calculate any logical functions using these private operations. Next, we 
consider protocols with malicious players.
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Introduction

Card-based cryptographic protocols [11, 26] have been proposed in which physi-
cal cards are used instead of computers to securely calculate values. den Boer [2] 
first showed a five-card protocol to securely calculate AND of two inputs. Since 
then, many protocols have been proposed to calculate logical functions [4, 5, 21, 
24, 27, 30, 40, 44, 47] and specific computations such as computations on three 
inputs [32, 33, 43], calculation of symmetric functions [41], millionaires’ prob-
lem [18, 29, 37], voting [22, 28, 51], random permutation [6, 8, 9], grouping [7], 
matching [17], ranking [48], zero-knowledge proof of puzzle solutions [3, 16, 19, 
42] and so on. Most of the protocols assume a semi-honest model, that is, play-
ers obey the rule of the protocol but try to obtain secret values. This paper also 
assumes the semi-honest model in most sections. We discuss malicious players in 
Sect. 5.

Randomization or a private operation is the most important primitive in these 
card-based protocols. If every primitive executed in a card-based protocol is 
deterministic and public, the relationship between the private input values and 
output values is known to the players. When the output value is disclosed, the 
private input value can be known to the players from the relationship. Thus, all 
protocols need some random or private operation.

First, randomization primitives have been discussed and then recently, private 
operations are considered. Many protocols use random bisection cuts [27], which 
randomly execute swapping two decks of cards or not swapping. If the random 
value used in the randomization is disclosed, the secret input value is known 
to the players. There are two types of randomization: single-player randomiza-
tion and multiple player randomization. For the single-player randomization, the 
player must not know the random value he selected. Ueda et  al. [50] proposed 
several methods that can be done in front of people, but no one can know the 
random value. However, if a person privately brings a high-speed video camera, 
he might able to know the random value by analyzing the image. Currently, the 
size of high-speed video cameras is too large to privately bring without getting 
caught, but the size might become smaller in the near future. In the case, the ran-
domization in a public place becomes difficult. By introducing additional cards, a 
random bisection cut can be executed using a random cut [50], which is a normal 
shuffle operation in playing cards. Koch and Walzer [13] proposed a protocol for 
a player to execute a private permutation that is unknown to the other players, but 
the player can prove that he really executed an allowed permutation. Pile-shifting 
scramble [34] was proposed that achieves non-uniform shuffles with some special 
tools. These protocols can be executed in a public place, but they need additional 
special cards or tools.

A simple solution to execute private randomization is multiple player rand-
omization, in which some operations are executed in a hidden place. To execute 
a private random bisection cut, Alice executes a random bisection cut in a place 
where Bob cannot see (under the table, or in the back, etc). Then, Bob executes 
a random bisection cut in a place where Alice cannot see. The result is unknown 
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to either player. Note that the number of players can be arbitrarily increased. To 
know the random value, a person needs to know all of the values the players used. 
Such an operation that is done where the other players cannot see is called a pri-
vate operation. Therefore, we have a natural question: if we introduce some pri-
vate operations other than the random bisection cut, can we have effective card-
based cryptographic protocols to calculate logical functions?

Private operations have been first introduced to solve millionaires’ problem [29]. 
The private operations used in the papers are similar to the primitives proposed in 
this paper, but it is not clear that the primitives can be used for the other protocols. 
Then private operations were used to calculate logical functions [15, 46]. These 
papers discussed a private operation that sets each player’s private inputs. Though 
the number of cards used in these protocols is less than the ones in the conventional 
protocols, these protocols cannot be used for general cases when the players do not 
know the inputs, that is, the inputs are given as committed values. Protocols with 
committed inputs can also be used for the cases when each player knows his input 
values by setting his private inputs as committed values. Thus, protocols that accept 
committed inputs are desirable. Another desirable property is committed output. If 
the output is given as a committed value, a further private calculation can be done 
using the output value.

This paper considers card-based protocols with committed inputs and committed 
outputs using private operations under the semi-honest model. This paper introduces 
three private operations: private random bisection cuts, private reverse cuts, and pri-
vate reveals. This paper shows protocols which execute AND, XOR, and copy with 
four cards, which is the minimum. We also show protocols that calculate any logical 
functions.

As for the number of cards used for copy protocols, six was the minimum for 
finite-runtime copy [27], as shown in Table 1. The protocol in [36] uses 5 cards, but 
the number of steps of the protocol is unbounded. It is proved to be impossible to 
achieve a copy with four cards by the conventional model without private operations 
[10]. In their model, each card sequence has a probability to occur. Using the prob-
abilities, players are prohibited to open a card that reveals secret information. Such 
arguments lead to the impossibility results. On the other hand, if private operations 
are executed, one card sequence can have two different probabilities: the one Alice 
knows and the other one Bob knows. Bob is allowed to privately open a card that 
does not reveal secret information to Bob.

Table 1  Comparison of copy protocols in two type card model

Article # of cards Note

Crépeau et al. (1993) [4] 8
Mizuki et al. (2009) [27] 6
Nishimura et al. (2015) [35] 5 Uses unequal shuffle
Nishimura et al. (2018) [36] 5 Number of steps is not bounded
This paper 4 Uses private operations
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The numbers of cards in committed-input, committed-output AND protocols are 
shown in Table 2. The protocol in [27] uses six cards. Though the protocol in [14] 
uses four cards, the protocol uses a non-uniform shuffle, which obtains one result by 
the probability of 1/3 and the other result by the probability of 2/3. Such a non-uni-
form shuffle is difficult to achieve without some special tools. Another four-card pro-
tocol with uniform shuffles [40] does not terminate within a finite time. It is proved 
to be impossible to achieve finite-runtime AND with four cards by the conventional 
model without private operations [10, 12]. Our protocol uses four cards, which is the 
minimum, and it is easy to execute.

The number of cards in XOR protocols is shown in Table 3. Though the num-
ber of cards is the same in our protocol and [27], an input preserving (shown in 
Sect. 4.7) can be realized by our protocol without additional cards.

This paper then shows several variants of the protocols to calculate any logic 
functions that includes side effects of the calculations, parallel computations, and 
preserving an input.

Then, Sect.  5 discusses protocols when a malicious player exists. Last, Sect.  6 
shows protocols that use asymmetric cards.

Table 2  Comparison of AND protocols in the two type card model (except for (*))

Article # of cards Input Output Note

den Boer (1989) [2] 5 commit non-commit
Crépeau et al. (1993) [4] 10 commit commit (*) Four color cards
Niemi et al. (1998) [30] 12 commit commit
Stiglic (2001) [47] 8 commit commit
Mizuki et al. (2009) [27] 6 commit commit
Mizuki et al. (2012) [24] 4 commit non-commit
Koch et al. (2015) [14] 4 commit commit Non-uniform shuffle
Shirouchi et al. (2017) [46] 3 non-commit non-commit Uses private operations
Kurosawa et al. (2017) [15] 4 non-commit commit Uses private operations
Abe et al. (2018) [1] 5 commit commit Number of steps is not bounded
Ruangwises et al. (2019) [40] 4 commit commit Number of steps is not bounded
This paper 4 commit commit Uses private operations

Table 3  Comparison of XOR protocols in the two type card model

Article # of cards Input Output Note

Crépeau et al. (1993) [4] 14 commit commit Four color cards
Mizuki et al. (2009) [27] 4 commit commit
Shirouchi et al. (2017) [46] 2 non-commit commit
Kurosawa et al. (2017) [15] 2 non-commit commit
This paper 4 commit commit Uses private operation

Preserving an input is possible
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An earlier version of this paper was presented and appeared as a conference paper 
[38]. The main difference is as follows. Execution examples are shown for the main 
protocols. This paper improved the discussion in Sect. 5. The detail of the cheat alert 
protocol is shown. The correctness proof of the protocol is newly written. In addi-
tion, a false alert prevention protocol is newly shown. Section 6 is a new section that 
proposes new protocols using asymmetric cards.

Preliminaries

This section gives the notation and basic definitions of card-based protocols. All 
Sections other than Section 6 are based on two type card model that is most com-
monly considered. In the model, there are two kinds of marks,  and . Cards of 
the same marks cannot be distinguished. In addition, the back of both types of cards 
is . It is impossible to determine the mark in the back of a given card with . 
One bit of data is represented by two cards as follows:  and .

One pair of cards that represents one bit x ∈ {0, 1} , whose face is down, is called 

a commitment of x, and denoted as commit(x) . It is written as . Note that when 

these two cards are swapped, commit(x̄) can be obtained. Thus, NOT can be calcu-
lated without private operations.

Linearly ordered cards are called a sequence of cards. A sequence of cards S 
whose length is n is denoted as S = s1, s2,… , sn , where si is the i-th card of the 

sequence. . A sequence whose length is even is called 

an even sequence. S1||S2 is a concatenation of sequence S1 and S2.
All protocols are executed by multiple players. In this paper except for Sect. 5, all 

players are semi-honest, that is, they obey the rule of the protocols, but try to obtain 
information x of commit(x) . There is no collusion among players executing one pro-
tocol together. No player wants any other player to obtain information on committed 
values.

Private Operations

We introduce three private operations: private random bisection cuts, private reverse 
cuts, and private reveals.

Primitive 1 (Private random bisection cut)  A private random bisection cut is the fol-
lowing operation on an even sequence S0 = s1, s2,… , s2m. A player selects a random 
bit b ∈ {0, 1} and outputs



 New Generation Computing

123

The player executes this operation in a place where the other players cannot see. 
The player does not disclose the bit b.

Note that the protocols in this paper use the operation only when m = 1 and 

S0 = commit(x) . Given , the player’s output , which is 

 or .

Note that a private random bisection cut is the same as the random bisection 
cut [27], but the operation is executed in a hidden place.

Primitive 2 (Private reverse cut, Private reverse selection) A private reverse cut is 
the following operation on an even sequence S2 = s1, s2,… , s2m  and a bit b ∈ {0, 1} 
that is given to the player. The player outputs

The player executes this operation in a place where the other player cannot see. The 
player must not disclose the bit b to the other players.

The difference between the private random bisection cut is that b is not newly 
selected by the player.

When a player executes a private reverse cut on

, the player outputs

 if b = 0 or

 if b = 1.

When a private reverse cut is executed using bit b to the sequence to which a 
private random bisection cut is executed using b, the private reverse cut can undo 
the private random bisection cut.

Note that in many protocols below, the left m cards are selected after a private 
reverse cut. The sequence of these two operations is called a private reverse selec-
tion. A private reverse selection is the following procedure on an even sequence 
S2 = s1, s2,… , s2m and the bit b ∈ {0, 1} , which is given to the player. The output

Next, we define a private reveal.

S1 =

{
S0 if b = 0

sm+1, sm+2,… , s2m, s1, s2,… , sm if b = 1

S3 =

{
S2 if b = 0

sm+1, sm+2,… , s2m, s1, s2,… , sm if b = 1

S3 =

{
s1, s2,… sm if b = 0

sm+1, sm+2,… , s2m if b = 1
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Primitive 3 (Private reveal) A player privately opens a given committed bit. The 
player does not disclose the value to the other players.

Using the obtained value, the player privately sets a sequence of cards.
Though the player seems to obtain a secret value by a private reveal, it is 

avoided by the following procedure. Alice executes a private random bisection cut 
to commit(x) . The result becomes to commit(x⊕ b) . When Bob executes a private 
reveal to commit(x⊕ b) , Bob has no information about x if b is randomly chosen 
and not disclosed by Alice. Bob must not disclose the obtained value. If Bob dis-
closes the obtained value to Alice, Alice knows the value of the committed bit.

Card-based protocols are evaluated by the following criteria.

– The number of cards used in the protocol.
– The number of rounds [39].

The time complexity of protocols in the model without private operations was dis-
cussed [20]. The number of rounds was considered as the time complexity of the 
protocol with private operations. The definition of rounds is as follows [39]. The 
first round is (possibly parallel) local executions by each player using the cards ini-
tially given to each player. The first round begins from the initial state. It ends at 
the instant when no further local execution is possible without receiving cards from 
another player. The local executions in each round include sending cards to some 
other players but do not include receiving cards. The i(> 1)-th round begins with 
receiving all the cards sent during the (i − 1)-th round. Each player executes local 
executions using the received cards and the cards left to the player at the end of 
the (i − 1)-th round. Each player executes until no further local execution is possible 
without receiving cards from another player. The number of rounds of a protocol is 
the maximum number of rounds necessary to output the result among all possible 
inputs and random values. Since each operation is relatively simple, the dominat-
ing time to execute protocols with private operations is the time to sending cards 
between players and setting up so that the cards are not seen by the other players. 
Thus the number of rounds is the criteria to evaluate the time complexity of card-
based protocols with private operations.

New Copy, AND, and XOR Protocols

Using the private random bisection cuts, private reveals, and private reverse cuts, 
cory protocol, AND protocol, and XOR protocol with committed inputs and com-
mitted outputs can be realized with the minimum number of cards. All of these pro-
tocols are executed between two players, Alice and Bob. In Sect. 5, the number of 
players is increased to improve security.
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copy Protocol

Protocol 1 (copy protocol)  Input: commit(x). Output: m copies of commit(x) . 

1. Alice executes a private random bisection cut on commit(x) .  Let the output be 
commit(x�). Note that x� = x⊕ b .  Alice sends commit(x�) to Bob.

2. Bob executes a private reveal on commit(x�) and obtains x′ .  Bob makes m copies 
of x′ .  Bob faces down these cards. Bob sends these cards, m copies of commit(x�) ,  
to Alice.

3. Alice executes a private reverse cut to each copy of commit(x�) using the bit b 
Alice generated in the private random bisection cut. Alice outputs these copies.

The protocol requires three rounds.

Example 1 (copy protocol) Suppose that x = 1 . Input  is given. 

Alice executes a private random bisection cut on commit(x) . Alice randomly selects 
bit b ∈ {0, 1} . Let us suppose that b = 1 . In this case, Alice outputs 

 to Bob. Bob privately opens commit(x�) . Since x = 1 and 

b = 1 , .

Bob makes m copies of x′ as . Bob faces down this sequence 

and sends it to Alice.
Alice executes a private reverse cut on each pair of the cards. Since b = 1 , all 

pairs are swapped. If the output is opened, . Thus, the output is 

m copies of commit(x).

Theorem 1 The copy protocol is correct and secure. It uses the minimum number of 
cards.

Proof Correctness: If b = 0 , Bob sees x and makes m copies of x. Alice does nothing 
at the private reverse cut, thus m copies of x are obtained. If b = 1 , Bob sees x̄ and 
makes m copies of x̄ . Alice swaps each copy of x̄ , thus m copies of x are obtained.

Alice’s security: Alice sees no opened cards, thus Alice obtains no information 
about x.

Bob’s security: When Bob privately opens commit(x�) , x� = x⊕ b , thus Bob 
obtains no information about x if b is randomly selected and not disclosed.

The number of cards: In order to obtain m copies of a commitment, at least 2m 
cards are necessary. The protocol is executed with 2m cards, thus the number of 
cards is the minimum.   ◻
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Comparison of copy protocols(when m = 2 ) is shown in Table 1. This proto-
col is the first protocol that achieves the minimum number of cards.

AND Protocol

Logical AND can also be executed with the minimum number of cards.

Protocol 2 (AND protocol)  Input: commit(x) and commit(y). Output: 
commit(x ∧ y) . 

1. Alice executes a private random bisection cut on commit(x) .  Let the output be 
commit(x�) .  Alice sends commit(x�) and commit(y) to Bob. 

2. Bob executes a private reveal on commit(x�). Bob sets 

and sends S2 to Alice.
3. Alice executes a private reverse selection on  S2 using the bit b generated in the 

private random bisection cut. Let the obtained sequence be S3. Alice outputs S3.

Note that the two cards that were not selected by Alice at the last step of the 
protocol, must be discarded. Since the unused cards have some information on x 
and y, information about input values is leaked if the cards are opened. The proto-
col requires three rounds.

Example 2 (AND protocol)

Suppose that x = 0 and y = 1 . Input commit(x) =
x

 and commit(y) =
y

 

are given. Alice executes a private random bisection cut on commit(x) . Alice ran-
domly selects bit b ∈ {0, 1} . Let us suppose that b = 0 . Alice sends 

commit(x ) =
x⊕b

 and commit(y) to Bob. Bob privately opens commit(x�) . Since 

x = 0 and b = 0 , x =
0

. Thus, Bob sets S2 =
0 y

. Bob faces down the 

left cards and sends S2 to Alice. Alice executes a private reverse selection on S2 . 

Since b = 0 , the left two cards are selected. If the output, S3 , is opened, S3 =
0

. 

Since x ∧ y = 0 , the result is correct.

Theorem 2 The AND protocol is correct and secure. It uses the minimum number of 
cards.

Proof Correctness: The desired output can be represented as follows.

S2 =

{
commit(y)||commit(0) if x� = 1

commit(0)||commit(y) if x� = 0
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When Bob obtains x� = 1 , commit(y)||commit(0) is given to Alice. When Bob 
obtains x� = 0 , commit(0)||commit(y) is given to Alice. Thus Alice’s output is 
commit(y) if (x�, b) = (1, 0) or (0, 1). Since x� = x⊕ b , these cases equal to x = 1.

Alice’s output is commit(0) if (x�, b) = (1, 1) or (0,  0). Since x� = x⊕ b , these 
cases equal to x = 0 . Therefore, the output is correct.

Alice and Bob’s security: The same as the copy protocol.
The number of cards: Any committed-input protocol needs at least four cards to 

input commit(x) and commit(y) . When Bob sets S2 , the cards used for commit(x�) 
can be used to set commit(0) . Thus, the total number of cards is four and the mini-
mum.   ◻

A careful discussion is necessary when a player knows the value x of given 
commit(x) , for example, x is the player’s private input value.

First, consider the case when Bob knows x. When Bob executes a private reveal 
on commit(x⊕ b) , Bob knows the bit b Alice selected. This scenario is not a secu-
rity problem. Bob knows b, thus he knows whether the final output is commit(0) or 
commit(y) in advance. However, since

it is not new information for Bob who already knows x.
Next, consider the case when Alice knows x. Alice knows x� = x⊕ b . Thus, Alice 

knows whether the final output is commit(0) or commit(y) in advance, but it is not 
new information for Alice.

A comparison of AND protocols is shown in Table 2. Though Koch et al. [14] 
showed a finite step protocol with the minimum number of cards, their protocol 
must use a non-uniform shuffle, which is not easy to realize.

XOR Protocol

Protocol 3 (XOR protocol)  Input: commit(x) and commit(y). Output: 
commit(x⊕ y) . 

1. Alice executes a private random bisection cut on commit(x) .  Let the output be 
commit(x�). Alice sends commit(x�) and commit(y) to Bob.

2. Bob executes a private reveal on commit(x�) .  Bob sets

x ∧ y =

{
y if x = 1

0 if x = 0

x ∧ y =

{
y if x = 1

0 if x = 0

S2 =

{
commit(ȳ) if x� = 1

commit(y) if x� = 0
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and sends S2 to Alice. Note that commit(ȳ) can be obtained by swapping the two 
cards of commit(y).

3. Alice executes a private reverse cut on  S2 using the bit b generated in the private 
random bisection cut. Let the obtained sequence be S3. Alice outputs S3.

The protocol requires three rounds.

Example 3 (XOR protocol) Suppose that x = 1 and y = 0 . Input commit(x) =
x

 

and commit(y) =
y

 are given. Alice executes a private random bisection cut on 

commit(x) . Alice randomly selects bit b ∈ {0, 1} . Let us suppose that b = 0 . Alice 

outputs commit(x ) =
x⊕b

 and commit(y) to Bob. Bob privately opens 

commit(x�) . Since x = 1 and b = 0 , x =
1

. Thus, Bob sets S2 =
ȳ

. Bob 

sends S2 to Alice.
Alice executes a private reverse cut on S2 . Since b = 0 , the cards are unchanged. 

If the output, S3 , is opened, S3 =
(ȳ=)1

. Since x⊕ y = 1 , the result is correct.

Theorem 3 The XOR protocol is correct and secure. It uses the minimum number of 
cards.

Proof Correctness: The desired output can be represented as follows.

When x� = 1 , commit(ȳ) is given to Alice. When x� = 0 , commit(y) is given to Alice. 
Thus, Alice’s output is commit(ȳ) if (x�, b) = (1, 0) or (0, 1). Since x� = x⊕ b , these 
cases equal to x = 1.

Alice’s output is commit(y) if (x�, b) = (1, 1) or (0,  0). Since x� = x⊕ b , these 
cases equal to x = 0 . Therefore, the output is correct.

Alice and Bob’s security: The same as the copy protocol.
The number of cards: At least four cards are necessary for any protocol to input 

commit(x) and commit(y) . This protocol uses no additional cards other than the 
input cards.   ◻

A comparison of XOR protocols is shown in Table 3. Though the minimum num-
ber of cards is already realized by [27]. an input preserving (shown in Sect. 4.7) can 
be realized without additional cards.

x⊕ y =

{
ȳ if x = 1

y if x = 0
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Any Logical Functions

Though this paper shows AND and XOR, any two-variable logical functions can 
also be calculated by a similar protocol.

Theorem  4 Any two-variable logical function can be securely calculated in three 
rounds and four cards.

Proof Any two-variable logical function f(x, y) can be written as

where f(1, y) and f(0, y) are y, ȳ , 0, or 1.
First, consider the case when both of f(1,  y) and f(0,  y) are 0 or 1. (f(1,  y),   

f (0, y)) = (0, 0) (or (1,  1)) means that f (x, y) = 0 (or f (x, y) = 1 ), thus we do not 
need to calculate f. (f (1, y), f (0, y)) = (1, 0) (or (0,  1)) means the f (x, y) = x (or 
f (x, y) = x̄ ), thus we do not need to calculate f by a two player protocol.

Next, consider the case when both of (f(1, y),  f(0, y)) are y (or ȳ ). This case is 
when f (x, y) = y (or f (x, y) = ȳ ), thus we do not need to calculate f by a two player 
protocol.

The next case is when (f(1, y), f(0, y)) is (y, ȳ ) or ( ̄y , y). (f(1, y), f(0, y)) = (ȳ, y) is 
x⊕ y (XOR). (f (1, y), f (0, y)) = (y, ȳ) is x⊕ y , thus this function can be calculated as 
follows: execute the XOR protocol and NOT is taken to the output. Thus, this func-
tion can also be calculated.

The remaining case is when one of (f(1, y), f(0, y)) is y or ȳ and the other is 0 or 1. 
We modify the second step of AND protocol, so that Bob sets

using one commit(y) and the two cards used for commit(x�) . Then, Alice obtains 
commit(f (1, y)) if x = 1 and commit(f (0, y)) if x = 0 by the private reverse selection.

Thus, any two-variable logical function can be calculated.   ◻

In [27] without private operations, two additional cards are required to calculate any 
two-variable logical function.

Parallel Computations

The above two-variable logical function calculations can be executed in paral-
lel. Consider the case when commit(x) and commit(yi)(i = 1, 2,… , n) are given 
and commit(fi(x, yi))(i = 1, 2,… , n) need to be calculated. They can be executed 
in parallel. Alice executes a private random bisection cut on commit(x) and sends 
commit(x�) and commit(yi)(i = 1, 2,… , n) to Bob. Bob sets Si

2
(i = 1, 2,… , n) using 

x′ , commit(yi) , and fi . Alice executes a private reverse cut or a private reverse selection 

f (x, y) =

{
f (1, y) if x = 1

f (0, y) if x = 0

S2 =

{
commit(f (1, y))||commit(f (0, y)) if x� = 1

commit(f (0, y))||commit(f (1, y)) if x� = 0



New Generation Computing 

123

on each of Si
2
(i = 1, 2,… , n) using the bit b selected at the private random bisection 

cut. By the procedure, commit(fi(x, yi))(i = 1, 2,… , n) are simultaneously obtained.

Side Effects

When we execute the AND protocol, two cards are selected by Alice at the final 
step. The remaining two cards are not used, but they also output some values. The 
unused two cards’ value is

thus the output is commit(x̄ ∧ y) . The cards can be used as a side effect just like the 
six-card AND protocol in [27].

Generally, for a function f that is calculated by AND type protocol shown in The-
orem 4, the side-effect output is commit(x̄ ∧ f (1, y)⊕ x ∧ f (0, y)).

Preserving An Input

In the above protocols to calculate logical functions, the input commitment values 
are lost. If an input is not lost, the input commitment can be used as an input to 
another calculation. Thus, the input preserving calculation is discussed [31].

In the XOR protocol, commit(x�) is no more necessary after Bob sets S2 . Thus, 
Bob can send back commit(x�) to Alice when Bob sends S2 . Then, Alice can recover 
commit(x) using the private reverse cut. In this modified protocol, the output is 
commit(x⊕ y) and commit(x) without additional cards or rounds.

As for the AND type protocol in Theorem 4, commit(x�) can be sent back to Alice 
and Alice can recover commit(x) . This modified protocol needs six cards in total.

An input preserving calculation without increasing the number of cards can be 
executed for AND type protocols just like [31], which recovers commit(y) . Note that 
the function f satisfies that one of (f(0, y), f(1, y)) is y or ȳ and the other is 0 or 1. Oth-
erwise, we do not need to calculate f by the AND type two player protocol. At the end 
of the protocol, the side-effect output is x̄ ∧ f (1, y)⊕ x ∧ f (0, y) . The output f(x, y) can 
be represented as x ∧ f (1, y)⊕ x̄ ∧ f (0, y) . Execute the above input preserving XOR 
protocol for these two output values so that f(x, y) is recovered. The output of XOR 
protocol is x̄ ∧ f (1, y)⊕ x ∧ f (0, y)⊕ x ∧ f (1, y)⊕ x̄ ∧ f (0, y) = f (1, y)⊕ f (0, y) . 
Since one of (f(0, y),  f(1, y)) is y or ȳ and the other is 0 or 1, the output is y or ȳ 
(depending on f). Thus, input y can be recovered without additional cards. Thus, pre-
serving an input can be realized by 4 cards, which is the minimum. A comparison of 
input preserving AND type protocols is shown in Table 4.

n‑Variable Logical Functions

Since any 2-variable logical function, x̄ , and copy can be executed, any n-variable 
logical function can be calculated by the combination of the above protocols.

{
0 if x = 1

y if x = 0
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Using the technique in [31] and above input preserving logical function cal-
culations, any n-variable logical function can be calculated with 2n + 4 cards as 
follows.

Any logical function f (x1, x2,… , xn) can be represented as follows: 
f (x1, x2,… , xn) = x̄1 ∧ x̄2 ∧⋯ x̄n ∧ f (0, 0,… , 0)⊕ x1 ∧ x̄2 ∧⋯ x̄n ∧ f (1, 0,… , 0)⊕

x̄1 ∧ x2 ∧⋯ x̄n ∧ f (0, 1,… , 0)⊕⋯⊕ x1 ∧ x2 ∧⋯ xn ∧ f (1, 1,… , 1).
Since the terms with f (i1, i2,… , in) = 0 can be removed, this function f can be 

written as f =
⨁k

i=1
vi
1
∧ vi

2
∧⋯ ∧ vi

n
 , where vi

j
= xj or x̄j . Let us write 

Ti = vi
1
∧ vi

2
∧⋯ ∧ vi

n
 . The number of terms k(< 2n) depends on f.

Protocol 4 (Protocol for any logical function (1))  Input: commit(xi)(i = 1, 2,… , n). 
Output: commit(f (x1, x2,… , xn)).

The additional four cards (two pairs of cards) p1 and p2 are used as follows.
p1 stores the intermediate value to calculate f.
p2 stores the intermediate value to calculate Ti.
 Execute the following steps for i = 1,… , k . 

1. Copy vi
1
 from the input x1 to p2.

2. For j = 2,… , n, execute the following procedure: Apply the input-preserving 
AND protocol to p2 and input xj  (If AND is taken between x̄j, first execute NOT 
to the input, then apply the AND protocol, and return the input to xj again.)

   At the end of this step, Ti is obtained at p2.
3.  If i = 1, move p2 to p1. If i > 1, apply the XOR protocol between p1 and p2. The 

result is stored to p1.

At the end of the protocol, f (x1, x2,… xn) is obtained at p1.
The number of additional cards in [31] is six. Thus our protocol reduces the 

number of cards. The number of rounds is O(2n).
As another implementation with a larger number of cards, we show that any 

n-variable logical function can be calculated by the following protocol, whose 
technique is similar to the one in [15]. Let f be any n-variable logical function.

Protocol 5 (Protocol for any logical function (2))  Input: commit(xi)(i = 1, 2,… , n). 
Output: commit(f (x1, x2,… , xn)) . 

Table 4  Comparison of input 
preserving AND protocols in the 
two type card model

Article # Of cards Input Output Note

Nishida et al. 
(2015) [31]

6 commit commit

This paper 4 commit commit Uses 
private 
opera-
tions
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1. Alice executes a private random bisection cut on commit(xi)(i = 1, 2,… , n) .  Let 
the output be commit(x�

i
)(i = 1, 2,… , n)  Note that one random bit bi is selected 

for each xi(i = 1, 2,… , n) .  Alice sends commit(x�
i
)(i = 1, 2,… , n) to Bob. 

2. Bob executes a private reveal on commit(x�
i
)(i = 1, 2,… , n) .  Bob gen-

e r a t e s  2n  c o m m i t m e n t s  Sa1,a2,…,an
(ai ∈ {0, 1}, i = 1, 2,… , n)  a s 

Sa1,a2,…,an
= commit(f (a1 ⊕ x�

1
, a2 ⊕ x�

2
,… , an ⊕ x�

n
)) . Bob sends these commit-

ments to Alice.
3. Alice outputs Sb1,b2,…,bn

.

Since Sb1,b2,…,bn
= commit(f (b1 ⊕ x�

1
, b2 ⊕ x�

2
,… , bn ⊕ x�

n
)) = commit(f (x1, x2,… , xn)) , 

the output is correct. The security is the same as the copy protocol. The protocol 
requires three rounds. The number of cards is 2n+1.

Note that in the model without private operations, a new protocol to calculate 
any logical functions using garbled circuits was proposed [44].

Improving Security

Although this paper assumes all players are semi-honest, some players might 
be malicious in real cases. In the model without private operations, analysis of 
mistakes [23] and prevention of revealing attacks [49] were considered. In the 
model with private operations, it is very hard to prevent malicious actions during 
a player executes a private operation. One countermeasure to deal with a mali-
cious player is setting one watch person to each player.

The watch person for Alice watches the execution by Alice and verifies that (1) 
Alice does not open the cards, (2) Alice really uses a random number generator (for 
example, coin-flipping) to select her random bit, (3) Alice honestly executes a pri-
vate random bisection cut using the random bit, and (4) Alice honestly executes a 
private reverse cut or private reverse selection using the bit generated in (2).

The watch person for Bob watches the execution by Bob and verifies that (1) 
Bob does not open the cards that are not allowed and (2) Bob honestly generates 
the committed cards using the value Bob privately opened.

Note that the watch persons must not disclose the values they watch.
When the number of players is more than two, each player can simultaneously 

act as a player and a watch person. Let us consider the case with three players, 
Alice, Bob, and Carol. Bob acts as a watch person for Alice. Carol acts as a watch 
person for Bob. Alice acts as a watch person for Carol. All the players are in one 
room. One player goes out of the room for a while and does not watch the execu-
tion during the period.

Protocol 6 (Cheat alert AND protocol) Input: commit(x) and commit(y). Output: 
commit(x ∧ y) . 
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1. Carol goes out the room. Alice executes a private random bisection cut on 
commit(x) in front of Bob. Let b1 be the random bit Alice selected. Bob knows b1. 
The obtained data is commit(x⊕ b1).

2. Carol comes back to the room. Then Alice goes out of the room. Bob exe-
cutes a private random bisection cut on commit(x⊕ b1) in front of Carol. 
Let b2 be the random bit Bob selected. Carol knows b2 .  The obtained data is 
commit(x⊕ b1 ⊕ b2).

3. Alice comes back to the room. Then Bob goes out of the room. Carol executes 
a private reveal on commit(x⊕ b1 ⊕ b2) in front of Alice. Let x� = x⊕ b1 ⊕ b2 .  
Carol sets 

in front of Alice. Alice knows the value of x⊕ b1 ⊕ b2.
4. Bob comes back to the room. Then Carol goes out of the room. Alice executes a 

private reverse cut using the bit b1 on S2 in front of Bob. Let the obtained cards 
be S′

2
.

5. Carol comes back to the room. Then Alice goes out of the room. Bob executes a 
private reverse selection using the bit b2  on S′

2
 in front of Carol. Let the obtained 

cards be S3.
6. Alice comes back to the room. Now Alice also knows that S3 is the final output.

Theorem  5 The cheat alert AND protocol is correct, secure, and be able to alert 
misbehavior of players if there is no collusion of players.

Proof About the misbehavior of players: At Step 1, Bob can verify that (1) Alice 
does not open the cards, (2) Alice really uses a random number generator to select 
her random bit, and (3) Alice honestly executes a private random bisection cut using 
the random bit.

At Step 2, Carol can verify that (1) Bob does not open the cards, (2) Bob really 
uses a random number generator to select his random bit, and (3) Bob honestly exe-
cutes a private random bisection cut using the random bit.

At Step 3, Alice can verify that (1) Carol does not open the cards that are not 
allowed and (2) Carol honestly generates the committed cards using the value Carol 
opened.

At Step 4, Bob can verify that (1) Alice does not open the cards and (2) Alice 
honestly executes a private reverse cut using the bit generated at Step 1.

At Step 5, Carol can verify that (1) Bob does not open the cards and (2) Bob hon-
estly executes a private reverse selection using the bit generated at Step 2.

By these verifications, the players can understand that the protocol is correctly 
executed if there is no alert.

About the security, Alice knows b1 and x⊕ b1 ⊕ b2 . Bob knows b1 and b2 . Carol 
knows b2 and x⊕ b1 ⊕ b2 . Thus, every player has no knowledge about x if no collu-
sion exists.

The correctness of the protocol: the same as the AND protocol.   ◻

S2 =

{
commit(y)||commit(0) if x� = 1

commit(0)||commit(y) if x� = 0
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Similar protocols can be obtained for all the other protocols shown above.
Note that in the above three-player protocol, false alarms cannot be prevented. If 

Bob alerts that Alice misbehaved even if there is no misbehavior, there is no way for 
Carol to decide which of Alice and Bob is correct. In order to prevent this type of 
malicious behavior, the protocol needs to be executed more than three players. The 
protocol with more than three players P0,P1,… ,Pn−1(n > 3) is as follows:

Protocol 7 (False alert prevention AND protocol) Select some random number 
i(0 < i < n). One player is out of the room when each player executes a round of the 
protocol. All the other players in the room watch the execution by the current player 
and verify the correctness of the current player.

1. Pj(j = 0,… , n − 2) executes a private random bisection cut on commit(x) using 
random bit bj when Pj+i mod n is out of the room, thus commit(x⊕n−2

j=0
bj) is 

obtained.
2. Pn−1 executes a private reveal and sets S2 when Pn−1+i mod n is out of the room.
3. Pj(j = 0,… , n − 2) executes a private reverse cut using bj when Pj+i mod n is out 

of the room.
4. After all the private reverse cuts are finished, the left pair is selected as the output.

At any step of the protocol, one player executes some operation and n − 2(> 1) 
players watch the execution since one player is out of the room. If one malicious 
player Pj misbehaves some operation, n − 2(> 1) watching players alert, thus the 
misbehavior is detected by the majority. If a watching player falsely alert that Pj 
misbehaved, the other watching player(s) and Pj say that Pj is correct, thus the alert 
is detected false by the majority. The correctness of the protocol is just the same as 
the original AND protocol. In this execution, any player cannot obtain the value of 
the committed value because he does not have all information if no collusion exists.

Similar protocols can be obtained for all the other protocols shown above.

Asymmetric Card Protocols

When we use cards whose face is not symmetric, such as  and , but the back is 

symmetric, one bit data can be represented by one card as  and . Proto-

cols with this type of card are first considered in [25] and then several protocols are 
shown in [45, 46]. For such an encoding method, a private random bisection cut on a 
committed bit is changed to upside-down the card according to the random bit. A 
private reverse cut and a private reverse selection on an even sequence are 
unchanged. A private reverse cut and a private reverse selection on a single card are 
changed as upside down the card according to the random bit selected in the private 
random bisection cut. Using these private operations, all protocols shown above 
work for the asymmetric cards. The number of cards used by this protocol is half of 
the two-type card protocols. Copy, AND, and XOR protocols are shown.
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Protocol 8 (asymmetric card copy protocol) Input: commit(x). Output: m copies of 
commit(x) . 

1. Alice randomly selects bit b.  If b=1, Alice turns commit(x) upside down. Let the 
output be commit(x�) .  Note that x� = x⊕ b .  Alice sends commit(x�) to Bob.

2. Bob executes a private reveal on commit(x�) and obtains x′.Bob makes m copies 
of x′ .  Bob faces down these cards. Bob sends these cards, m copies of commit(x�) ,  
to Alice.

3. If b = 1, Alice turns each copy of  commit(x�) upside down.

Example 4 (asymmetric card copy protocol) Suppose that x = 0 . Input 

 is given. Alice randomly selects bit b ∈ {0, 1} . Let us suppose 

that b = 1 . Alice turns commit(x) upside down and sends  to 

Bob. Bob privately opens commit(x�) . Since x = 0 and b = 1 , . Thus, Bob 

sets . Bob faces down these cards and sends them to Alice.

Since b = 1 , Alice turns the cards upside down. The output is m copies of 

commit(x).

Protocol 9 (asymmetric card AND protocol) Input: commit(x) and commit(y). Out-
put: commit(x ∧ y) . 

1. Alice randomly selects bit b.  If b=1, Alice turns commit(x) upside down. Let the 
output be commit(x�) .  Alice sends commit(x�) and commit(y) to Bob. 

2. Bob executes a private reveal on commit(x�). Bob sets

and sends S2 to Alice.
3. Alice executes a private reverse selection on  S2 using the bit b generated in the 

private random bisection cut. Let the obtained sequence be S3. Alice outputs S3.

Example 5 (asymmetric card AND protocol) Suppose that x = 0 and y = 1 . Input 

 and  are given. Alice randomly selects bit 

b ∈ {0, 1} . Let us suppose that b = 1 . Alice turns commit(x) upside down and sends 

 and commit(y) to Bob. Bob privately opens commit(x�) . Since 

S2 =

{
commit(y)||commit(0) if x� = 1

commit(0)||commit(y) if x� = 0
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x = 0 and b = 1 , . Thus, Bob sets . Bob faces down the 

right card and sends S2 to Alice.
Alice executes a private reverse selection on S2 . Since b = 1 , the right card is 

selected. If the output, S3 , is opened, . Since x ∧ y = 0 , the result is 

correct.

Protocol 10 (asymmetric card XOR protocol)  Input: commit(x) and commit(y). 
Output: commit(x⊕ y) . 

1. Alice randomly selects bit b.  If b=1, Alice turns commit(x) upside down. Let the 
output be commit(x�) .  Alice sends commit(x�) and commit(y) to Bob. 

2. Bob executes a private reveal on commit(x�) .  If x� = 1, Bob turns commit(y) 
upside down. Let the obtained card be S2. Bob sends S2 to Alice. 

3. Alice executes a private reverse cut on  S2 using the bit b generated in the private 
random bisection cut. Let the obtained card be S3. Alice outputs S3.

Example 6 (asymmetric card XOR protocol) Suppose that x = 0 and y = 1 . Input 

 and  are given. Alice randomly selects bit 

b ∈ {0, 1} . Let us suppose that b = 1 . Alice turns commit(x) upside down and sends 

 and commit(y) to Bob. Bob privately opens commit(x�) . Since 

x = 0 and b = 1 , . Thus, Bob turns commit(y) upside down and obtains S2 . 

Bob sends S2 to Alice.
Since b = 1 , Alice turns S2 upside down and obtains S3 . If the output, S3 , is 

opened, . Since x⊕ y = 1 , the result is correct.

Theorem 6 Using asymmetric cards, Copy, AND, and XOR can be realized using 
two cards and in three rounds.

Proof The correctness and security proofs are just the same as the ones for the two 
type card protocols.   ◻

Conclusion

This paper proposed new card-based cryptographic protocols with the minimum 
number of cards using private operations. Though private operations are effective, 
there is a worry of the malicious actions during private operations. Thus, one of the 
most important open problems is detecting malicious actions when the number of 
players is two.
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