
1 23

New Generation Computing

ISSN 0288-3635

New Gener. Comput.
DOI 10.1007/s00354-020-00113-z

Card-Based Cryptographic Logical
Computations Using Private Operations

Hibiki Ono & Yoshifumi Manabe

1 23

Your article is published under the Creative

Commons Attribution license which allows

users to read, copy, distribute and make

derivative works, as long as the author of

the original work is cited. You may self-

archive this article on your own website, an

institutional repository or funder’s repository

and make it publicly available immediately.

Vol.:(0123456789)

New Generation Computing
https://doi.org/10.1007/s00354-020-00113-z

123

Card‑Based Cryptographic Logical Computations Using
Private Operations

Hibiki Ono1 · Yoshifumi Manabe1

Received: 15 April 2020 / Accepted: 3 October 2020
© The Author(s) 2020

Abstract
This paper proposes new card-based cryptographic protocols to calculate logic func-
tions with the minimum number of cards using private operations under the semi-
honest model. Though various card-based cryptographic protocols were shown, the
minimum number of cards used in the protocol has not been achieved yet for many
problems. Operations executed by a player where the other players cannot see are
called private operations. Private operations have been introduced in some protocols
to solve a particular problem or to input private values. However, the effectiveness
of introducing private operations to the calculation of general logic functions has not
been considered. This paper introduces three new private operations: private random
bisection cuts, private reverse cuts, and private reveals. With these three new opera-
tions, we show that all of AND, XOR, and copy protocols are achieved with the
minimum number of cards by simple three-round protocols. This paper then shows
a protocol to calculate any logical functions using these private operations. Next, we
consider protocols with malicious players.

Keywords Multi-party secure computation · Card-based cryptographic protocols ·
Private operations · Logical computations · Copy

Preliminary version of the paper was presented as Hibiki Ono and Yoshifumi Manabe: “ Card-based
Cryptographic Protocols with the Minimum Number of Cards Using Private Operations,” Proc. of
11th International Symposium on Foundations & Practice of Security (FPS 2018) LNCS Vol. 11358,
pp.193–207 (Apr. 2019).

 * Yoshifumi Manabe
 manabe@cc.kogakuin.ac.jp

1 Faculty of Informatics, Kogakuin University, 1-24-2, Nishisinjuku, Shinjuku, Tokyo 163–8677,
Japan

http://orcid.org/0000-0002-6312-257X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00354-020-00113-z&domain=pdf

 New Generation Computing

123

Introduction

Card-based cryptographic protocols [11, 26] have been proposed in which physi-
cal cards are used instead of computers to securely calculate values. den Boer [2]
first showed a five-card protocol to securely calculate AND of two inputs. Since
then, many protocols have been proposed to calculate logical functions [4, 5, 21,
24, 27, 30, 40, 44, 47] and specific computations such as computations on three
inputs [32, 33, 43], calculation of symmetric functions [41], millionaires’ prob-
lem [18, 29, 37], voting [22, 28, 51], random permutation [6, 8, 9], grouping [7],
matching [17], ranking [48], zero-knowledge proof of puzzle solutions [3, 16, 19,
42] and so on. Most of the protocols assume a semi-honest model, that is, play-
ers obey the rule of the protocol but try to obtain secret values. This paper also
assumes the semi-honest model in most sections. We discuss malicious players in
Sect. 5.

Randomization or a private operation is the most important primitive in these
card-based protocols. If every primitive executed in a card-based protocol is
deterministic and public, the relationship between the private input values and
output values is known to the players. When the output value is disclosed, the
private input value can be known to the players from the relationship. Thus, all
protocols need some random or private operation.

First, randomization primitives have been discussed and then recently, private
operations are considered. Many protocols use random bisection cuts [27], which
randomly execute swapping two decks of cards or not swapping. If the random
value used in the randomization is disclosed, the secret input value is known
to the players. There are two types of randomization: single-player randomiza-
tion and multiple player randomization. For the single-player randomization, the
player must not know the random value he selected. Ueda et al. [50] proposed
several methods that can be done in front of people, but no one can know the
random value. However, if a person privately brings a high-speed video camera,
he might able to know the random value by analyzing the image. Currently, the
size of high-speed video cameras is too large to privately bring without getting
caught, but the size might become smaller in the near future. In the case, the ran-
domization in a public place becomes difficult. By introducing additional cards, a
random bisection cut can be executed using a random cut [50], which is a normal
shuffle operation in playing cards. Koch and Walzer [13] proposed a protocol for
a player to execute a private permutation that is unknown to the other players, but
the player can prove that he really executed an allowed permutation. Pile-shifting
scramble [34] was proposed that achieves non-uniform shuffles with some special
tools. These protocols can be executed in a public place, but they need additional
special cards or tools.

A simple solution to execute private randomization is multiple player rand-
omization, in which some operations are executed in a hidden place. To execute
a private random bisection cut, Alice executes a random bisection cut in a place
where Bob cannot see (under the table, or in the back, etc). Then, Bob executes
a random bisection cut in a place where Alice cannot see. The result is unknown

New Generation Computing

123

to either player. Note that the number of players can be arbitrarily increased. To
know the random value, a person needs to know all of the values the players used.
Such an operation that is done where the other players cannot see is called a pri-
vate operation. Therefore, we have a natural question: if we introduce some pri-
vate operations other than the random bisection cut, can we have effective card-
based cryptographic protocols to calculate logical functions?

Private operations have been first introduced to solve millionaires’ problem [29].
The private operations used in the papers are similar to the primitives proposed in
this paper, but it is not clear that the primitives can be used for the other protocols.
Then private operations were used to calculate logical functions [15, 46]. These
papers discussed a private operation that sets each player’s private inputs. Though
the number of cards used in these protocols is less than the ones in the conventional
protocols, these protocols cannot be used for general cases when the players do not
know the inputs, that is, the inputs are given as committed values. Protocols with
committed inputs can also be used for the cases when each player knows his input
values by setting his private inputs as committed values. Thus, protocols that accept
committed inputs are desirable. Another desirable property is committed output. If
the output is given as a committed value, a further private calculation can be done
using the output value.

This paper considers card-based protocols with committed inputs and committed
outputs using private operations under the semi-honest model. This paper introduces
three private operations: private random bisection cuts, private reverse cuts, and pri-
vate reveals. This paper shows protocols which execute AND, XOR, and copy with
four cards, which is the minimum. We also show protocols that calculate any logical
functions.

As for the number of cards used for copy protocols, six was the minimum for
finite-runtime copy [27], as shown in Table 1. The protocol in [36] uses 5 cards, but
the number of steps of the protocol is unbounded. It is proved to be impossible to
achieve a copy with four cards by the conventional model without private operations
[10]. In their model, each card sequence has a probability to occur. Using the prob-
abilities, players are prohibited to open a card that reveals secret information. Such
arguments lead to the impossibility results. On the other hand, if private operations
are executed, one card sequence can have two different probabilities: the one Alice
knows and the other one Bob knows. Bob is allowed to privately open a card that
does not reveal secret information to Bob.

Table 1 Comparison of copy protocols in two type card model

Article # of cards Note

Crépeau et al. (1993) [4] 8
Mizuki et al. (2009) [27] 6
Nishimura et al. (2015) [35] 5 Uses unequal shuffle
Nishimura et al. (2018) [36] 5 Number of steps is not bounded
This paper 4 Uses private operations

 New Generation Computing

123

The numbers of cards in committed-input, committed-output AND protocols are
shown in Table 2. The protocol in [27] uses six cards. Though the protocol in [14]
uses four cards, the protocol uses a non-uniform shuffle, which obtains one result by
the probability of 1/3 and the other result by the probability of 2/3. Such a non-uni-
form shuffle is difficult to achieve without some special tools. Another four-card pro-
tocol with uniform shuffles [40] does not terminate within a finite time. It is proved
to be impossible to achieve finite-runtime AND with four cards by the conventional
model without private operations [10, 12]. Our protocol uses four cards, which is the
minimum, and it is easy to execute.

The number of cards in XOR protocols is shown in Table 3. Though the num-
ber of cards is the same in our protocol and [27], an input preserving (shown in
Sect. 4.7) can be realized by our protocol without additional cards.

This paper then shows several variants of the protocols to calculate any logic
functions that includes side effects of the calculations, parallel computations, and
preserving an input.

Then, Sect. 5 discusses protocols when a malicious player exists. Last, Sect. 6
shows protocols that use asymmetric cards.

Table 2 Comparison of AND protocols in the two type card model (except for (*))

Article # of cards Input Output Note

den Boer (1989) [2] 5 commit non-commit
Crépeau et al. (1993) [4] 10 commit commit (*) Four color cards
Niemi et al. (1998) [30] 12 commit commit
Stiglic (2001) [47] 8 commit commit
Mizuki et al. (2009) [27] 6 commit commit
Mizuki et al. (2012) [24] 4 commit non-commit
Koch et al. (2015) [14] 4 commit commit Non-uniform shuffle
Shirouchi et al. (2017) [46] 3 non-commit non-commit Uses private operations
Kurosawa et al. (2017) [15] 4 non-commit commit Uses private operations
Abe et al. (2018) [1] 5 commit commit Number of steps is not bounded
Ruangwises et al. (2019) [40] 4 commit commit Number of steps is not bounded
This paper 4 commit commit Uses private operations

Table 3 Comparison of XOR protocols in the two type card model

Article # of cards Input Output Note

Crépeau et al. (1993) [4] 14 commit commit Four color cards
Mizuki et al. (2009) [27] 4 commit commit
Shirouchi et al. (2017) [46] 2 non-commit commit
Kurosawa et al. (2017) [15] 2 non-commit commit
This paper 4 commit commit Uses private operation

Preserving an input is possible

New Generation Computing

123

An earlier version of this paper was presented and appeared as a conference paper
[38]. The main difference is as follows. Execution examples are shown for the main
protocols. This paper improved the discussion in Sect. 5. The detail of the cheat alert
protocol is shown. The correctness proof of the protocol is newly written. In addi-
tion, a false alert prevention protocol is newly shown. Section 6 is a new section that
proposes new protocols using asymmetric cards.

Preliminaries

This section gives the notation and basic definitions of card-based protocols. All
Sections other than Section 6 are based on two type card model that is most com-
monly considered. In the model, there are two kinds of marks, and . Cards of
the same marks cannot be distinguished. In addition, the back of both types of cards
is . It is impossible to determine the mark in the back of a given card with .
One bit of data is represented by two cards as follows: and .

One pair of cards that represents one bit x ∈ {0, 1} , whose face is down, is called

a commitment of x, and denoted as commit(x) . It is written as . Note that when

these two cards are swapped, commit(x̄) can be obtained. Thus, NOT can be calcu-
lated without private operations.

Linearly ordered cards are called a sequence of cards. A sequence of cards S
whose length is n is denoted as S = s1, s2,… , sn , where si is the i-th card of the

sequence. . A sequence whose length is even is called

an even sequence. S1||S2 is a concatenation of sequence S1 and S2.
All protocols are executed by multiple players. In this paper except for Sect. 5, all

players are semi-honest, that is, they obey the rule of the protocols, but try to obtain
information x of commit(x) . There is no collusion among players executing one pro-
tocol together. No player wants any other player to obtain information on committed
values.

Private Operations

We introduce three private operations: private random bisection cuts, private reverse
cuts, and private reveals.

Primitive 1 (Private random bisection cut) A private random bisection cut is the fol-
lowing operation on an even sequence S0 = s1, s2,… , s2m. A player selects a random
bit b ∈ {0, 1} and outputs

 New Generation Computing

123

The player executes this operation in a place where the other players cannot see.
The player does not disclose the bit b.

Note that the protocols in this paper use the operation only when m = 1 and

S0 = commit(x) . Given , the player’s output , which is

 or .

Note that a private random bisection cut is the same as the random bisection
cut [27], but the operation is executed in a hidden place.

Primitive 2 (Private reverse cut, Private reverse selection) A private reverse cut is
the following operation on an even sequence S2 = s1, s2,… , s2m and a bit b ∈ {0, 1}
that is given to the player. The player outputs

The player executes this operation in a place where the other player cannot see. The
player must not disclose the bit b to the other players.

The difference between the private random bisection cut is that b is not newly
selected by the player.

When a player executes a private reverse cut on

, the player outputs

 if b = 0 or

 if b = 1.

When a private reverse cut is executed using bit b to the sequence to which a
private random bisection cut is executed using b, the private reverse cut can undo
the private random bisection cut.

Note that in many protocols below, the left m cards are selected after a private
reverse cut. The sequence of these two operations is called a private reverse selec-
tion. A private reverse selection is the following procedure on an even sequence
S2 = s1, s2,… , s2m and the bit b ∈ {0, 1} , which is given to the player. The output

Next, we define a private reveal.

S1 =

{
S0 if b = 0

sm+1, sm+2,… , s2m, s1, s2,… , sm if b = 1

S3 =

{
S2 if b = 0

sm+1, sm+2,… , s2m, s1, s2,… , sm if b = 1

S3 =

{
s1, s2,… sm if b = 0

sm+1, sm+2,… , s2m if b = 1

New Generation Computing

123

Primitive 3 (Private reveal) A player privately opens a given committed bit. The
player does not disclose the value to the other players.

Using the obtained value, the player privately sets a sequence of cards.
Though the player seems to obtain a secret value by a private reveal, it is

avoided by the following procedure. Alice executes a private random bisection cut
to commit(x) . The result becomes to commit(x⊕ b) . When Bob executes a private
reveal to commit(x⊕ b) , Bob has no information about x if b is randomly chosen
and not disclosed by Alice. Bob must not disclose the obtained value. If Bob dis-
closes the obtained value to Alice, Alice knows the value of the committed bit.

Card-based protocols are evaluated by the following criteria.

– The number of cards used in the protocol.
– The number of rounds [39].

The time complexity of protocols in the model without private operations was dis-
cussed [20]. The number of rounds was considered as the time complexity of the
protocol with private operations. The definition of rounds is as follows [39]. The
first round is (possibly parallel) local executions by each player using the cards ini-
tially given to each player. The first round begins from the initial state. It ends at
the instant when no further local execution is possible without receiving cards from
another player. The local executions in each round include sending cards to some
other players but do not include receiving cards. The i(> 1)-th round begins with
receiving all the cards sent during the (i − 1)-th round. Each player executes local
executions using the received cards and the cards left to the player at the end of
the (i − 1)-th round. Each player executes until no further local execution is possible
without receiving cards from another player. The number of rounds of a protocol is
the maximum number of rounds necessary to output the result among all possible
inputs and random values. Since each operation is relatively simple, the dominat-
ing time to execute protocols with private operations is the time to sending cards
between players and setting up so that the cards are not seen by the other players.
Thus the number of rounds is the criteria to evaluate the time complexity of card-
based protocols with private operations.

New Copy, AND, and XOR Protocols

Using the private random bisection cuts, private reveals, and private reverse cuts,
cory protocol, AND protocol, and XOR protocol with committed inputs and com-
mitted outputs can be realized with the minimum number of cards. All of these pro-
tocols are executed between two players, Alice and Bob. In Sect. 5, the number of
players is increased to improve security.

 New Generation Computing

123

copy Protocol

Protocol 1 (copy protocol) Input: commit(x). Output: m copies of commit(x) .

1. Alice executes a private random bisection cut on commit(x) . Let the output be
commit(x�). Note that x� = x⊕ b . Alice sends commit(x�) to Bob.

2. Bob executes a private reveal on commit(x�) and obtains x′ . Bob makes m copies
of x′ . Bob faces down these cards. Bob sends these cards, m copies of commit(x�) ,
to Alice.

3. Alice executes a private reverse cut to each copy of commit(x�) using the bit b
Alice generated in the private random bisection cut. Alice outputs these copies.

The protocol requires three rounds.

Example 1 (copy protocol) Suppose that x = 1 . Input is given.

Alice executes a private random bisection cut on commit(x) . Alice randomly selects
bit b ∈ {0, 1} . Let us suppose that b = 1 . In this case, Alice outputs

 to Bob. Bob privately opens commit(x�) . Since x = 1 and

b = 1 , .

Bob makes m copies of x′ as . Bob faces down this sequence

and sends it to Alice.
Alice executes a private reverse cut on each pair of the cards. Since b = 1 , all

pairs are swapped. If the output is opened, . Thus, the output is

m copies of commit(x).

Theorem 1 The copy protocol is correct and secure. It uses the minimum number of
cards.

Proof Correctness: If b = 0 , Bob sees x and makes m copies of x. Alice does nothing
at the private reverse cut, thus m copies of x are obtained. If b = 1 , Bob sees x̄ and
makes m copies of x̄ . Alice swaps each copy of x̄ , thus m copies of x are obtained.

Alice’s security: Alice sees no opened cards, thus Alice obtains no information
about x.

Bob’s security: When Bob privately opens commit(x�) , x� = x⊕ b , thus Bob
obtains no information about x if b is randomly selected and not disclosed.

The number of cards: In order to obtain m copies of a commitment, at least 2m
cards are necessary. The protocol is executed with 2m cards, thus the number of
cards is the minimum. ◻

New Generation Computing

123

Comparison of copy protocols(when m = 2) is shown in Table 1. This proto-
col is the first protocol that achieves the minimum number of cards.

AND Protocol

Logical AND can also be executed with the minimum number of cards.

Protocol 2 (AND protocol) Input: commit(x) and commit(y). Output:
commit(x ∧ y) .

1. Alice executes a private random bisection cut on commit(x) . Let the output be
commit(x�) . Alice sends commit(x�) and commit(y) to Bob.

2. Bob executes a private reveal on commit(x�). Bob sets

and sends S2 to Alice.
3. Alice executes a private reverse selection on S2 using the bit b generated in the

private random bisection cut. Let the obtained sequence be S3. Alice outputs S3.

Note that the two cards that were not selected by Alice at the last step of the
protocol, must be discarded. Since the unused cards have some information on x
and y, information about input values is leaked if the cards are opened. The proto-
col requires three rounds.

Example 2 (AND protocol)

Suppose that x = 0 and y = 1 . Input commit(x) =
x

 and commit(y) =
y

are given. Alice executes a private random bisection cut on commit(x) . Alice ran-
domly selects bit b ∈ {0, 1} . Let us suppose that b = 0 . Alice sends

commit(x) =
x⊕b

 and commit(y) to Bob. Bob privately opens commit(x�) . Since

x = 0 and b = 0 , x =
0

. Thus, Bob sets S2 =
0 y

. Bob faces down the

left cards and sends S2 to Alice. Alice executes a private reverse selection on S2 .

Since b = 0 , the left two cards are selected. If the output, S3 , is opened, S3 =
0

.

Since x ∧ y = 0 , the result is correct.

Theorem 2 The AND protocol is correct and secure. It uses the minimum number of
cards.

Proof Correctness: The desired output can be represented as follows.

S2 =

{
commit(y)||commit(0) if x� = 1

commit(0)||commit(y) if x� = 0

 New Generation Computing

123

When Bob obtains x� = 1 , commit(y)||commit(0) is given to Alice. When Bob
obtains x� = 0 , commit(0)||commit(y) is given to Alice. Thus Alice’s output is
commit(y) if (x�, b) = (1, 0) or (0, 1). Since x� = x⊕ b , these cases equal to x = 1.

Alice’s output is commit(0) if (x�, b) = (1, 1) or (0, 0). Since x� = x⊕ b , these
cases equal to x = 0 . Therefore, the output is correct.

Alice and Bob’s security: The same as the copy protocol.
The number of cards: Any committed-input protocol needs at least four cards to

input commit(x) and commit(y) . When Bob sets S2 , the cards used for commit(x�)
can be used to set commit(0) . Thus, the total number of cards is four and the mini-
mum. ◻

A careful discussion is necessary when a player knows the value x of given
commit(x) , for example, x is the player’s private input value.

First, consider the case when Bob knows x. When Bob executes a private reveal
on commit(x⊕ b) , Bob knows the bit b Alice selected. This scenario is not a secu-
rity problem. Bob knows b, thus he knows whether the final output is commit(0) or
commit(y) in advance. However, since

it is not new information for Bob who already knows x.
Next, consider the case when Alice knows x. Alice knows x� = x⊕ b . Thus, Alice

knows whether the final output is commit(0) or commit(y) in advance, but it is not
new information for Alice.

A comparison of AND protocols is shown in Table 2. Though Koch et al. [14]
showed a finite step protocol with the minimum number of cards, their protocol
must use a non-uniform shuffle, which is not easy to realize.

XOR Protocol

Protocol 3 (XOR protocol) Input: commit(x) and commit(y). Output:
commit(x⊕ y) .

1. Alice executes a private random bisection cut on commit(x) . Let the output be
commit(x�). Alice sends commit(x�) and commit(y) to Bob.

2. Bob executes a private reveal on commit(x�) . Bob sets

x ∧ y =

{
y if x = 1

0 if x = 0

x ∧ y =

{
y if x = 1

0 if x = 0

S2 =

{
commit(ȳ) if x� = 1

commit(y) if x� = 0

New Generation Computing

123

and sends S2 to Alice. Note that commit(ȳ) can be obtained by swapping the two
cards of commit(y).

3. Alice executes a private reverse cut on S2 using the bit b generated in the private
random bisection cut. Let the obtained sequence be S3. Alice outputs S3.

The protocol requires three rounds.

Example 3 (XOR protocol) Suppose that x = 1 and y = 0 . Input commit(x) =
x

and commit(y) =
y

 are given. Alice executes a private random bisection cut on

commit(x) . Alice randomly selects bit b ∈ {0, 1} . Let us suppose that b = 0 . Alice

outputs commit(x) =
x⊕b

 and commit(y) to Bob. Bob privately opens

commit(x�) . Since x = 1 and b = 0 , x =
1

. Thus, Bob sets S2 =
ȳ

. Bob

sends S2 to Alice.
Alice executes a private reverse cut on S2 . Since b = 0 , the cards are unchanged.

If the output, S3 , is opened, S3 =
(ȳ=)1

. Since x⊕ y = 1 , the result is correct.

Theorem 3 The XOR protocol is correct and secure. It uses the minimum number of
cards.

Proof Correctness: The desired output can be represented as follows.

When x� = 1 , commit(ȳ) is given to Alice. When x� = 0 , commit(y) is given to Alice.
Thus, Alice’s output is commit(ȳ) if (x�, b) = (1, 0) or (0, 1). Since x� = x⊕ b , these
cases equal to x = 1.

Alice’s output is commit(y) if (x�, b) = (1, 1) or (0, 0). Since x� = x⊕ b , these
cases equal to x = 0 . Therefore, the output is correct.

Alice and Bob’s security: The same as the copy protocol.
The number of cards: At least four cards are necessary for any protocol to input

commit(x) and commit(y) . This protocol uses no additional cards other than the
input cards. ◻

A comparison of XOR protocols is shown in Table 3. Though the minimum num-
ber of cards is already realized by [27]. an input preserving (shown in Sect. 4.7) can
be realized without additional cards.

x⊕ y =

{
ȳ if x = 1

y if x = 0

 New Generation Computing

123

Any Logical Functions

Though this paper shows AND and XOR, any two-variable logical functions can
also be calculated by a similar protocol.

Theorem 4 Any two-variable logical function can be securely calculated in three
rounds and four cards.

Proof Any two-variable logical function f(x, y) can be written as

where f(1, y) and f(0, y) are y, ȳ , 0, or 1.
First, consider the case when both of f(1, y) and f(0, y) are 0 or 1. (f(1, y),

f (0, y)) = (0, 0) (or (1, 1)) means that f (x, y) = 0 (or f (x, y) = 1), thus we do not
need to calculate f. (f (1, y), f (0, y)) = (1, 0) (or (0, 1)) means the f (x, y) = x (or
f (x, y) = x̄), thus we do not need to calculate f by a two player protocol.

Next, consider the case when both of (f(1, y), f(0, y)) are y (or ȳ). This case is
when f (x, y) = y (or f (x, y) = ȳ), thus we do not need to calculate f by a two player
protocol.

The next case is when (f(1, y), f(0, y)) is (y, ȳ) or (̄y , y). (f(1, y), f(0, y)) = (ȳ, y) is
x⊕ y (XOR). (f (1, y), f (0, y)) = (y, ȳ) is x⊕ y , thus this function can be calculated as
follows: execute the XOR protocol and NOT is taken to the output. Thus, this func-
tion can also be calculated.

The remaining case is when one of (f(1, y), f(0, y)) is y or ȳ and the other is 0 or 1.
We modify the second step of AND protocol, so that Bob sets

using one commit(y) and the two cards used for commit(x�) . Then, Alice obtains
commit(f (1, y)) if x = 1 and commit(f (0, y)) if x = 0 by the private reverse selection.

Thus, any two-variable logical function can be calculated. ◻

In [27] without private operations, two additional cards are required to calculate any
two-variable logical function.

Parallel Computations

The above two-variable logical function calculations can be executed in paral-
lel. Consider the case when commit(x) and commit(yi)(i = 1, 2,… , n) are given
and commit(fi(x, yi))(i = 1, 2,… , n) need to be calculated. They can be executed
in parallel. Alice executes a private random bisection cut on commit(x) and sends
commit(x�) and commit(yi)(i = 1, 2,… , n) to Bob. Bob sets Si

2
(i = 1, 2,… , n) using

x′ , commit(yi) , and fi . Alice executes a private reverse cut or a private reverse selection

f (x, y) =

{
f (1, y) if x = 1

f (0, y) if x = 0

S2 =

{
commit(f (1, y))||commit(f (0, y)) if x� = 1

commit(f (0, y))||commit(f (1, y)) if x� = 0

New Generation Computing

123

on each of Si
2
(i = 1, 2,… , n) using the bit b selected at the private random bisection

cut. By the procedure, commit(fi(x, yi))(i = 1, 2,… , n) are simultaneously obtained.

Side Effects

When we execute the AND protocol, two cards are selected by Alice at the final
step. The remaining two cards are not used, but they also output some values. The
unused two cards’ value is

thus the output is commit(x̄ ∧ y) . The cards can be used as a side effect just like the
six-card AND protocol in [27].

Generally, for a function f that is calculated by AND type protocol shown in The-
orem 4, the side-effect output is commit(x̄ ∧ f (1, y)⊕ x ∧ f (0, y)).

Preserving An Input

In the above protocols to calculate logical functions, the input commitment values
are lost. If an input is not lost, the input commitment can be used as an input to
another calculation. Thus, the input preserving calculation is discussed [31].

In the XOR protocol, commit(x�) is no more necessary after Bob sets S2 . Thus,
Bob can send back commit(x�) to Alice when Bob sends S2 . Then, Alice can recover
commit(x) using the private reverse cut. In this modified protocol, the output is
commit(x⊕ y) and commit(x) without additional cards or rounds.

As for the AND type protocol in Theorem 4, commit(x�) can be sent back to Alice
and Alice can recover commit(x) . This modified protocol needs six cards in total.

An input preserving calculation without increasing the number of cards can be
executed for AND type protocols just like [31], which recovers commit(y) . Note that
the function f satisfies that one of (f(0, y), f(1, y)) is y or ȳ and the other is 0 or 1. Oth-
erwise, we do not need to calculate f by the AND type two player protocol. At the end
of the protocol, the side-effect output is x̄ ∧ f (1, y)⊕ x ∧ f (0, y) . The output f(x, y) can
be represented as x ∧ f (1, y)⊕ x̄ ∧ f (0, y) . Execute the above input preserving XOR
protocol for these two output values so that f(x, y) is recovered. The output of XOR
protocol is x̄ ∧ f (1, y)⊕ x ∧ f (0, y)⊕ x ∧ f (1, y)⊕ x̄ ∧ f (0, y) = f (1, y)⊕ f (0, y) .
Since one of (f(0, y), f(1, y)) is y or ȳ and the other is 0 or 1, the output is y or ȳ
(depending on f). Thus, input y can be recovered without additional cards. Thus, pre-
serving an input can be realized by 4 cards, which is the minimum. A comparison of
input preserving AND type protocols is shown in Table 4.

n‑Variable Logical Functions

Since any 2-variable logical function, x̄ , and copy can be executed, any n-variable
logical function can be calculated by the combination of the above protocols.

{
0 if x = 1

y if x = 0

 New Generation Computing

123

Using the technique in [31] and above input preserving logical function cal-
culations, any n-variable logical function can be calculated with 2n + 4 cards as
follows.

Any logical function f (x1, x2,… , xn) can be represented as follows:
f (x1, x2,… , xn) = x̄1 ∧ x̄2 ∧⋯ x̄n ∧ f (0, 0,… , 0)⊕ x1 ∧ x̄2 ∧⋯ x̄n ∧ f (1, 0,… , 0)⊕

x̄1 ∧ x2 ∧⋯ x̄n ∧ f (0, 1,… , 0)⊕⋯⊕ x1 ∧ x2 ∧⋯ xn ∧ f (1, 1,… , 1).
Since the terms with f (i1, i2,… , in) = 0 can be removed, this function f can be

written as f =
⨁k

i=1
vi
1
∧ vi

2
∧⋯ ∧ vi

n
 , where vi

j
= xj or x̄j . Let us write

Ti = vi
1
∧ vi

2
∧⋯ ∧ vi

n
 . The number of terms k(< 2n) depends on f.

Protocol 4 (Protocol for any logical function (1)) Input: commit(xi)(i = 1, 2,… , n).
Output: commit(f (x1, x2,… , xn)).

The additional four cards (two pairs of cards) p1 and p2 are used as follows.
p1 stores the intermediate value to calculate f.
p2 stores the intermediate value to calculate Ti.
 Execute the following steps for i = 1,… , k .

1. Copy vi
1
 from the input x1 to p2.

2. For j = 2,… , n, execute the following procedure: Apply the input-preserving
AND protocol to p2 and input xj (If AND is taken between x̄j, first execute NOT
to the input, then apply the AND protocol, and return the input to xj again.)

 At the end of this step, Ti is obtained at p2.
3. If i = 1, move p2 to p1. If i > 1, apply the XOR protocol between p1 and p2. The

result is stored to p1.

At the end of the protocol, f (x1, x2,… xn) is obtained at p1.
The number of additional cards in [31] is six. Thus our protocol reduces the

number of cards. The number of rounds is O(2n).
As another implementation with a larger number of cards, we show that any

n-variable logical function can be calculated by the following protocol, whose
technique is similar to the one in [15]. Let f be any n-variable logical function.

Protocol 5 (Protocol for any logical function (2)) Input: commit(xi)(i = 1, 2,… , n).
Output: commit(f (x1, x2,… , xn)) .

Table 4 Comparison of input
preserving AND protocols in the
two type card model

Article # Of cards Input Output Note

Nishida et al.
(2015) [31]

6 commit commit

This paper 4 commit commit Uses
private
opera-
tions

New Generation Computing

123

1. Alice executes a private random bisection cut on commit(xi)(i = 1, 2,… , n) . Let
the output be commit(x�

i
)(i = 1, 2,… , n) Note that one random bit bi is selected

for each xi(i = 1, 2,… , n) . Alice sends commit(x�
i
)(i = 1, 2,… , n) to Bob.

2. Bob executes a private reveal on commit(x�
i
)(i = 1, 2,… , n) . Bob gen-

e r a t e s 2n c o m m i t m e n t s Sa1,a2,…,an
(ai ∈ {0, 1}, i = 1, 2,… , n) a s

Sa1,a2,…,an
= commit(f (a1 ⊕ x�

1
, a2 ⊕ x�

2
,… , an ⊕ x�

n
)) . Bob sends these commit-

ments to Alice.
3. Alice outputs Sb1,b2,…,bn

.

Since Sb1,b2,…,bn
= commit(f (b1 ⊕ x�

1
, b2 ⊕ x�

2
,… , bn ⊕ x�

n
)) = commit(f (x1, x2,… , xn)) ,

the output is correct. The security is the same as the copy protocol. The protocol
requires three rounds. The number of cards is 2n+1.

Note that in the model without private operations, a new protocol to calculate
any logical functions using garbled circuits was proposed [44].

Improving Security

Although this paper assumes all players are semi-honest, some players might
be malicious in real cases. In the model without private operations, analysis of
mistakes [23] and prevention of revealing attacks [49] were considered. In the
model with private operations, it is very hard to prevent malicious actions during
a player executes a private operation. One countermeasure to deal with a mali-
cious player is setting one watch person to each player.

The watch person for Alice watches the execution by Alice and verifies that (1)
Alice does not open the cards, (2) Alice really uses a random number generator (for
example, coin-flipping) to select her random bit, (3) Alice honestly executes a pri-
vate random bisection cut using the random bit, and (4) Alice honestly executes a
private reverse cut or private reverse selection using the bit generated in (2).

The watch person for Bob watches the execution by Bob and verifies that (1)
Bob does not open the cards that are not allowed and (2) Bob honestly generates
the committed cards using the value Bob privately opened.

Note that the watch persons must not disclose the values they watch.
When the number of players is more than two, each player can simultaneously

act as a player and a watch person. Let us consider the case with three players,
Alice, Bob, and Carol. Bob acts as a watch person for Alice. Carol acts as a watch
person for Bob. Alice acts as a watch person for Carol. All the players are in one
room. One player goes out of the room for a while and does not watch the execu-
tion during the period.

Protocol 6 (Cheat alert AND protocol) Input: commit(x) and commit(y). Output:
commit(x ∧ y) .

 New Generation Computing

123

1. Carol goes out the room. Alice executes a private random bisection cut on
commit(x) in front of Bob. Let b1 be the random bit Alice selected. Bob knows b1.
The obtained data is commit(x⊕ b1).

2. Carol comes back to the room. Then Alice goes out of the room. Bob exe-
cutes a private random bisection cut on commit(x⊕ b1) in front of Carol.
Let b2 be the random bit Bob selected. Carol knows b2 . The obtained data is
commit(x⊕ b1 ⊕ b2).

3. Alice comes back to the room. Then Bob goes out of the room. Carol executes
a private reveal on commit(x⊕ b1 ⊕ b2) in front of Alice. Let x� = x⊕ b1 ⊕ b2 .
Carol sets

in front of Alice. Alice knows the value of x⊕ b1 ⊕ b2.
4. Bob comes back to the room. Then Carol goes out of the room. Alice executes a

private reverse cut using the bit b1 on S2 in front of Bob. Let the obtained cards
be S′

2
.

5. Carol comes back to the room. Then Alice goes out of the room. Bob executes a
private reverse selection using the bit b2 on S′

2
 in front of Carol. Let the obtained

cards be S3.
6. Alice comes back to the room. Now Alice also knows that S3 is the final output.

Theorem 5 The cheat alert AND protocol is correct, secure, and be able to alert
misbehavior of players if there is no collusion of players.

Proof About the misbehavior of players: At Step 1, Bob can verify that (1) Alice
does not open the cards, (2) Alice really uses a random number generator to select
her random bit, and (3) Alice honestly executes a private random bisection cut using
the random bit.

At Step 2, Carol can verify that (1) Bob does not open the cards, (2) Bob really
uses a random number generator to select his random bit, and (3) Bob honestly exe-
cutes a private random bisection cut using the random bit.

At Step 3, Alice can verify that (1) Carol does not open the cards that are not
allowed and (2) Carol honestly generates the committed cards using the value Carol
opened.

At Step 4, Bob can verify that (1) Alice does not open the cards and (2) Alice
honestly executes a private reverse cut using the bit generated at Step 1.

At Step 5, Carol can verify that (1) Bob does not open the cards and (2) Bob hon-
estly executes a private reverse selection using the bit generated at Step 2.

By these verifications, the players can understand that the protocol is correctly
executed if there is no alert.

About the security, Alice knows b1 and x⊕ b1 ⊕ b2 . Bob knows b1 and b2 . Carol
knows b2 and x⊕ b1 ⊕ b2 . Thus, every player has no knowledge about x if no collu-
sion exists.

The correctness of the protocol: the same as the AND protocol. ◻

S2 =

{
commit(y)||commit(0) if x� = 1

commit(0)||commit(y) if x� = 0

New Generation Computing

123

Similar protocols can be obtained for all the other protocols shown above.
Note that in the above three-player protocol, false alarms cannot be prevented. If

Bob alerts that Alice misbehaved even if there is no misbehavior, there is no way for
Carol to decide which of Alice and Bob is correct. In order to prevent this type of
malicious behavior, the protocol needs to be executed more than three players. The
protocol with more than three players P0,P1,… ,Pn−1(n > 3) is as follows:

Protocol 7 (False alert prevention AND protocol) Select some random number
i(0 < i < n). One player is out of the room when each player executes a round of the
protocol. All the other players in the room watch the execution by the current player
and verify the correctness of the current player.

1. Pj(j = 0,… , n − 2) executes a private random bisection cut on commit(x) using
random bit bj when Pj+i mod n is out of the room, thus commit(x⊕n−2

j=0
bj) is

obtained.
2. Pn−1 executes a private reveal and sets S2 when Pn−1+i mod n is out of the room.
3. Pj(j = 0,… , n − 2) executes a private reverse cut using bj when Pj+i mod n is out

of the room.
4. After all the private reverse cuts are finished, the left pair is selected as the output.

At any step of the protocol, one player executes some operation and n − 2(> 1)
players watch the execution since one player is out of the room. If one malicious
player Pj misbehaves some operation, n − 2(> 1) watching players alert, thus the
misbehavior is detected by the majority. If a watching player falsely alert that Pj
misbehaved, the other watching player(s) and Pj say that Pj is correct, thus the alert
is detected false by the majority. The correctness of the protocol is just the same as
the original AND protocol. In this execution, any player cannot obtain the value of
the committed value because he does not have all information if no collusion exists.

Similar protocols can be obtained for all the other protocols shown above.

Asymmetric Card Protocols

When we use cards whose face is not symmetric, such as and , but the back is

symmetric, one bit data can be represented by one card as and . Proto-

cols with this type of card are first considered in [25] and then several protocols are
shown in [45, 46]. For such an encoding method, a private random bisection cut on a
committed bit is changed to upside-down the card according to the random bit. A
private reverse cut and a private reverse selection on an even sequence are
unchanged. A private reverse cut and a private reverse selection on a single card are
changed as upside down the card according to the random bit selected in the private
random bisection cut. Using these private operations, all protocols shown above
work for the asymmetric cards. The number of cards used by this protocol is half of
the two-type card protocols. Copy, AND, and XOR protocols are shown.

 New Generation Computing

123

Protocol 8 (asymmetric card copy protocol) Input: commit(x). Output: m copies of
commit(x) .

1. Alice randomly selects bit b. If b=1, Alice turns commit(x) upside down. Let the
output be commit(x�) . Note that x� = x⊕ b . Alice sends commit(x�) to Bob.

2. Bob executes a private reveal on commit(x�) and obtains x′.Bob makes m copies
of x′ . Bob faces down these cards. Bob sends these cards, m copies of commit(x�) ,
to Alice.

3. If b = 1, Alice turns each copy of commit(x�) upside down.

Example 4 (asymmetric card copy protocol) Suppose that x = 0 . Input

 is given. Alice randomly selects bit b ∈ {0, 1} . Let us suppose

that b = 1 . Alice turns commit(x) upside down and sends to

Bob. Bob privately opens commit(x�) . Since x = 0 and b = 1 , . Thus, Bob

sets . Bob faces down these cards and sends them to Alice.

Since b = 1 , Alice turns the cards upside down. The output is m copies of

commit(x).

Protocol 9 (asymmetric card AND protocol) Input: commit(x) and commit(y). Out-
put: commit(x ∧ y) .

1. Alice randomly selects bit b. If b=1, Alice turns commit(x) upside down. Let the
output be commit(x�) . Alice sends commit(x�) and commit(y) to Bob.

2. Bob executes a private reveal on commit(x�). Bob sets

and sends S2 to Alice.
3. Alice executes a private reverse selection on S2 using the bit b generated in the

private random bisection cut. Let the obtained sequence be S3. Alice outputs S3.

Example 5 (asymmetric card AND protocol) Suppose that x = 0 and y = 1 . Input

 and are given. Alice randomly selects bit

b ∈ {0, 1} . Let us suppose that b = 1 . Alice turns commit(x) upside down and sends

 and commit(y) to Bob. Bob privately opens commit(x�) . Since

S2 =

{
commit(y)||commit(0) if x� = 1

commit(0)||commit(y) if x� = 0

New Generation Computing

123

x = 0 and b = 1 , . Thus, Bob sets . Bob faces down the

right card and sends S2 to Alice.
Alice executes a private reverse selection on S2 . Since b = 1 , the right card is

selected. If the output, S3 , is opened, . Since x ∧ y = 0 , the result is

correct.

Protocol 10 (asymmetric card XOR protocol) Input: commit(x) and commit(y).
Output: commit(x⊕ y) .

1. Alice randomly selects bit b. If b=1, Alice turns commit(x) upside down. Let the
output be commit(x�) . Alice sends commit(x�) and commit(y) to Bob.

2. Bob executes a private reveal on commit(x�) . If x� = 1, Bob turns commit(y)
upside down. Let the obtained card be S2. Bob sends S2 to Alice.

3. Alice executes a private reverse cut on S2 using the bit b generated in the private
random bisection cut. Let the obtained card be S3. Alice outputs S3.

Example 6 (asymmetric card XOR protocol) Suppose that x = 0 and y = 1 . Input

 and are given. Alice randomly selects bit

b ∈ {0, 1} . Let us suppose that b = 1 . Alice turns commit(x) upside down and sends

 and commit(y) to Bob. Bob privately opens commit(x�) . Since

x = 0 and b = 1 , . Thus, Bob turns commit(y) upside down and obtains S2 .

Bob sends S2 to Alice.
Since b = 1 , Alice turns S2 upside down and obtains S3 . If the output, S3 , is

opened, . Since x⊕ y = 1 , the result is correct.

Theorem 6 Using asymmetric cards, Copy, AND, and XOR can be realized using
two cards and in three rounds.

Proof The correctness and security proofs are just the same as the ones for the two
type card protocols. ◻

Conclusion

This paper proposed new card-based cryptographic protocols with the minimum
number of cards using private operations. Though private operations are effective,
there is a worry of the malicious actions during private operations. Thus, one of the
most important open problems is detecting malicious actions when the number of
players is two.

 New Generation Computing

123

Acknowledgements The authors would like to thank anonymous referees who gave us valuable com-
ments to improve this paper.

References

 1. Abe, Y., Hayashi, Y., Mizuki, T., Sone, H.: Five-card and protocol in committed format using only
practical shuffles. In: Proc. of 5th ACM International Workshop on Asia Public-Key Cryptography
(APKC 2018), pp. 3–8 (2018)

 2. den Boer, B.: More efficient match-making and satisfiability the five card trick. In: Proc. of EURO-
CRYPT ’89, LNCS Vol. 434, pp. 208–217 (1990)

 3. Bultel, X., Dreier, J., Dumas, J.G., Lafourcade, P., Miyahara, D., Mizuki, T., Nagao, A., Sasaki,
T., Shinagawa, K., Sone, H.: Physical zero-knowledge proof for makaro. In: Proc. of 20th Interna-
tional Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018), LNCS,
Vol.11201, pp. 111–125 (2018)

 4. Crépeau, C., Kilian, J.: Discreet solitary games. In: Proc. of 13th Crypto, LNCS Vol. 773, pp. 319–
330 (1993)

 5. Francis, D., Aljunid, S.R., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Necessary and sufficient
numbers of cards for securely computing two-bit output functions. In: Proc. of Second International
Conference on Cryptology and Malicious Security(Mycrypt 2016), LNCS Vol. 10311, pp. 193–211
(2017)

 6. Hashimoto, Y., Nuida, K., Shinagawa, K., Inamura, M., Hanaoka, G.: Toward finite-runtime card-
based protocol for generating hidden random permutation without fixed points. In: IEICE Transac-
tions on Fundamentals of Electronics, Communications and Computer Sciences 101-A(9), 1503–
1511 (2018)

 7. Hashimoto, Y., Shinagawa, K., Nuida, K., Inamura, M., Hanaoka, G.: Secure grouping pro-
tocol using a deck of cards. In: Proc. of 10th International Conference on Information Theoretic
Security(ICITS 2017), LNCS Vol. 10681, pp. 135–152 (2017)

 8. Ibaraki, T., Manabe, Y.: A more efficient card-based protocol for generating a random permutation
without fixed points. In: Proc. of 3rd Int. Conf. on Mathematics and Computers in Sciences and in
Industry (MCSI 2016), pp. 252–257 (2016)

 9. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a hidden random
permutation without fixed points. In: Proc. of 14th International Conference on Unconventional
Computation and Natural Computation (UCNC 2015), LNCS Vol. 9252, pp. 215–226 (2015)

 10. Kastner, J., Koch, A., Walzer, S., Miyahara, D., Hayashi, Y., Mizuki, T., Sone, H.: The minimum
number of cards in practical card-based protocols. In: Proc. of Asiacrypt 2017, Part III, LNCS Vol.
10626, pp. 126–155 (2017)

 11. Koch, A.: The landscape of optimal card-based protocols. IACR Cryptology ePrint Archive, Report
2018/951 (2018)

 12. Koch, A., Schrempp, M., Kirsten, M.: Card-based cryptography meets formal verification. In: Proc.
of Asiacrypt 2019, LNCS Vol. 11921, pp. 488–517. Springer (2019)

 13. Koch, A., Walzer, S.: Foundations for actively secure card-based cryptography. Cryptology ePrint
Archive, Report 2017/423 (2017)

 14. Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a minimal number of
cards. In: Proc. of Asiacrypt 2015, LNCS Vol. 9452, pp. 783–807 (2015)

 15. Kurosawa, K., Shinozaki, T.: Compact card protocol. In: Proc. of 2017 Symposium on Cryptogra-
phy and Information Security(SCIS 2017), pp. 1A2–6 (2017) (In Japanese).

 16. Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: A physical zkp for slitherlink: How
to perform physical topology-preserving computation. In: Proc. of 15th International Conference
on Information Security Practice and Experience(ISPEC 2019), LNCS Vol. 11879, pp. 135–151.
Springer (2019)

 17. Marcedone, A., Wen, Z., Shi, E.: Secure dating with four or fewer cards. IACR Cryptology ePrint
Archive, Report 2015/1031 (2015)

 18. Miyahara, D., Hayashi, Y.I., Mizuki, T., Sone, H.: Practical card-based implementations of yao’s
millionaire protocol. Theor. Comput. Sci. 803, 207–221 (2020)

New Generation Computing

123

 19. Miyahara, D., Sasaki, T., Mizuki, T., Sone, H.: Card-based physical zero-knowledge proof for
kakuro. IEICE Trans. Fund. Electron. Commun. Comput. Sci. 102(9), 1072–1078 (2019)

 20. Miyahara, D., Ueda, I., Hayashi, Y.i., Mizuki, T., Sone, H.: Analyzing execution time of card-based
protocols. In: Proc. of 17th International Conference on Unconventional Computation and Natural
Computation (UCNC 2018), LNCS Vol. 10867, pp. 145–158. Springer (2018)

 21. Mizuki, T.: Card-based protocols for securely computing the conjunction of multiple variables.
Theor. Comput. Sci. 622, 34–44 (2016)

 22. Mizuki, T., Asiedu, I.K., Sone, H.: Voting with a logarithmic number of cards. In: Proc. of Interna-
tional Conference on Unconventional Computing and Natural Computation (UCNC 2013), LNCS
Vol. 7956, pp. 162–173 (2013)

 23. Mizuki, T., Komano, Y.: Analysis of information leakage due to operative errors in card-based
protocols. In: Proc. of 29th International Workshop on Combinatorial Algorithms(IWOCA 2019),
LNCS Vol. 10979, pp. 250–262. Springer (2018)

 24. Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four cards. Proc. of Asia-
crypt 2012, LNCS Vol.7658 pp. 598–606 (2012)

 25. Mizuki, T., Shizuya, H.: Practical card-based cryptography. In: Proc. of 7th International Confer-
ence on Fun with Algorithms(FUN2014), LNCS Vol. 8496, pp. 313–324 (2014)

 26. Mizuki, T., Shizuya, H.: Computational model of card-based cryptographic protocols and its appli-
cations. IEICE Trans. Fund. Electron. Commun. Comput. Sci. 100(1), 3–11 (2017)

 27. Mizuki, T., Sone, H.: Six-card secure and and four-card secure xor. In: Proc. of 3rd International
Workshop on Frontiers in Algorithms(FAW 2009), LNCS Vol. 5598, pp. 358–369 (2009)

 28. Nakai, T., Shirouchi, S., Iwamoto, M., Ohta, K.: Four cards are sufficient for a card-based three-
input voting protocol utilizing private sends. In: Proc. of 10th International Conference on Infor-
mation Theoretic Security (ICITS 2017), LNCS Vol. 10681, pp. 153–165 (2017)

 29. Nakai, T., Tokushige, Y., Misawa, Y., Iwamoto, M., Ohta, K.: Efficient card-based cryptographic
protocols for millionaires’ problem utilizing private permutations. In: Proc. of International
Conference on Cryptology and Network Security(CANS 2016), LNCS vol. 10052, pp. 500–517
(2016)

 30. Niemi, V., Renvall, A.: Secure multiparty computations without computers. Theor. Comput. Sci.
191(1), 173–183 (1998)

 31. Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols for any boolean func-
tion. In: Proc. of 15th International Conference on Theory and Applications of Models of
Computation(TAMC 2015), LNCS Vol. 9076, pp. 110–121 (2015)

 32. Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Securely computing three-input functions with
eight cards. IEICE Transactions on Fundamentals of Electronics, Communications and Com-
puter Sciences 98(6), 1145–1152 (2015)

 33. Nishida, T., Mizuki, T., Sone, H.: Securely computing the three-input majority func-
tion with eight cards. In: 2nd International Conference on Theory and Practice of Natural
Computing(TPNC 2013), LNCS Vol. 8273, pp. 193–204 (2013)

 34. Nishimura, A., Hayashi, Y.i., Mizuki, T., Sone, H.: Pile-shifting scramble for card-based proto-
cols. IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer
Sciences 101(9), 1494–1502 (2018)

 35. Nishimura, A., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Five-card secure computations
using unequal division shuffle. In: Proc. of 4th International Conference on Theory and Practice
of Natural Computing(TNPC 2015), LNCS vol. 9477, pp. 109–120 (2015)

 36. Nishimura, A., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols using une-
qual division shuffles. Soft Comput. 22(2), 361–371 (2018)

 37. Ono, H., Manabe, Y.: Efficient card-based cryptographic protocols for the millionaires’ prob-
lem using private input operations. In: Proc. of 13th Asia Joint Conference on Information
Security(AsiaJCIS 2018), pp. 23–28 (2018)

 38. Ono, H., Manabe, Y.: Card-based cryptographic protocols with the minimum number of cards
using private operations. In: Proc. of 11th International Symposium on Foundations and Practice
of Security(FPS 2018), LNCS Vol. 11358, pp. 193–207. Springer (2019)

 39. Ono, H., Manabe, Y.: Card-based cryptographic protocols with the minimum number of rounds
using private operations. In: Proc. of 14th International Workshop on Data Privacy Management
(DPM 2019) LNCS Vol. 11737, pp. 156–173 (2019)

 New Generation Computing

123

 40. Ruangwises, S., Itoh, T.: And protocols using only uniform shuffles. In: Proc. of 14th Interna-
tional Computer Science Symposium in Russia(CSR 2019), LNCS Vol. 11532, pp. 349–358
(2019)

 41. Ruangwises, S., Itoh, T.: Securely computing the n-variable equality function with 2n cards. arXiv
preprint arXiv :1911.05994 (2019)

 42. Sasaki, T., Mizuki, T., Sone, H.: Card-Based Zero-Knowledge Proof for Sudoku. In: Proc. of 9th
International Conference on Fun with Algorithms (FUN 2018), Leibniz International Proceedings
in Informatics (LIPIcs), vol. 100, pp. 29:1–29:10 (2018)

 43. Shinagawa, K., Mizuki, T.: The six-card trick:secure computation of three-input equality. In: Proc.
of 21st International Conference on Information Security and Cryptology (ICISC 2018), LNCS Vol.
11396, pp. 123–131 (2018)

 44. Shinagawa, K., Nuida, K.: A single shuffle is enough for secure card-based computation of any cir-
cuit. Cryptology ePrint Archive, Report 2019/380 (2019). https ://eprin t.iacr.org/2019/380. Accessed
1 Apr 2020

 45. Shinagawa, K., Nuida, K., Nishide, T., Hanaoka, G., Okamoto, E.: Committed and protocol using
three cards with more handy shuffle. In: Proc. of International Symposium on Information Theory
and Its Applications (ISITA 2016), pp. 700–702 (2016)

 46. Shirouchi, S., Nakai, T., Iwamoto, M., Ohta, K.: Efficient card-based cryptographic protocols for
logic gates utilizing private permutations. In: Proc. of 2017 Symposium on Cryptography and Infor-
mation Security(SCIS 2017), pp. 1A2–2 (2017). (In Japanese)

 47. Stiglic, A.: Computations with a deck of cards. Theor. Comput. Sci. 259(1), 671–678 (2001)
 48. Takashima, K., Abe, Y., Sasaki, T., Miyahara, D., Shinagawa, K., Mizuki, T., Sone, H.: Card-based

secure ranking computations. In: Proc. of 13th International Conference on Combinatorial Optimi-
zation and Applications (COCOA 2019), LNCS Vol. 11949, pp. 461–472. Springer (2019)

 49. Takashima, K., Miyahara, D., Mizuki, T., Sone, H.: Card-based protocol against actively reveal-
ing card attack. In: Proc. of 9th International Conference on Theory and Practice of Natural
Computing(TPNC 2019), LNCS Vol. 11934, pp. 95–106. Springer (2019)

 50. Ueda, I., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: How to implement a random bisection
cut. In: Proc. of 5th International Conference on Theory and Practice of Natural Computing (TPNC
2016), LNCS Vol. 10071, pp. 58–69 (2016)

 51. Watanabe, Y., Kuroki, Y., Suzuki, S., Koga, Y., Iwamoto, M., Ohta, K.: Card-based majority voting
protocols with three inputs using three cards. In: 2018 International Symposium on Information
Theory and Its Applications (ISITA), pp. 218–222. IEEE (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://arxiv.org/abs/1911.05994
https://eprint.iacr.org/2019/380

	Card-Based Cryptographic Logical Computations Using Private Operations
	Abstract
	Introduction
	Preliminaries
	Private Operations
	New Copy, AND, and XOR Protocols
	copy Protocol
	AND Protocol
	XOR Protocol
	Any Logical Functions
	Parallel Computations
	Side Effects
	Preserving An Input
	n-Variable Logical Functions

	Improving Security
	Asymmetric Card Protocols
	Conclusion
	Acknowledgements
	References

