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Abstract. This paper proposes new card-based cryptographic protocols
with the minimum number of cards using private operations under the
semi-honest model. Though various card-based cryptographic protocols
were shown, the minimum number of cards used in the protocol has not
been achieved yet for many problems. Operations executed by a player
where the other players cannot see are called private operations. Private
operations have been introduced in some protocols to solve a particular
problem or to input private values. However, the effectiveness of intro-
ducing private operations to the calculation of general logic functions has
not been considered. This paper introduces three new private operations:
private random bisection cuts, private reverse cuts, and private reveals.
With these three new operations, we show that all of logical and, logical
xor, and copy protocols are achieved with the minimum number of cards
by simple three round protocols. This paper, then shows a protocol to
calculate any logical functions using these private operations.

Keywords: Multi-party secure computation, card-based cryptographic
protocols, private operations, logical computations, copy

1 Introduction

Card-based cryptographic protocols [9, 17] have been proposed in which
physical cards are used instead of computers to securely calculate val-
ues. den Boer [2] first showed a five card protocol to securely calculate
logical AND of two inputs. Since then, many protocols have been pro-
posed to calculate logical functions [3, 4, 14, 16, 18, 21, 27, 29] and specific
computations such as computations on three inputs [23,24], millionaires’
problem [20, 26], voting [15, 19], random permutation [6, 7], grouping [5],
matching [13] and so on.

Private randomization is the most important primitive in these card-
based protocols. Many recent protocols use random bisection cuts [18],
which randomly execute swapping two decks of cards or not swapping. If
the random value used in the randomization is disclosed, the secret input



value is known to the players. There are two types of randomization:
single player randomization and multiple player randomization. For the
single player randomization, the player must not know the random value
he selected. Ueda et al. [30] proposed several methods that can be done
in front of people, but no one can know the random value. However, if
a person privately brings a high-speed video camera, he might able to
know the random value by analyzing the image. Currently, the size of
high-speed video cameras is too large to privately bring without getting
caught, but the size might become smaller in a near future. In the case,
the randomization in a public place becomes difficult. By introducing
additional cards, a random bisection cut can be executed using a random
cut [30]. Koch and Walzer [10] proposed a protocol for a player to execute
a private permutation that is unknown to the other players, but the player
can prove that he really executed an allowed permutation. The protocol
can be executed in a public place, but it needs additional special cards.

A simple solution to execute a private randomization is a multiple
player randomization, in which some operations are executed in a hidden
place. In order to execute a private random bisection cut, Alice executes
a random bisection cut in a place where Bob cannot see (under the table,
or in the back, etc). Then, Bob executes a random bisection cut in a
place where Alice cannot see. The result is unknown to either player.
Note that the number of players can be arbitrarily increased. In order
to know the random value, a person needs to know all of the values the
players used. Such an operation that is done where the other players
cannot see is called a private operation. So we have a natural question:
if we introduce some private operations other than the random bisection
cut, can we have effective card-based cryptographic protocols to calculate
logical functions?

Private operations have been first introduced to solve millionaires’
problem [20, 26]. The private operations used in the papers are similar
to the primitives proposed in this paper, but the operations were embed-
ded into the millionaires’ protocol, thus it is not clear that the primitives
can be used to the other protocols. Then private operations were used to
calculate logical functions [12,28]. These papers discussed a private oper-
ation that sets each player’s private inputs. Though the number of cards
used in these protocols is less than the ones in the conventional protocols,
these protocols cannot be used for general cases when the players do not
know the inputs, that is, the inputs are given as committed values. Pro-
tocols with committed inputs can also be used for the cases when each
player knows his input values by setting his private inputs as commit-



ted values. Thus protocols that accept committed inputs are desirable.
Another desirable property is committed output. If the output is given
as a committed value, further private calculation can be done using the
output value.

This paper considers card-based protocols with committed inputs and
committed outputs using private operations under the semi-honest model.
This paper introduces three private operations: private random bisection
cuts, private reverse cuts, and private reveals. This paper shows protocols
which execute logical and, logical xor, and copy with four cards, which is
the minimum. We also show protocols that calculate any logical functions.

As for the number of cards used for copy protocols, 6 was the minimum
for finite-runtime copy [18], as shown in Table 1. The protocol in [25]
uses 5 cards, but the number of steps of the protocol is unbounded. It is
proved to be impossible to achieve copy with 4 cards by the conventional
model without private operations [8]. In their model, each card sequence
has a probability to occur. Using the probabilities, players are prohibited
to open a card that reveals secret information. Such arguments lead to
the impossibility results. On the other hand, if private operations are
executed, one card sequence can have two different probabilities: the one
Alice knows and the other one Bob knows. Bob is allowed to privately
open a card that does not reveal secret information to Bob.

The numbers of cards in committed-input, committed-output AND
protocols are shown in Table 2. The protocol in [18] uses 6 cards. Though
the protocol in [11] uses 4 cards, the protocol uses a non-uniform shuf-
fle, which obtains one result by the probability of 1/3 and the other
result by the probability of 2/3. Such a non-uniform shuffle is difficult
to achieve without some special tools. Another four-card protocol with
uniform shuffles [27] does not terminate within a finite time. It is proved
to be impossible to achieve finite-runtime AND with 4 cards by the con-
ventional model without private operations [8]. Our protocol uses 4 cards,
which is the minimum, and it is easy to execute.

The number of cards in XOR protocols is shown in Table 3. Though
the number of cards is the same in our protocol and [18], an input pre-
serving (shown in Section 4.7) can be realized by our protocol without
additional cards.

2 Preliminaries

This section gives the notation and basic definitions of card-based pro-
tocols. This paper is based on two type card model. In the model, there



are two kinds of marks, and . Cards of the same marks cannot be

distinguished. In addition, the back of both types of cards is . It is im-

possible to determine the mark in the back of a given card with . One

bit of data is represented by two cards as follows: = 0 and = 1.
One pair of cards that represents one bit x ∈ {0, 1}, whose face is down,
is called a commitment of x, and denoted as commit(x). It is written as

︸ ︷︷ ︸
x

. Note that when these two cards are swapped, commit(x̄) can be

obtained. Thus, NOT can be calculated without private operations.
A linearly ordered cards are called a sequence of cards. A sequence

of cards S whose length is n is denoted as S = s1, s2, . . . , sn, where si

is the i-th card of the sequence. S = ︸︷︷︸
s1

︸︷︷︸
s2

︸︷︷︸
s3

. . . , ︸︷︷︸
sn

. A sequence

whose length is even is called an even sequence. S1||S2 is a concatenation
of sequence S1 and S2.

All protocols are executed by multiple players. Throughout of this
paper, all players are semi-honest, that is, they obey the rule of the pro-
tocols, but try to obtain information x of commit(x). There is no collusion
among players executing one protocol together. No player wants any other
player to obtain information of committed values.

3 Private operations

We introduce three private operations: private random bisection cuts,
private reverse cuts, and private reveals.

Primitive 1 (Private random bisection cut)
A private random bisection cut is the following operation on an even

sequence S0 = s1, s2, . . . , s2m. Alice selects a random bit b ∈ {0, 1} and
outputs

S1 =

{
S0 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1

Alice executes this operation in a place where Bob cannot see. Alice does
not disclose the bit b. 2

Note that the protocols in this paper use the operation only when m = 1

and S0 = commit(x). Given S0 = ︸ ︷︷ ︸
x

, Alice’s output S1 = ︸ ︷︷ ︸
x⊕b

, which

is ︸ ︷︷ ︸
x

or ︸ ︷︷ ︸
x̄

.



Note that a private random bisection cut is exactly the same as the
random bisection cut [18], but the operation is done in a hidden place.

Primitive 2 (Private reverse cut, Private reverse selection)

A private reverse cut is the following operation on an even sequence
S2 = s1, s2, . . . , s2m and the bit b ∈ {0, 1}, which is selected by Alice
during a private random bisection cut. Alice outputs

S3 =

{
S2 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1

Alice executes this operation in a place where Bob cannot see. b is the
secret value that only Alice knows. Alice does not disclose b.

Note that in many protocols below, the left m cards are selected after
a private reverse cut. The sequence of these two operations is called a
private reverse selection. A private reverse selection is the following pro-
cedure on an even sequence S2 = s1, s2, . . . , s2m and the bit b ∈ {0, 1},
which is selected by Alice during the private random bisection cut. Alice’s
output

S3 =

{
s1, s2, . . . sm if b = 0
sm+1, sm+2, . . . , s2m if b = 1 2

Next, we define a private reveal. Consider the case Alice executes a
private random bisection cut on commit(x). A private reveal, executed
by Bob, is as follows.

Primitive 3 (Private reveal)

Bob privately opens a given committed bit. Since the committed bit is
randomized by the bit b selected by Alice, the opened bit is x⊕ b. 2

Using the obtained value, Bob privately sets a sequence of cards.

Even if Bob privately opens the cards, Bob obtains no information
about x if b is randomly selected and not disclosed by Alice. Bob must
not disclose the obtained value. If Bob discloses the obtained value to
Alice, Alice knows the value of the committed bit.

Card-based protocols are evaluated by the following criteria.

– The number of cards used in the protocol.

– The number of operations executed in the protocol.

– The number of communications: the number of times when cards are
handed between players.



4 New copy, logical and, and logical xor protocols

Using the private random bisection cuts, private reveals, and private re-
verse cuts, COPY protocol, AND protocol, and XOR protocol with com-
mitted inputs and committed outputs can be realized with the minimum
number of cards. All of these protocols are executed between two players,
Alice and Bob. In section 5, the number of players is increased in order
to improve security.

4.1 COPY protocol

Protocol 1 (COPY protocol)
Input: commit(x). Output: m copies of commit(x).

1. Alice executes a private random bisection cut on commit(x). Let the
output be commit(x′). Note that x′ = x ⊕ b. Alice hands commit(x′)
to Bob.

2. Bob executes a private reveal on commit(x′) and obtains x′. Bob
makes m copies of x′. Bob faces down these cards. Bob hands these
cards, m copies of commit(x′), to Alice.

3. Alice executes a private reverse cut to each copy of commit(x′) using
the bit b Alice generated in the private random bisection cut. Alice
outputs these copies. 2

The protocol is three rounds. The number of communications between
players is two.

Theorem 1. The COPY protocol is correct and secure. It uses the min-
imum number of cards.

(Proof) Correctness: If b = 0, Bob sees x and makes m copies of x. Alice
does nothing at the private reverse cut, thus m copies of x are obtained.
If b = 1, Bob sees x̄ and makes m copies of x̄. Alice swaps each copy of
x̄, thus m copies of x are obtained.

Alice’s security: Alice sees no opened cards, thus Alice obtains no
information about x.

Bob’s security: When Bob privately opens commit(x′), x′ = x ⊕ b,
thus Bob obtains no information about x if b is randomly selected and
not disclosed.

The number of cards: In order to obtain m copies of a commitment,
at least 2m cards are necessary. The protocol is executed with 2m cards,
thus the number of cards is the minimum. 2



Table 1. Comparison of COPY protocols

Article # of cards Note

[3] 8

[18] 6

[25] 5 Number of steps is not bounded

This paper 4 Use private operations

Comparison of COPY protocols(when m = 2) is shown in Table 1.
This protocol is the first protocol that achieves the minimum number of
cards.

4.2 AND protocol

Logical AND can also be executed with the minimum number of cards.

Protocol 2 (AND protocol)
Input: commit(x) and commit(y). Output: commit(x ∧ y).

1. Alice executes a private random bisection cut on commit(x). Let the
output be commit(x′). Alice hands commit(x′) and commit(y) to Bob.

2. Bob executes a private reveal on commit(x′). Bob sets

S2 =

{
commit(y)||commit(0) if x′ = 1
commit(0)||commit(y) if x′ = 0

and hands S2 to Alice.
3. Alice executes a private reverse selection on S2 using the bit b gener-

ated in the private random bisection cut. Let the obtained sequence be
S3. Alice outputs S3. 2

Note that the two cards that were not selected by Alice at the last step of
the protocol, must be discarded. Since the unused cards have some infor-
mation on x and y, information about input values are leaked if the cards
are opened. The protocol is three rounds. The number of communications
between players is two.

Theorem 2. The AND protocol is correct and secure. It uses the mini-
mum number of cards.

(Proof) Correctness: The desired output can be represented as follows.

x ∧ y =

{
y if x = 1
0 if x = 0



When Bob obtains x′ = 1, commit(y)||commit(0) is given to Alice.
When Bob obtains x′ = 0, commit(0)||commit(y) is given to Alice. Thus
Alice’s output is commit(y) if (x′, b) = (1, 0) or (0, 1). Since x′ = x ⊕ b,
these cases equal to x = 1.

Alice’s output is commit(0) if (x′, b) = (1, 1) or (0, 0). Since x′ = x⊕b,
these cases equal to x = 0. Therefore, the output is correct.

Alice and Bob’s security: The same as the COPY protocol.

The number of cards: Any committed-input protocol needs at least
four cards to input commit(x) and commit(y). When Bob sets S2, the
cards used for commit(x′) can be used to set commit(0). Thus, the total
number of cards is four and the minimum. 2

A careful discussion is necessary when a player knows the value x of
given commit(x), for example, x is the player’s private input value.

First, consider the case when Bob knows x. When Bob executes a
private reveal on commit(x⊕ b), Bob knows the bit b Alice selected. This
scenario is not a security problem. Bob knows b, thus he knows whether
the final output is commit(0) or commit(y) in advance. However, since

x ∧ y =

{
y if x = 1
0 if x = 0

it is not new information for Bob who already knows x.

Note that if x = 0 and Bob wants to know y, Bob can replace
commit(y) with two new cards (that Bob hidden in his pocket), and
sends
commit(0)||commit(0) to Alice. The result is still correct and Bob can
privately open commit(y) afterwards. In order to prevent this type of
attack, marking currently using cards or a watch person (discussed in
Section 5) is necessary.

Next, consider the case when Alice knows x. Alice knows x′ = x⊕ b.
Thus Alice knows whether the final output is commit(0) or commit(y) in
advance, but it is not new information for Alice. Note that if x = 0 and
Alice wants to know y, Alice can replace commit(y) with two new cards
during the execution. Prevention of this type of attack is just the same
as the one for the case of Bob.

A similar discussion can be done for the other protocols shown in this
paper.

A comparison of AND protocols is shown in Table 2. Though Koch et
al. [11] showed a finite step protocol with the minimum number of cards,
their protocol must use a non-uniform shuffle, which is not easy to realize.



Table 2. Comparison of AND protocols

Article # of cards Input Output Note

[2] 5 commit non-commit

[3] 10 commit commit Four color cards

[21] 12 commit commit

[29] 8 commit commit

[18] 6 commit commit

[1] 5 commit commit Number of steps is not bounded

[11] 4 commit commit Non-uniform shuffle

[27] 4 commit commit Number of steps is not bounded

[16] 4 commit non-commit

[28] 3 non-commit non-commit Use private operations

[12] 4 non-commit commit Use private operations

This paper 4 commit commit Use private operations

4.3 XOR protocol

Protocol 3 (XOR protocol)

Input: commit(x) and commit(y). Output: commit(x⊕ y).

1. Alice executes a private random bisection cut on commit(x). Let the
output be commit(x′). Alice hands commit(x′) and commit(y) to Bob.

2. Bob executes a private reveal on commit(x′). Bob sets

S2 =

{
commit(ȳ) if x′ = 1
commit(y) if x′ = 0

and hands S2 to Alice. Note that commit(ȳ) can be obtained by swap-
ping the two cards of commit(y).

3. Alice executes a private reverse cut on S2 using the bit b generated
in the private random bisection cut. Let the obtained sequence be S3.
Alice outputs S3. 2

The protocol is three rounds. The number of communications between
players is two.

Theorem 3. The XOR protocol is correct and secure. It uses the mini-
mum number of cards.

(Proof) Correctness: The desired output can be represented as follows.

x⊕ y =

{
ȳ if x = 1
y if x = 0



Table 3. Comparison of XOR protocols

Article # of cards Input Output Note

[3] 14 commit commit Four color cards

[18] 4 commit commit

[28] 2 non-commit commit

[12] 2 non-commit commit

This paper 4 commit commit Use private operation
Preserving an input is possible

When x′ = 1, commit(ȳ) is given to Alice. When x′ = 0, commit(y)
is given to Alice. Thus, Alice’s output is commit(ȳ) if (x′, b) = (1, 0) or
(0, 1). Since x′ = x⊕ b, these cases equal to x = 1.

Alice’s output is commit(y) if (x′, b) = (1, 1) or (0, 0). Since x′ = x⊕b,
these cases equal to x = 0. Therefore, the output is correct.

Alice and Bob’s security: The same as the COPY protocol.

The number of cards: At least four cards are necessary for any protocol
to input commit(x) and commit(y). This protocol uses no additional
cards other than the input cards. 2

A comparison of XOR protocols is shown in Table 3. Though the
minimum number of cards is already realized by [18]. an input preserving
(shown in Section 4.7) can be realized without additional cards.

4.4 Any logical functions

Though this paper shows AND and XOR, any two-variable logical func-
tions can also be calculated by a similar protocol.

Theorem 4. Any two-variable logical function can be securely calculated
in three rounds and four cards.

(Proof) Any two-variable logical function f(x, y) can be written as

f(x, y) =

{
f(1, y) if x = 1
f(0, y) if x = 0

where f(1, y) and f(0, y) are y, ȳ, 0, or 1.

First, consider the case when both of f(1, y) and f(0, y) are 0 or 1.
(f(1, y), f(0, y)) = (0, 0) (or (1, 1)) means that f(x, y) = 0 (or f(x, y) =
1), thus we do not need to calculate f . (f(1, y), f(0, y)) = (1, 0) (or (0, 1))
means the f(x, y) = x (or f(x, y) = x̄), thus we do not need to calculate
f by a two player protocol.



Next, consider the case when both of (f(1, y), f(0, y)) are y (or ȳ).
This case is when f(x, y) = y (or f(x, y) = ȳ), thus we do not need to
calculate f by a two player protocol.

The next case is when (f(1, y), f(0, y)) is (y, ȳ) or (ȳ, y). (f(1, y), f(0, y))
= (ȳ, y) is x⊕ y (XOR). (f(1, y), f(0, y)) = (y, ȳ) is x⊕ y, thus this func-
tion can be calculated as follows: execute the XOR protocol and NOT is
taken to the output. Thus, this function can also be calculated.

The remaining case is when one of (f(1, y), f(0, y)) is y or ȳ and the
other is 0 or 1. We modify the second step of AND protocol, so that Bob
sets

S2 =

{
commit(f(1, y))||commit(f(0, y)) if x′ = 1
commit(f(0, y))||commit(f(1, y)) if x′ = 0

using one commit(y) and the two cards used for commit(x′). Then, Alice
obtains commit(f(1, y)) if x = 1 and commit(f(0, y)) if x = 0 by the
private reverse selection.

Thus, any two-variable logical function can be calculated. 2

In [18] without private operations, two additional cards are required
to calculate any two-variable logical function.

4.5 Parallel computations

The above two-variable logical function calculations can be executed in
parallel. Consider the case when commit(x) and commit(yi)(i = 1, 2, . . . , n)
are given and commit(fi(x, yi))(i = 1, 2, . . . , n) need to be calculated.
They can be executed in parallel. Alice executes a private random bi-
section cut on commit(x) and hands commit(x′) and commit(yi)(i =
1, 2, . . . , n) to Bob. Bob sets Si

2(i = 1, 2, . . . , n) using x′, commit(yi), and
fi. Alice executes a private reverse cut or a private reverse selection on
each of Si

2(i = 1, 2, . . . , n) using the bit b selected at the private ran-
dom bisection cut. By the procedure, commit(fi(x, yi))(i = 1, 2, . . . , n)
are simultaneously obtained.

4.6 Side effects

When we execute the AND protocol, two cards are selected by Alice at
the final step. The remaining two cards are not used, but they also output
some values. The unused two cards’ value is{

0 if x = 1
y if x = 0



Table 4. Comparison of input preserving AND protocols

Article # of cards Input Output Note

[22] 6 commit commit

This paper 4 commit commit Use private operations

thus the output is commit(x̄ ∧ y). The cards can be used as a side effect
just like the six-card AND protocol in [18].

Generally, for a function f that is calculated by AND type protocol
shown in Theorem 4, the side-effect output is commit(x̄ ∧ f(1, y) ⊕ x ∧
f(0, y)).

4.7 Preserving input

In the above protocols to calculate logical functions, the input commit-
ment values are lost. If the input is not lost, the input commitment can
be used as an input to another calculation. Thus, the input preserving
calculation is discussed [22].

In the XOR protocol, commit(x′) is no more necessary after Bob sets
S2. Thus, Bob can send back commit(x′) to Alice when Bob sends S2.
Then, Alice can recover commit(x) using the private reverse cut. In this
modified protocol, the output is commit(x ⊕ y) and commit(x) without
additional cards or rounds.

As for the AND type protocol, commit(x′) can be sent back to Alice
and Alice can recover commit(x). This modified protocol needs 6 cards
in total.

An input preserving calculation without increasing the number of
cards can be executed for AND type protocols just like [22]. Note that
the function f satisfies that one of (f(0, y), f(1, y)) is y or ȳ and the
other is 0 or 1. Otherwise, we do not need to calculate f by the AND
type two player protocol. At the end of the protocol, the side-effect out-
put is x̄ ∧ f(1, y)⊕ x ∧ f(0, y). The output f(x, y) can be represented as
x∧f(1, y)⊕ x̄∧f(0, y). Execute the above input preserving XOR protocol
for these two output values so that f(x, y) is recovered. The output of
XOR protocol is x̄ ∧ f(1, y) ⊕ x ∧ f(0, y) ⊕ x ∧ f(1, y) ⊕ x̄ ∧ f(0, y) =
f(1, y) ⊕ f(0, y). Since one of (f(0, y), f(1, y)) is y or ȳ and the other is
0 or 1, the output is y or ȳ (depending on f). Thus, input y can be re-
covered without additional cards. Thus, input preserving can be realized
by 4 cards, which is the minimum. Comparison of input preserving AND
type protocols is shown in Table 4.



4.8 n-variable logical functions

Since any 2-variable logical function, x̄, and COPY can be executed, any
n-variable logical function can be calculated by the combination of the
above protocols.

Using the technique in [22] and above input preserving logical function
calculations, any n-variable logical function can be calculated with 2n+4
cards as follows.

Any logical function f(x1, x2, . . . , xn) can be represented as follows:
f(x1, x2, . . . , xn) = x̄1 ∧ x̄2 ∧ · · · x̄n ∧ f(0, 0, . . . , 0) ⊕ x1 ∧ x̄2 ∧ · · · x̄n ∧
f(1, 0, . . . , 0) ⊕ x̄1 ∧ x2 ∧ · · · x̄n ∧ f(0, 1, . . . , 0) ⊕ · · · ⊕ x1 ∧ x2 ∧ · · ·xn ∧
f(1, 1, . . . , 1).

Since the terms with f(i1, i2, . . . , in) = 0 can be removed, this function
f can be written as f =

⊕k
i=1 v

i
1 ∧ vi2 ∧ · · · ∧ vin, where vij = xj or x̄j . Let

us write Ti = vi1 ∧ vi2 ∧ · · · ∧ vin. The number of terms k(< 2n) depends on
f .

Protocol 4 (Protocol for any logical function (1))
Input: commit(xi)(i = 1, 2, . . . , n). Output: commit(f(x1, x2, . . . , xn)).
The additional four cards (two pairs of cards) p1 and p2 are used as

follows.
p1: the intermediate value to calculate f is stored.
p2: the intermediate value to calculate Ti is stored.

Execute the following steps for i = 1, . . . , k.

1. Copy vi1 from the input x1 to p2.
2. For j = 2, . . . , n, execute the following procedure: Apply the input-

preserving AND protocol to p2 and input xj (If AND is taken between
x̄j, first execute NOT to the input, then apply the AND protocol, and
return the input to xj again.)
At the end of this step, Ti is obtained at p2.

3. If i = 1, move p2 to p1. If i > 1, apply the XOR protocol between p1
and p2. The result is stored to p1.

At the end of the protocol, f(x1, x2, . . . xn) is obtained at p1. 2

The number of additional cards in [22] is 6. Thus our protocol reduces
the number of cards. The number of rounds is O(2n).

As another implementation with a larger number of cards, we show
that any n-variable logical function can be calculated by the following
protocol, whose technique is similar to the one in [12]. Let f be any n-
variable logical function.



Protocol 5 (Protocol for any logical function (2))
Input: commit(xi)(i = 1, 2, . . . , n). Output: commit(f(x1, x2, . . . , xn)).

1. Alice executes a private random bisection cut on commit(xi)(i =
1, 2, . . . , n). Let the output be commit(x′i)(i = 1, 2, . . . , n) Note that
one random bit bi is selected for each xi(i = 1, 2, . . . , n). Alice hands
commit(x′i)(i = 1, 2, . . . , n) to Bob.

2. Bob executes a private reveal on commit(x′i)(i = 1, 2, . . . , n). Bob
generates 2n commitment Sa1,a2,...,an(ai ∈ {0, 1}, i = 1, 2, . . . , n) as
Sa1,a2,...,an = commit(f(a1 ⊕ x′1, a2 ⊕ x′2, . . . , an ⊕ x′n)). Bob hands
these commitments to Alice.

3. Alice outputs Sb1,b2,...,bn. 2

Since Sb1,b2,...,bn = commit(f(b1 ⊕ x′1, b2 ⊕ x′2, . . . , bn ⊕ x′n)) =
commit(f(x1, x2, . . . , xn)), the output is correct. The security is the same
as the COPY protocol. The protocol is three rounds. The number of
communication between players is two. The number of cards is 2n+1.

5 Improving security

Although this paper assumes all players are semi-honest, some players
might be malicious in real cases. It is very hard to prevent malicious
actions when a player executes a private operation. One countermeasure
to deal with a malicious player is setting one watch person to each player.

The watch person for Alice watches the execution by Alice and verifies
that (1) Alice does not open the cards, (2) Alice really uses a random
number generator (for example, coin-flipping) to select her random bit, (3)
Alice honestly executes a private random bisection cut using the random
bit, and (4) Alice honestly executes a private reverse cut or private reverse
selection using the bit generated in (2).

The watch person for Bob watches the execution by Bob and verifies
that (1) Bob does not open the cards that are not allowed and (2) Bob
honestly generates the committed cards using the value Bob privately
opened.

Note that the watch persons must not disclose the values they watch.
When the number of players is more than two, each player can si-

multaneously act as a player and a watch person. Suppose that player
P0, P1, . . . , Pn−1(n > 2) execute the AND protocol together and no col-
lusion exists. Select some random number i(0 < i < n). One player is out
of the room when each player executes a round of the protocol. All the
other players in the room watch the execution by the current player and



verifies the correctness of the current player. Pj(j = 0, . . . , n−2) executes
a private random bisection cut on commit(x) using random bit bj when
Pj+i mod n is out of the room, thus commit(x⊕n−2

j=0 bj) is obtained. Pn−1

executes a private reveal and sets S2 when Pn−1+i mod n is out of the
room. Then, Pj(j = 0, . . . , n − 2) executes a private reverse cut using bj
when Pj+i mod n is out of the room. When all the private reverse cuts
are finished, the left pair is selected as the output. In this execution, any
player cannot obtain the value of the committed value because he does
not have all information if no collusion exists. Note that the number of
watch persons can be arbitrary changed.

6 Conclusion

This paper proposed new card-based cryptographic protocols with the
minimum number of cards using private operations. Though the private
operations are effective, the protocols cannot be used when a malicious
player exists. How to prevent active attacks using some protocol tech-
niques just like the zero-knowledge proofs is an open problem.
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