
Card-based Cryptographic Protocols
with the Minimum Number of Rounds

Using Private Operations

Hibiki Ono1 and Yoshifumi Manabe1[0000−0002−6312−257X]

Kogakuin University, Shinjuku,Tokyo 163–8677 Japan.
manabe@cc.kogakuin.ac.jp

Abstract. This paper shows new card-based cryptographic protocols
with the minimum number of rounds using private operations under the
semi-honest model. Physical cards are used in card-based cryptographic
protocols instead of computers. Operations that a player executes in a
place where the other players cannot see are called private operations.
Using three private operations called private random bisection cuts, pri-
vate reverse cuts, and private reveals, calculations of two variable boolean
functions and copy operations were realized with the minimum number
of cards. Though the number of cards has been discussed, the efficiency
of these protocols has not been discussed. This paper defines the number
of rounds to evaluate the efficiency of the protocols using private opera-
tions. Most of the meaningful calculations using private operations need
at least two rounds. This paper shows a new two-round committed-input,
committed-output logical XOR protocol using four cards. Then we show
new two-round committed-input, committed-output logical AND and
copy protocols using six cards. This paper then shows the relationship
between the number of rounds and available private operations. Even if
private reveal operations are not used, logical XOR can be executed with
the minimum number of cards in two rounds. On the other hand, logical
AND and copy operations can be executed with the minimum number of
cards in three rounds without private reveal operations. Protocols that
preserves an input are also shown.

Keywords: Multi-party secure computation · card-based cryptographic
protocols · private operations · logical computations · copy · round.

1 Introduction

1.1 Motivation

Card-based cryptographic protocols [12, 24] were proposed in which physical
cards are used instead of computers to securely calculate values. They can be
used when computers cannot be used. den Boer [2] first showed a five-card proto-
col to securely calculate logical AND of two inputs. Since then, many protocols

2 Hibiki Ono and Yoshifumi Manabe

have been proposed to calculate logical functions [13, 25] and specific compu-
tations such as millionaires’ problem [17, 27, 33], voting [21, 26], random per-
mutation [7, 9, 10], grouping [8], matching [16], proof of knowledge of a puzzle
solution [3,5,36], and so on. This paper considers calculations of logical functions
and the copy operation under the semi-honest model.

There are several types of protocols regards to the inputs and outputs of
the computations. The first type is committed inputs [19], where the inputs are
given as committed values. The players do not know the input values. The other
type is non-committed inputs [15,40], where players give their private inputs to
the protocol using private input operations. The private input operations were
also used in millionaires’ problem [33]. Protocols with committed inputs are
desirable, since they can be used for non-committed inputs: each player can give
his private input value as a committed value.

Some protocols output their computation results as committed values [19].
The result is unknown to the players unless the players open the output cards.
The other type of protocols [2] output the result as a non-committed value, that
is, the final result is obtained only by opening cards. Protocols with committed
outputs are desirable since the committed output result can be used as an input
to another computation. If further calculations are unnecessary, the players just
open the committed outputs and obtain the result. Thus, this paper discusses
protocols with committed inputs and committed outputs.

An example of a calculation with committed inputs is a matching service
between men and women. The matching service provider does not allow direct
communication between clients until the matching is over. A client Anne receives
information about a candidate Bruce from her agent Alice. Anne sends the reply
of acceptance/rejection to Alice, but Anne does not want the matching service
provider agents to know the reply. Bruce also receives information about Anne
from his agent Bob. Bruce sends the reply of acceptance/rejection to Bob, but
Bruce does not want the matching service provider agents to know the reply.
Alice and Bob must calculate whether the matching is successful or not without
knowing the inputs. In this case, a calculation with committed inputs is neces-
sary. To prevent malicious activities by the players, Anne observes all the actions
executed by Alice. Bruce observes all the actions executed by Bob. If a player
executes some action that is not allowed, the observing person can point out
the misbehavior. Thus Alice and Bob become semi-honest players. Note that
Anne(Bruce) cannot observe Bob’s(Alice’s) actions. If a person observes both
players’ actions, the person can know a secret value.

Operations that a player executes in a place where the other players cannot
see are called private operations. These operations are considered to be executed
under the table or in the back so that the operations cannot be seen by the other
players. Private operations are shown to be the most powerful primitives in card-
based cryptographic protocols. They were first introduced to solve millionaires’
problem [27] and voting [26]. Using private operations, committed-input and
committed-output logical AND, logical XOR, and copy protocols can be achieved

Card-based Cryptographic Protocols with the Minimum Number of Rounds 3

Table 1. Comparison of XOR protocols using private operations.

Article # of rounds # of cards Preserving an input Private reveal

[34] 3 4 No Use

[34] 3 4 Yes Use

[25] 2 4 No Does not use

This paper §3 2 4 No Use

This paper §4 2 4 No Does not use

This paper §5 3 4 Yes Use/Does not use

Table 2. Comparison of AND protocols using private operations.

Article # of rounds # of cards Preserving an input Private reveal

[34] 3 4 No Use

[34] 3 6 Yes Use

[34] 5 4 Yes Use

[25] 2 6 No Does not use

This paper §3 2 6 No Use

This paper §4 3 4 No Does not use

This paper §5 3 6 Yes Use/Does not use

This paper §5 5 4 Yes Does not use

with the minimum number of cards [34]. Thus this paper considers protocols
using private operations.

The number of cards is the space complexity of the card-based protocols.
Thus the time complexity must also be evaluated. Some works have been done
for the protocols that do not use private operations [18]. As for the protocols
using private operations, the number of rounds, defined in Section 2, is the most
appropriate criterion to evaluate the time complexity. Roughly speaking, the
number of rounds counts the number of handing cards between players. Since
each private operation is relatively simple, handing cards between players and
setting up so that the cards are not seen by the other players is the dominating
time to execute private operations. Thus this paper discusses the number of
rounds of card-based protocols using private operations.

This paper shows logical AND, logical XOR, and copy protocols with the
minimum number of rounds. The summary of results are shown in Table 1, 2,
and 3. Note that the protocols in [25] needs one shuffle by each player, thus the
actual execution time is larger than the ones in this paper though the number of
rounds is the same. This paper then shows variations of the protocols that use
a different set of private operations. In usual logical AND protocols, the input
bits are lost. If one of the inputs is not lost, the input bit can be used for further
computations. Such a protocol is called a protocol that preserves an input [29].
This paper shows the number of rounds of protocols that preserves an input.

In Section 2, basic notations, the private operations introduced in [34], and
the definition of rounds are shown. Section 3 shows two round XOR, AND, and
copy protocols. Section 4 shows the protocols that use a different set of private

4 Hibiki Ono and Yoshifumi Manabe

Table 3. Comparison of COPY protocols (m = 2) using private operations.

Article # of rounds # of cards Private reveal

[34] 3 4 Use

[25] 2 6 Does not use

This paper §3 2 6 Use

This paper §4 2 6 Does not use

operations. Section 5 shows protocols that preserve an input. Section 6 concludes
the paper.

1.2 Related works

Many works have been done for calculating logical functions without private
operations. den Boer [2] first showed a five-card protocol to securely calculate
logical AND of two inputs. Since then, several protocols to calculate logical AND
of two committed inputs have been shown [4,28,41], but they use more than six
cards. Mizuki et al. [25] showed a logical AND protocol that uses six cards. It
is proved that it is impossible to calculate logical AND with less than six cards
when we use closed and uniform shuffles [11]. When it is allowed to use a special
kind of shuffle that is not closed or uniform, the minimum number of cards
of logical AND protocols is decreased to five [1, 12, 14, 32, 35]. Also, when Las
Vegas protocols are allowed, logical AND protocols with five or four cards were
shown [12,22,35].

For making a copy of input bit, Mizuki et al. showed a protocol with six
cards [25]. A five-card protocol was shown that uses non-uniform shuffles [31].

Mizuki et al. [25] showed a logical XOR protocol that uses four cards, which
is the minimum.

Several other protocols such as computations of many inputs [19, 30, 38],
computing any boolean functions [13, 29, 39], two-bit output functions [6] were
shown. Protocols using other types of cards were also shown [20,23,37].

2 Preliminaries

2.1 Basic notations

This section gives the notations and basic definitions of card-based protocols.
This paper is based on a two-color card model. In the two-color card model,

there are two kinds of marks, and . Cards of the same marks cannot be

distinguished. In addition, the back of both types of cards is . It is impossible

to determine the mark in the back of a given card of .

One bit data is represented by two cards as follows: = 0 and =
1.

Card-based Cryptographic Protocols with the Minimum Number of Rounds 5

One pair of cards that represents one bit x ∈ {0, 1}, whose face is down,

is called a commitment of x, and denoted as commit(x). It is written as ︸ ︷︷ ︸
x

.

Note that when these two cards are swapped, commit(x̄) can be obtained. Thus,
logical negation can be calculated without private operations.

A set of cards placed in a row is called a sequence of cards. A sequence of
cards S whose length is n is denoted as S = s1, s2, . . . , sn, where si is i-th card

of the sequence. S = ︸︷︷︸
s1

︸︷︷︸
s2

︸︷︷︸
s3

. . . , ︸︷︷︸
sn

. A sequence whose length is even is

called an even sequence. S1||S2 is a concatenation of sequence S1 and S2.

All protocols are executed by multiple players. Throughout this paper, all
players are semi-honest, that is, they obey the rule of the protocols, but try to
obtain information x of commit(x). There is no collusion among players execut-
ing one protocol together. No player wants any other player to obtain information
on committed values.

2.2 Private operations

We show three private operations introduced in [34]: private random bisection
cuts, private reverse cuts, and private reveals.

Primitive 1 (Private random bisection cut)

A private random bisection cut is the following operation on an even sequence
S0 = s1, s2, . . . , s2m. A player selects a random bit b ∈ {0, 1} and outputs

S1 =

{
S0 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1

The player executes this operation in a place where the other players cannot see.
The player must not disclose the bit b.

Note that if the private random cut is executed whenm = 1 and S0 = commit(x),

given S0 = ︸ ︷︷ ︸
x

, the player’s output S1 = ︸ ︷︷ ︸
x⊕b

, which is ︸ ︷︷ ︸
x

or ︸ ︷︷ ︸
x̄

.

Primitive 2 (Private reverse cut, Private reverse selection)

A private reverse cut is the following operation on an even sequence S2 =
s1, s2, . . . , s2m and a bit b ∈ {0, 1}. A player outputs

S3 =

{
S2 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1

The player executes this operation in a place where the other players cannot see.
The player must not disclose b.

6 Hibiki Ono and Yoshifumi Manabe

Note that the bit b is not newly selected by the player. This is the difference
between the primitive in Definition 1, where a random bit must be newly selected
by the player.

Note that in many protocols below, selecting left m cards is executed after
a private reverse cut. The sequence of these two operations is called a private
reverse selection. A private reverse selection is the following procedure on a even
sequence S2 = s1, s2, . . . , s2m and a bit b ∈ {0, 1}. A player outputs

S3 =

{
s1, s2, . . . , sm if b = 0
sm+1, sm+2, . . . , s2m if b = 1

Primitive 3 (Private reveal) A player privately opens a given committed bit.
The player must not disclose the obtained value.

Using the obtained value, the player privately sets a sequence of cards.
Consider the case when Alice executes a private random bisection cut on

commit(x) and Bob executes a private reveal on the bit. Since the committed
bit is randomized by the bit b selected by Alice, the opened bit is x ⊕ b. Even
if Bob privately opens the cards, Bob obtains no information about x if b is
randomly selected and not disclosed by Alice. Bob must not disclose the obtained
value. If Bob discloses the obtained value to Alice, Alice knows the value of the
committed bit.

2.3 Definition of round

The space complexity of card-based protocols is evaluated by the number of
cards. We define the number of rounds as a criterion to evaluate the time com-
plexity of card-based protocols using private operations. The first round begins
from the initial state. The first round is (possibly parallel) local executions by
each player using the cards initially given to each player. It ends at the instant
when no further local execution is possible without receiving cards from another
player. The local executions in each round include sending cards to some other
players but do not include receiving cards. The result of every private execution
is known to the player. For example, shuffling whose result is unknown to the
player himself is not executed. Since the private operations are executed in a
place where the other players cannot see, it is hard to force the player to execute
such operations whose result is unknown to the player. The i(> 1)-th round
begins with receiving all the cards sent during the (i− 1)-th round. Each player
executes local executions using the received cards and the cards left to the player
at the end of the (i−1)-th round. Each player executes local executions until no
further local execution is possible without receiving cards from another player.
The number of rounds of a protocol is the maximum number of rounds necessary
to output the result among all possible inputs and random values.

Let us show an example of a protocol execution and the number of rounds.

Protocol 1 (AND protocol in [34])

Card-based Cryptographic Protocols with the Minimum Number of Rounds 7

1. Alice executes a private random bisection cut on commit(x). Let the output
be commit(x′). Alice hands commit(x′) and commit(y) to Bob.

2. Bob executes a private reveal on commit(x′). Bob sets

S2 =

{
commit(y)||commit(0) if x′ = 1
commit(0)||commit(y) if x′ = 0

and hands S2 to Alice.
3. Alice executes a private reverse selection on S2 using the bit b generated

in the private random bisection cut. Let the obtained sequence be S3. Alice
outputs S3.

The first round ends at the instant when Alice sends commit(x′) and commit(y)
to Bob. The second round begins at receiving the cards by Bob. The second
round ends at the instant when Bob sends S2 to Alice. The third round begins
at receiving the cards by Alice. The number of rounds of this protocol is three.

Since each operation is relatively simple, the dominating time to execute
protocols with private operations is the time to handing cards between players
and setting up so that the cards are not seen by the other players. Thus the
number of rounds is the criterion to evaluate the time complexity of card-based
protocols with private operations.

The minimum number of rounds of most protocols is two. Suppose that the
number of rounds is one. Suppose that a player, say Alice, has some (or all) of the
final outputs of the protocol. Since the number of rounds is one, handing cards is
not executed. Thus all the operations to obtain Alice’s outputs are executed by
Alice. Thus Alice knows the relation between the committed inputs and Alice’s
outputs. If the output cards are faced up to know the results, Alice knows the
private input values. Therefore most protocols need at least two rounds for the
privacy of committed inputs.

2.4 Our results

The protocols in [34] are three rounds and use four cards. This paper shows
a two-round logical XOR protocol using four cards. Then we show two-round
logical AND and copy protocols using six cards. Though the number of cards
is increased, the number of rounds is the minimum. Another advantage of these
two-round protocols is that each player does not need to remember the random
bit. In the protocols in [34], a player needs to remember the random bit until the
player receives the cards again in order to execute a private reverse cut. If a player
replies late, the other player must remember the random bit for a very long time.
If a player executes many instances of the protocols with many players in parallel,
it is hard for the player to remember so many random values. In the two-round
protocols, the first player can exit from the protocol after he hands the cards
to the other player. Note that Alice obtains the final result by the three-round
protocols in [34] but Bob obtains the final result by the two-round protocols in
this paper. These protocols can be used only if this change is acceptable by both
players. Note that two-round protocols with four card logical XOR and six card

8 Hibiki Ono and Yoshifumi Manabe

logical AND with private operations have been implicitly shown by [25], this
paper shows another type of protocols with fewer shuffles.

The above two-round protocols do not use private reverse cuts. Thus, there
is a question of whether we can obtain protocols without another type of private
operations. This paper answers this question also. We show protocols that do
not use private reveals. There is a worry in using this primitive. A player might
make a mistake to open cards that are not allowed and obtain private values. If
private reveals are not executed at all, protections such as putting each card in
an envelope can be done to prove that opening cards are not executed during
private operations. Thus, it would be better if all reveals are publicly executed.
Even if we do not use private reveals, the number of rounds is unchanged for
logical XOR and copy protocols. The number of rounds is three for the logical
AND protocol without private reveals. Last, we show protocols that preserve an
input.

3 XOR, AND, and Copy with the minimum number of
rounds

This section shows our new two-round protocols for XOR, AND, and copy.
The players are assumed to be semi-honest, that is, they honestly execute the

protocol but they try to obtain secret values. The protocol is secure if the players
obtain no information about input values and output values. There is no collusion
between the two players executing one protocol together. The performance of
protocols is evaluated by the number of cards and the number of rounds.

These protocols do not use private reverse cuts. Thus, the first player, Alice,
does not need to remember the random bit b after she hands the cards to the
other player.

3.1 XOR protocol

Protocol 2 (XOR protocol with the minimum number of rounds)

1. Alice executes a private random bisection cut on input S0 = commit(x)
and S′

0 = commit(y) using the same random bit b. Let the output be S1 =
commit(x′) and S′

1 = commit(y′), respectively. Note that x′ = x ⊕ b and
y′ = y ⊕ b. Alice hands S1 and S′

1 to Bob.
2. Bob executes a private reveal on S1 = commit(x′). Bob privately sets output

S2 =

{
commit(ȳ′) if x′ = 1
commit(y′) if x′ = 0

Note that commit(ȳ′) can be obtained by swapping the two cards of S′
1 =

commit(y′).

The protocol is two rounds.

Card-based Cryptographic Protocols with the Minimum Number of Rounds 9

Theorem 1. The XOR protocol is correct and secure. It uses the minimum
number of cards.

Proof. Correctness: Alice hands commit(x⊕ b) and commit(y⊕ b) to Bob. Bob
swaps the pair of commit(y⊕b) if x⊕b = 1. Thus the output S2 is (y⊕b)⊕(x⊕b) =
x⊕ y. Therefore, the output is correct.

Alice and Bob’s security: Alice sees no open cards. Thus Alice obtains no
information. Bob sees x⊕ b. Since b is a random value that Bob does not know,
Bob obtains no information about x.

The number of cards: At least four cards are necessary for any protocol to
input x and y. This protocol uses no additional cards other than the input cards.

□
Note that though the same bit b is used to randomize x and y, it is not a security
problem because y ⊕ b is not opened.

The number of rounds is the minimum. Mizuki et al. showed a four-card pro-
tocol with one public shuffle [25]. Since one public shuffle can be changed to two
private shuffles by each player, the minimum number of rounds is achieved also
by their protocol. However, the protocol needs two shuffles, thus our new proto-
col is simple. Comparison of committed-input, committed-output XOR protocols
using private operations are shown in Table 1.

3.2 AND protocol

Protocol 3 (AND protocol with the minimum number of rounds)

1. Alice executes a private random bisection cut on S0 = commit(x) and S′
0 =

commit(0)||commit(y) using the same random bit b. Two new cards are used
to set commit(0). Let the output be S1 = commit(x′) and S′

1, respectively.
Note that

S′
1 =

{
commit(y)||commit(0) if b = 1
commit(0)||commit(y) if b = 0

Alice hands S1 and S′
1 to Bob.

2. Bob executes a private reveal on S1. Bob executes a private reverse selection
on S′

1 using x′. Let the selected cards be S2. Bob outputs S2 as the result.

The protocol is two rounds. The protocol uses six cards since two new cards are
used to set commit(0).

Theorem 2. The AND protocol is correct and secure.

Proof. Correctness: The desired output can be represented as follows.

x ∧ y =

{
y if x = 1
0 if x = 0

Bob outputs commit(y) as S2 when (x′, b) = (0, 1) or (1, 0). Since x′ = x⊕ b,
these cases equal to x = 1. Bob outputs commit(0) as S2 when (x′, b) = (0, 0) or
(1, 1). Since x′ = x⊕ b, these cases equal to x = 0. Thus, the output is correct.

Alice and Bob’s security: The same as the XOR protocol. □

10 Hibiki Ono and Yoshifumi Manabe

The number of rounds is the minimum. Mizuki et al. showed a six-card pro-
tocol with one public shuffle [25]. Since one public shuffle can be changed to
two private shuffles by each player, the minimum number of rounds is achieved
also by their protocol. However, the protocol needs two shuffles, thus our new
protocol is simple. Comparison of committed-input, committed-output logical
AND protocols using private operations are shown in Table 2.

3.3 COPY protocol

Next, we show a new copy protocol with the minimum number of rounds.

Protocol 4 (COPY protocol with the minimum number of rounds)

1. Alice executes a private random bisection cut on S0 = commit(x). Let the
output be S1 = commit(x′). Alice sets S′

1 as m copies of commit(b), where
b is the bit selected in the random bisection cut. Note that x′ = x⊕ b. Alice
hands S1 and S′

1 to Bob.
2. Bob executes a private reveal on S1 and obtains x′. Bob executes a private

reverse cut on each pair of S′
1 using x′. Let the result be S2. Bob outputs S2.

The protocol is two rounds. The protocol uses 2m+ 2 cards.

Theorem 3. The COPY protocol is correct and secure.

Proof. Correctness: Since Bob obtains x′ = x⊕ b, the output is b⊕ (x⊕ b) = x.
Alice and Bob’s security: The same as the XOR protocol.

Though the number of cards is increased, the number of rounds is the mini-
mum. Comparison of COPY protocols(when m = 2) is shown in Table 3. Mizuki
et al. showed a six-card protocol with one public shuffle [25]. Since one public
shuffle can be changed to two private shuffles by each player, the minimum num-
ber of rounds is achieved also by their protocol. However, the protocol needs two
shuffles, thus our new protocol is simple.

3.4 Any two-variable logical functions

Though this paper shows logical AND and logical XOR, any two-variable logical
functions can also be calculated by a similar protocol. Though the protocol
differs, the idea of the construction is similar to the one for the three-round
protocol in [34].

Theorem 4. Any two-variable logical function can be securely calculated in two
rounds and at most six cards.

Proof. Any two-variable logical function f(x, y) can be written as

f(x, y) =

{
f(1, y) if x = 1
f(0, y) if x = 0

Card-based Cryptographic Protocols with the Minimum Number of Rounds 11

where f(1, y) and f(0, y) are y, ȳ, 0, or 1. From [34], we just need to consider
the cases when one of (f(1, y), f(0, y)) is y or ȳ and the other is 0 or 1. We can
modify the first step of the AND protocol and Alice sets

S′
1 =

{
commit(f(1, y))||commit(f(0, y)) if b = 1
commit(f(0, y))||commit(f(1, y)) if b = 0

using one commit(y) and two new cards, since one of (f(1, y), f(0, y)) is y or ȳ
and the other is 0 or 1. Bob executes a private reveal on S1 = commit(x′) and
selects commit(f(1, y)) if x = 1. Bob selects commit(f(0, y)) if x = 0.

Thus, any two-variable logical function can be calculated. □

3.5 n-variable logical functions

Since two-variable logical functions, logical negation and a copy can be executed,
any n-variable logical function can be calculated by the combination of the above
protocols.

As another implementation with more number of cards, we show that any
n-variable logical function can be calculated by the following protocol in two
rounds, whose technique is similar to the one in [15]. Let f be any n-variable
logical function.

Protocol 5 (Protocol for any logical function with two rounds)

1. Alice executes a private random bisection cut on commit(xi) (i = 1, 2, . . . , n).
Let the output be commit(x′

i)(i = 1, 2, . . . , n). x′
i = xi ⊕ bi(i = 1, 2, . . . , n).

Note that one random bit bi is selected for each xi(i = 1, 2, . . . , n). Al-
ice generates 2n commitment Sa1,a2,...,an (ai ∈ {0, 1}, i = 1, 2, . . . , n) as
Sa1,a2,...,an

= commit(f(a1 ⊕ b1, a2 ⊕ b2, . . . , an ⊕ bn)).
Alice hands commit(x′

i)(i = 1, 2, . . . , n) and Sa1,a2,...,an
(ai ∈ {0, 1}, i =

1, 2, . . . , n) to Bob.
2. Bob executes a private reveal on commit(x′

i) (i = 1, 2, . . . , n). Bob outputs
Sx′

1,x
′
2,...,x

′
n
.

Since Sx′
1,x

′
2,...,x

′
n
= commit(f(b1 ⊕ x′

1, b2 ⊕ x′
2, . . . , bn ⊕ x′

n)) =
commit(f(x1, x2, . . . , xn)), the output is correct. The security is the same as the
one of the XOR protocol. The protocol is two-round. The number of cards is
2n+1 + 2n.

4 Protocols without private reveals

This section shows that the protocols in [34] that use the minimum number of
cards can be executed without the private reveal operations with a more number
of steps, but the same number of rounds. Since it is hard to prevent mistakes
of privately opening cards that are not allowed, it would be better all reveal
operations are publicly executed.

12 Hibiki Ono and Yoshifumi Manabe

4.1 XOR protocol without private reveals

Protocol 6 (XOR protocol without private reveals)

1. Alice executes a private random bisection cut on S0 = commit(x) and S′
0 =

commit(y) using the same random bit b. Let the output be S1 = commit(x′)
and S′

1 = commit(y′), respectively. Note that x′ = x⊕b and y′ = y⊕b. Alice
hands S1 and S′

1 to Bob.
2. Bob executes a private random bisection cut on S1 and S′

1 using a private bit
b′. Let the output be S2 = commit(x′′) and S′

2 = commit(y′′), respectively.
x′′ = x⊕ b⊕ b′ and y′′ = y⊕ b⊕ b′ holds. Bob publicly opens S2 and obtains
value x′′. Alice can see x′′. Bob publicly sets

S3 =

{
commit(ȳ′′) if x′′ = 1
commit(y′′) if x′′ = 0

S3 is the final result.

The protocol is two rounds.

Theorem 5. The XOR protocol is correct and secure. It uses the minimum
number of cards.

Proof. Correctness: Bob obtains commit(x⊕ b⊕ b′) and commit(y⊕ b⊕ b′). Bob
sets S3 as y′′ ⊕ x′′ = y ⊕ b⊕ b′ ⊕ x⊕ b⊕ b′ = x⊕ y. Thus, the result is correct.

Alice and Bob’s security: After Bob executes a private random bisection cut
on S1, the obtained value commit(x′′) = commit(x⊕ b⊕ b′). Even if this value
is opened, no player can obtain the value of x, since Alice knows b and x⊕ b⊕ b′

and Bob knows b′ and x⊕ b⊕ b′.
The number of cards: At least four cards are necessary for any protocol to

input x and y. This protocol uses no additional cards other than the input cards.
□

4.2 AND protocol without private reveals

Protocol 7 (AND protocol without private reveals)

1. Alice executes a private random bisection cut on S0 = commit(x). Let the
output be S1 = commit(x′). Alice hands S1 and S′

0 = commit(y) to Bob.
2. Bob executes a private random bisection cut on S1 using a private bit b′. Let

the output be S′
1 = commit(x′′). x′′ = x⊕ b⊕ b′ holds. Bob publicly opens S′

1

and obtains value x′′. Alice can see x′′. Bob publicly sets

S2 =

{
commit(y)||commit(0) if x′′ = 1
commit(0)||commit(y) if x′′ = 0

Bob then executes a private reverse cut on S2 using the bit b′ generated in the
private random bisection cut. Let the output be S3. Bob hands S3 to Alice.

Card-based Cryptographic Protocols with the Minimum Number of Rounds 13

3. Alice executes a private reverse selection on S3 using the bit b generated in
the private random bisection cut. Alice outputs the obtained sequence of S4.

Theorem 6. The AND protocol is correct, secure, and uses the minimum num-
ber of cards.

Proof. Correctness: The desired output can be represented as follows.

x ∧ y =

{
y if x = 1
0 if x = 0

When Bob obtains x′′ = 1, commit(y)||commit(0) is set as S2. When Bob ob-
tains x′′ = 0, commit(0)||commit(y) is set as S2. Since Bob executes a private re-
verse cut on S2, commit(y)||commit(0) is given to Alice when (x′′, b′) = (1, 0) or
(0, 1). Since x′′ = x⊕b⊕b′, these cases equal to x⊕b = 1. commit(0)||commit(y)
is given to Alice when (x′′, b′) = (1, 1) or (0, 0). These cases equal to x⊕ b = 0.

Thus Alice’s output is commit(y) if (x ⊕ b, b) = (1, 0) or (0, 1). These cases
equal to x = 1. Alice’s output is commit(0) if (x⊕ b, b) = (1, 1) or (0, 0). These
cases equal to x = 0. Therefore, the output is correct.

Alice and Bob’s security: The same as the XOR protocol without private
reveals.

The number of cards: Any committed input protocol needs at least four cards
to input. When Bob sets S2, the cards used for commit(x′′) can be re-used to
set commit(0). Thus, the total number of cards is four and the minimum. □

The number of rounds is three. Using the argument in Section 3.4, any two-
variable logical function can also be calculated by four cards and three rounds
without private reveals.

4.3 COPY protocol without private reveals

Protocol 8 (COPY protocol without private reveals)

1. Alice executes a private random bisection cut on S0 = commit(x). Let the
output be S1 = commit(x′). Note that x′ = x⊕ b. Alice sets S′

1 as m copies
of commit(b). Alice hands S1 and S′

1 to Bob.
2. Bob executes a private random bisection cut on S1 and each pair of S′

1 using
a private random bit b′. Let the output be S2 and S′

2, respectively.
Bob publicly opens S2 and obtains value x′′. Alice can see the cards. Bob
publicly swaps each pair of S′

2 if x′′ = 1. Otherwise, Bob does nothing. Let
the result be S3. Bob outputs S3.

The protocol is two rounds. The protocol uses 2m+ 2 cards.

Theorem 7. The COPY protocol is correct and secure.

Proof. Correctness: Bob obtains commit(x′′) and commit(b ⊕ b′), where x′′ =
x⊕b⊕b′. Bob opens x′′. Bob publicly sets S3 as b⊕b′⊕x′′ = b⊕b′⊕x⊕b⊕b′ = x.
Thus, the result is correct.

Alice and Bob’s security: The same as the XOR protocol without private
reveals. □

14 Hibiki Ono and Yoshifumi Manabe

4.4 n-variable logical functions without private reveals

Let f be any n-variable logical function.

Protocol 9 (Protocol for any logical function without private reveals)

1. The same as Step 1 in Protocol 5.
2. Bob executes a private random bisection cut on commit(x′

i)(i = 1, 2, . . . , n).
Note that one random bit b′i is selected for each x′

i(i = 1, 2, . . . , n). Let
commit(x′′

i) (i = 1, 2, . . . , n) be the obtained value. x′′
i = xi ⊕ bi ⊕ b′i(i =

1, 2, . . . , n) is satisfied. Bob privately relocates Sa1,a2,...,an
(ai ∈ {0, 1}, i =

1, 2, . . . , n) so that S′
a1,a2,...,an

= Sa1⊕b′1,a2⊕b′2,...,an⊕b′n
(ai ∈ {0, 1},

i = 1, 2, . . . , n). The cards satisfy that S′
a1,a2,...,an

=
commit(f(a1 ⊕ b1 ⊕ b′1, a2 ⊕ b2 ⊕ b′2, . . . , an ⊕ bn ⊕ b′n)).
Bob publicly reveals commit(x′′

i) and obtains x′′
i (i = 1, 2, . . . , n). Bob publicly

selects S′
x′′
1 ,x

′′
2 ,...,x

′′
n
.

Since S′
x′′
1 ,x

′′
2 ,...,x

′′
n
= commit(f(x1 ⊕ b1 ⊕ b′1 ⊕ b1 ⊕ b′1, x2 ⊕ b2 ⊕ b′2 ⊕ b2 ⊕

b′2, . . . , xn⊕bn⊕b′n⊕bn⊕b′n)) = commit(f(x1, x2, . . . , xn)), the output is correct.
The security is the same as the XOR protocol. The protocol is two rounds. The
number of cards is 2n+1 + 2n.

All the other protocols that are shown in [34] can also be changed so as not
to use the private reveal operations. The conversion rule is as follows: When
Bob executes a private reveal and set a sequence S in the original protocol, Bob
executes a private random bisection cut to commit(x ⊕ b) instead. Let b′ be
the random bit selected by Bob. Then Bob publicly opens the committed bit
and publicly sets a sequence S by the original rule. Bob then executes a private
reverse cut on S using the bit b′ and outputs S′. Alice executes a private reverse
cut on S′ and obtains the final result.

5 Protocols that preserve an input

In the above protocols to calculate logical functions, the input commitment val-
ues are lost. If an input is not lost, the input commitment can be used as an input
to another calculation. Thus, protocols that preserve an input are discussed [29].
For the three-round XOR and AND protocols in [34], protocols that preserve an
input were shown [34]. This paper uses the technique in [34] to obtain protocols
to preserve an input.

First, consider XOR protocols in Section 3 and Section 4.

Protocol 10 (XOR protocol that preserves an input)

1,2 The same as Protocol 2 (or Protocol 6).
At the end of Step 2, Bob sends back S1 = commit(x′) to Alice.

3 Alice executes private reverse cut on S1 and obtains commit(x).

Card-based Cryptographic Protocols with the Minimum Number of Rounds 15

In the protocol in Section 3, since commit(x′) is unnecessary after Bob’s
private reveal, the cards can be sent back to Alice. Alice can recover commit(x).
The number of rounds is increased to three.

For the XOR protocols in Section 4, the same technique can be applied. After
Bob publicly opens S2 and obtains x ⊕ b ⊕ b′, he can recover S1 = commit(x′)
since he knows b′. The protocol is three rounds and uses four cards.

Similarly, the AND type protocol in Section 3 and 4 can be modified to a
three-round protocol to preserve an input.

Protocol 11 (AND protocol that preserves an input)

1,2 The same as Protocol 3 (or Protocol 7).
At the end of Step 2, Bob sends back S1 = commit(x′) to Alice.

3 Alice executes private reverse cut on S1 and obtains commit(x) (in Protocol
7, executed at the end of the protocol).

The number of rounds is three and the number of cards is six. For the protocol
in Section 4, two new cards are necessary to send commit(x′) to Alice.

The same technique can be applied to n-variable protocol and commit(x′
i)

can be sent back to Alice.
As for the AND type protocol, another protocol that preserves an input

without additional cards can be obtained. Note that the function f satisfies that
one of (f(0, y), f(1, y)) is y or ȳ and the other is 0 or 1. Otherwise, we do not
need to calculate f by the AND type two player protocol. When we execute
the four-card AND type protocol without private reveals, two cards are selected
by Alice at the final step. The remaining two cards are not used, but they also
output some values. The unused two cards’ value is{

f(0, y) if x = 1
f(1, y) if x = 0

thus the output value is commit(x̄ ∧ f(1, y) ⊕ x ∧ f(0, y)). The output f(x, y)
can be written as x∧ f(1, y)⊕ x̄∧ f(0, y). Execute the above XOR protocol that
preserves an input without private reveals for these two output values so that
f(x, y) is preserved. The output of XOR protocol is x̄ ∧ f(1, y) ⊕ x ∧ f(0, y) ⊕
x ∧ f(1, y)⊕ x̄ ∧ f(0, y) = f(1, y)⊕ f(0, y). Since one of (f(0, y), f(1, y)) is y or
ȳ and the other is 0 or 1, the output is y or ȳ (depending on f). Thus, input y
can be recovered without additional cards.

Protocol 12 (AND type protocol that preserves an input without private re-
veals)

1,2 The same as Protocol 7.
3 After Alice outputs S4, let S

′
4 be the cards that are not selected.

4 Alice and Bob execute the XOR protocol that preserves an input without
private reveals (Protocol 10) for S4 and S′

4. Let the preserved input, S4, be
the result. Obtain commit(y) from the XOR result.

16 Hibiki Ono and Yoshifumi Manabe

Thus, the protocol achieves preserving an input by four cards. The AND type
protocol needs three rounds and the XOR protocol that preserves an input needs
three rounds. The last round of the AND type protocol and the first round of
the XOR protocol are executed by Alice, thus they can be done in one round.
Therefore, the total number of rounds is five.

6 Conclusion

This paper proposed round optimal card-based cryptographic protocols using
private operations. Then this paper showed protocols without private reveal
operations and several variant protocols. Further study includes round optimal
protocols for the other fundamental problems.

References

1. Abe, Y., Hayashi, Y.i., Mizuki, T., Sone, H.: Five-card and protocol in committed
format using only practical shuffles. In: Proc. of 5th ACM on ASIA Public-Key
Cryptography Workshop(APKC 2018). pp. 3–8. ACM (2018)

2. den Boer, B.: More efficient match-making and satisfiability the five card trick. In:
Proc. of EUROCRYPT ’89, LNCS Vol. 434. pp. 208–217 (1990)

3. Bultel, X., Dreier, J., Dumas, J.G., Lafourcade, P., Miyahara, D., Mizuki, T.,
Nagao, A., Sasaki, T., Shinagawa, K., Sone, H.: Physical zero-knowledge proof for
makaro. In: Proc. of 20th International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS 2018), LNCS, Vol.11201. pp. 111–125 (2018)

4. Crépeau, C., Kilian, J.: Discreet solitary games. In: Proc. of 13th Crypto, LNCS
Vol. 773. pp. 319–330 (1993)

5. Dumas, J.G., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: Inter-
active physical zero-knowledge proof for norinori. In: Proc. of 25th International
Computing and Combinatorics Conference (COCOON 2019), LNCS Vol.11653. pp.
166–177 (2019)

6. Francis, D., Aljunid, S.R., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Necessary
and sufficient numbers of cards for securely computing two-bit output functions.
In: Proc. of Second International Conference on Cryptology and Malicious Secu-
rity(Mycrypt 2016), LNCS Vol. 10311. pp. 193–211 (2017)

7. Hashimoto, Y., Nuida, K., Shinagawa, K., Inamura, M., Hanaoka, G.: Toward
finite-runtime card-based protocol for generating hidden random permutation
without fixed points. IEICE Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences 101-A(9), 1503–1511 (2018)

8. Hashimoto, Y., Shinagawa, K., Nuida, K., Inamura, M., Hanaoka, G.: Secure group-
ing protocol using a deck of cards. IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences 101-A(9), 1512–1524 (2018)

9. Ibaraki, T., Manabe, Y.: A more efficient card-based protocol for generating a
random permutation without fixed points. In: Proc. of 3rd International Conference
on Mathematics and Computers in Sciences and in Industry (MCSI 2016). pp. 252–
257 (2016)

10. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a
hidden random permutation without fixed points. In: Proc. of 14th International
Conference on Unconventional Computation and Natural Computation(UCNC
2015), LNCS Vol. 9252. pp. 215–226 (2015)

Card-based Cryptographic Protocols with the Minimum Number of Rounds 17

11. Kastner, J., Koch, A., Walzer, S., Miyahara, D., Hayashi, Y., Mizuki, T., Sone,
H.: The minimum number of cards in practical card-based protocols. In: Proc. of
23rd International Conference on the Theory and Applications of Cryptology and
Information Security(ASIACRYPT2017), Part III, LNCS Vol. 10626. pp. 126–155
(2017)

12. Koch, A.: The landscape of optimal card-based protocols. IACR Cryptology ePrint
Archive, Report 2018/951 (2018)

13. Koch, A., Walzer, S.: Private function evaluation with cards. IACR Cryptology
ePrint Archive, Report 2018/1113 (2018)

14. Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a min-
imal number of cards. In: Proc. of Asiacrypt 2015, LNCS Vol.9452. pp. 783–807
(2015)

15. Kurosawa, K., Shinozaki, T.: Compact card protocol. In: Proc. of 2017 Symposium
on Cryptography and Information Security(SCIS 2017). pp. 1A2–6 (2017), (In
Japanese)

16. Marcedone, A., Wen, Z., Shi, E.: Secure dating with four or fewer cards. IACR
Cryptology ePrint Archive, Report 2015/1031 (2015)

17. Miyahara, D., Hayashi, Y.i., Mizuki, T., Sone, H.: Practical and easy-to-understand
card-based implementation of yao’s millionaire protocol. In: Proc. of 12th Inter-
national Conference on Combinatorial Optimization and Applications (COCOA
2018), LNCS Vol. 11346. pp. 246–261 (2018)

18. Miyahara, D., Ueda, I., Hayashi, Y.i., Mizuki, T., Sone, H.: Analyzing execution
time of card-based protocols. In: Proc. of 17th International Conference on Un-
conventional Computation and Natural Computation (UCNC 2018), LNCS Vol.
10867. pp. 145–158 (2018)

19. Mizuki, T.: Card-based protocols for securely computing the conjunction of mul-
tiple variables. Theoretical Computer Science 622, 34–44 (2016)

20. Mizuki, T.: Efficient and secure multiparty computations using a standard deck of
playing cards. In: Proc. of Cryptology and Network Security (CANS 2016), LNCS
Vol.10052 (2016)

21. Mizuki, T., Asiedu, I.K., Sone, H.: Voting with a logarithmic number of cards.
In: Proc. of International Conference on Unconventional Computing and Natural
Computation (UCNC 2013), LNCS Vol. 7956. pp. 162–173 (2013)

22. Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four
cards. Proc. of Asiacrypt 2012, LNCS Vol.7658 pp. 598–606 (2012)

23. Mizuki, T., Shizuya, H.: Practical card-based cryptography. In: Proc. of 7th In-
ternational Conference on Fun with Algorithms(FUN2014), LNCS Vol. 8496. pp.
313–324 (2014)

24. Mizuki, T., Shizuya, H.: Computational model of card-based cryptographic pro-
tocols and its applications. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences 100-A(1), 3–11 (2017)

25. Mizuki, T., Sone, H.: Six-card secure and and four-card secure xor. In: Proc. of 3rd
International Workshop on Frontiers in Algorithms(FAW 2009), LNCS Vol. 5598.
pp. 358–369 (2009)

26. Nakai, T., Shirouchi, S., Iwamoto, M., Ohta, K.: Four cards are sufficient for a
card-based three-input voting protocol utilizing private permutations. In: Proc. of
10th International Conference on Information Theoretic Security (ICITS 2017),
LNCS Vol. 10681. pp. 153–165 (2017)

27. Nakai, T., Tokushige, Y., Misawa, Y., Iwamoto, M., Ohta, K.: Efficient card-based
cryptographic protocols for millionaires’ problem utilizing private permutations.

18 Hibiki Ono and Yoshifumi Manabe

In: Proc. of International Conference on Cryptology and Network Security(CANS
2016), LNCS Vol. 10052. pp. 500–517 (2016)

28. Niemi, V., Renvall, A.: Secure multiparty computations without computers. The-
oretical Computer Science 191(1), 173–183 (1998)

29. Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols for any
boolean function. In: Proc. of 15th International Conference on Theory and Ap-
plications of Models of Computation(TAMC 2015), LNCS Vol. 9076. pp. 110–121
(2015)

30. Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Securely computing three-input
functions with eight cards. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences 98-A(6), 1145–1152 (2015)

31. Nishimura, A., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Five-card secure
computations using unequal division shuffle. In: Proc. of 4th International Con-
ference on Theory and Practice of Natural Computing(TNPC 2015), LNCS Vol.
9477. pp. 109–120 (2015)

32. Nishimura, A., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols
using unequal division shuffles. Soft Computing 22(2), 361–371 (2018)

33. Ono, H., Manabe, Y.: Efficient card-based cryptographic protocols for the mil-
lionaires’ problem using private input operations. In: Proc. of 13th Asia Joint
Conference on Information Security(AsiaJCIS 2018). pp. 23–28 (2018)

34. Ono, H., Manabe, Y.: Card-based cryptographic protocols with the minimum num-
ber of cards using private operations. In: Proc. of 11th International Symposium
on Foundations & Practice of Security(FPS 2018), LNCS Vol. 11358. pp. 193–207
(2019)

35. Ruangwises, S., Itoh, T.: And protocols using only uniform shuffles. In: Proc. of
14th International Computer Science Symposium in Russia(CSR 2019), LNCS Vol.
11532. pp. 349–358 (2019)

36. Sasaki, T., Mizuki, T., Sone, H.: Card-Based Zero-Knowledge Proof for Sudoku.
In: Proc. of 9th International Conference on Fun with Algorithms (FUN 2018).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 100, pp. 29:1–29:10
(2018)

37. Shinagawa, K., Mizuki, T.: Secure computation of any boolean function based
on any deck of cards. In: Proc. of 13th International Frontiers in Algorithmics
Workshop(FAW 2019), LNCS Vol. 11458. pp. 63–75 (2019)

38. Shinagawa, K., Mizuki, T.: The six-card trick:secure computation of three-input
equality. In: Proc. of 21st International Conference on Information Security and
Cryptology (ICISC 2018), LNCS Vol.11396. pp. 123–131 (2019)

39. Shinagawa, K., Nuida, K.: A single shuffle is enough for secure card-based compu-
tation of any circuit. IACR Cryptology ePrint Archive 2019, 380 (2019)

40. Shirouchi, S., Nakai, T., Iwamoto, M., Ohta, K.: Efficient card-based cryptographic
protocols for logic gates utilizing private permutations. In: Proc. of 2017 Sympo-
sium on Cryptography and Information Security(SCIS 2017). pp. 1A2–2 (2017),
(In Japanese)

41. Stiglic, A.: Computations with a deck of cards. Theoretical Computer Science
259(1), 671–678 (2001)

42. Ueda, I., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: How to implement a
random bisection cut. In: Proc. of 5th International Conference on Theory and
Practice of Natural Computing (TPNC 2016), LNCS Vol. 10071. pp. 58–69 (2016)

