
An Online Allocation Algorithm of Indivisible Goods

Kohei Shimizu and Yoshifumi Manabe

Department of Computer Science

Kogakuin University

Tokyo, Japan

e-mail: em15010@ns.kogakuin.ac.jp , manabe@cc.kogakuin.ac.jp

Abstract—This paper proposes a new online allocation

algorithm of indivisible goods. In online algorithms,

participants arrive to execute the algorithm at any time and

exit from the algorithm when his/her allocation is given. We

assume that the total value of the whole goods is the same for

every participant. In cake-cutting algorithms for divisible

goods, immediately envy-free has been defined as the desirable

property. The property means that for any participants, any

other participants who arrive after and depart before the

participant obtain no more value than the participant.

However, it is difficult for online allocation algorithms for

indivisible goods to satisfy immediately envy-free. Therefore

we propose a weakly immediately envy-free algorithm, which

means that participants do not value goods allocated to

participants who arrived later but departs earlier than them,

more than their own. Our algorithm aims to maximize the

worst obtained value among all participants. We show that this

problem involves an NP-complete problem. Thus, it is very

difficult to always output an optimal solution. We propose an

approximation algorithm and prove its approximation ratio.

Keywords-allocation; envy-free; indivisible goods; algorithm

I. INTRODUCTION

We consider the problem of fair allocation of multiple
indivisible goods among multiple participants. This paper
discusses an online allocation problem of indivisible goods
that models allocating multiple presents among multiple
participants in a party, paying rewards to multiple employee
by indivisible goods, and so on. We aim to satisfy weakly
immediately envy free, which means that participants do not
value goods allocated to the participants who arrived later
but departs earlier than them, more than their own. In
addition, our algorithm aims to maximize the worst
participant's obtained value of allocated goods among the
participants. Several approximation algorithms have been
discussed for different rating scales, such as the maximin
share guarantee [1-3]. However, these algorithms first divide
the goods into groups such that the minimum of each group's
total value is guaranteed, and then assign the groups to the
participants to maximize the sum of each participant's
obtained value. Maximizing the sum is the aim of the second
phase of the algorithm, and these algorithms are offline
allocation algorithm. For divisible goods, online cake cutting
algorithm was proposed [4], but as far as the authors know,
there is no online algorithm of indivisible goods. We prove
that this problem contains a case when solving an NP-
complete problem is necessary. Thus we propose an

approximation algorithm and prove its approximation ratio.
By a computer simulation, we show that the approximation
ratio of our algorithm is much better than the worst case
bound.

II. PROBLEM DEFINITION

This paper discusses an online allocation problem of
indivisible goods. The allocation problem is defined as
follows.

The set of participants is denoted by }.,...,,{ 21 nxxxX 

The set of goods is denoted by }.,...,,{ 21 mvvvV 

The evaluation function of each participant for the goods

is denoted by)1(niPi  : .V

We assume that the evaluation functions satisfies the
following:

1)()1,1(,  ji vPmjniji ,

.)1()(
1

niPvP j

m

j i  

That is, the total evaluation of the whole goods is the
same for every participant. Though the actual evaluation
values might differ among the participants, they are
normalized. This assumption is natural for the allocation
problem, since obtaining all goods is the best result and the
ratio compared with the best result is each participant's
interest. In this paper we call the unit of evaluation as a point.
In addition, there is no good that has no value for any
participants. We assume that all participants are risk-adverse.

An allocation is function A :
VX 2 (Subset of V).

It must satisfy the following equations: VxA i

n

i )(1

and )()('ii xAxA  for any).(, iiii 

The total points of allocated goods for ix by allocation

algorithm A is denoted by .)()(
)( 


ij xAv jii vPAu

The minimum value of iu by the allocation A is

denoted by).(min)(AuAu iXxi


The optimal)(Au by an exhaustive search that ignores

weakly immediately envy-free is denoted by)
~

(Au .

This paper considers that the best allocation is as follows.
(1) The allocation must be weakly immediately envy free,

57

2016 6th International Conference on Information Communication and Management

978-1-5090-3493-2/16/$31.00 ©2016 IEEE

which means that participants do not value goods allocated
to participants who arrived later but departs earlier than them,
more than their own. (2) If there are multiple allocations that
satisfy (1),)(Au is the largest.

In many allocation problems, the participant who departs
the allocation before the next participant arrives tends to
cause bad effect for the allocation [4]. As a penalty, if there
is a participant who wants to depart the allocation before the
next participant arrives, we do not consider about weakly
immediately envy free for the participant.

III. NP-COMPLETENESS

Even no matter how the participants arrive, there is an
instance when the number of participants who have not yet
been allocated is two. This allocation problem contains a
case when solving an NP-complete problem is necessary.
When the last allocation is executed between the last two
participants, obtaining an optimal allocation is NP-complete,
as shown in the following, because it belongs to NP and it
has a reduction from a partition problem.

For the proof of NP-completeness, let us consider the
following decision problem [5-7].

Input: iPVX ,, , and integer k

Question: Is there A such that kAu )(?

It is obvious that this decision problem belongs to NP.
NP-hardness can be proved by a reduction from the
following decision problem of the partition problem.

Input: Set of integers },...,,{ 21 psss , that satisfies

Ls
is i 2 

Question: Is there an allocation),(21  such that

21   ,   21 , and  


21  ii s is i ss ?

When
21,,2 PPpmn  and Lk  , the partition

problem has a solution if and only if the allocation problem
has a solution. For example, partition problem

(}6,2,2,1,9,5,12,4,8,3{ , 522 L) can be converted to

an allocation problem (2n , 10m , 52P ,

}6,2,2,1,9,5,12,4,8,3{1 P , }6,2,2,1,9,5,12,4,8,3{2 P ,

262/2  Lk). In this case, there is allocation A ,

},,,,{)(1074311 vvvvvxA  , },,,,{)(986522 vvvvvxA  ,

26)(Au , as }6,1,12,4,3{1  , }2,2,9,5,8{1  .

It is obvious that the partition problem has a solution if
and only if the corresponding allocation problem has a
solution.

Since the partition problem is NP-complete, the
allocation problem contains a case when solving an NP-
complete problem is necessary. Because of the NP-
completeness, we consider an approximate solution that is as
close as possible to the optimal solution.

IV. THE PROPOSED ALGORITHM

We propose an approximation algorithm. Note that

participants have
iP that satisfies the condition in the

problem definition.

1) Wait for participants until the number of participants

who are waiting for allocation is two or more. If a

participant wants to depart the allocation before the next

participant arrives, he/she can get any one good he/she

prefers and depart.

2) Every participant checks currently remaining goods,

and declares the minimum number of goods they are

satisfied. (Every participant cannot declare more than T ,

where T is the number of remaining goods divided by the

number of participants who have not been obtained his/her

allocation.)

3) From the declared numbers, the participant who

declares the minimum number gets the number of goods

whatever he/she likes. If there are multiple participants who

declare the minimum number, the participant who arrived

the earliest gets the number of goods whatever he/she likes.

The participant who got goods departs from the allocation.

4) Repeat step 1, 2 and 3 until the number of

participants who have not yet been allocated is one.

5) The last participant gets all the remaining goods and

departs.

The proposed algorithm tends to keep more goods for

participants who have not yet arrived. We cannot know
iP of

a player who has not yet arrived, and there are no goods

whose value is 0, therefore to keep more goods tend to lead a

good allocation. Since all participants are risk-adverse,

participants do not declare false number.

If the proposed algorithm is not weakly immediately

envy-free, there is a participant who knows another

participant's)(ixA and feel envy. Because of the

characteristics of step 2 and 3 of the proposed algorithm, the

participant who arrives earlier than the remaining

participants can definitely get more value than he/she is

satisfied. If he declares the minimum number, he can get

goods that he wants, and if another participant declares a

smaller number than his one, the participant gets low-value

goods for him and departs. Therefore, this algorithm outputs

weakly immediately envy-free solution.

Let us discuss the early depart rule in step 1. Consider the

case when one participant is waiting for next participant. If

the participant declares one in the next round, the participant

definitely wins in the round and obtains one good he/she

prefers because of the rule in step 3. Thus, the participant can

depart without waiting for the next participant if he/she is

satisfied with one good.

58

V. EXAMPLE

A. Example 1

Input: 3n , 4m , 100P , }20,20,30,30{1 P ,

}5,5,10,80{2 P , }40,20,10,30{3 P .

The optimal solution for this example, that is obtained by

an exhaustive search, is as follows. },{)(321 vvxA  ,

}{)(12 vxA  , }{)(43 vxA  , 50)(1 Au , 80)(2 Au ,

40)(3 Au , 40)
~

(Au .

Suppose the following order of arrivals. The first

participant
1x and the second participant

2x arrive. The

number of participants who have not yet been allocated is

three. The sum of the value of remaining goods is 100 for
1x ,

thus
1x is satisfied if he gets at least

3
100 points. The sum of

the value of remaining goods is 100 for
2x , thus

2x is

satisfied if he gets at least
3

100 points.
1x declares that

1x is

satisfied with two goods, for example, },{)(211 vvxA  .
2x

declares that
2x is satisfied with one good, for example,

}{)(12 vxA  .
2x declares a smaller number than

1x , thus
2x

can get one good whatever he wants and depart.
2x gets

1v

and departs. The third participant
3x arrives after

2x 's depart.

Currently, the number of participants who have not yet been
allocated is two. The sum of the value of remaining goods is

70 for
1x , thus

1x is satisfied if he gets at least
2

70 points.

The sum of the value of remaining goods is 70 for
3x , thus

3x is satisfied if he gets at least
2

70 points.
1x declares that

1x is satisfied with two goods, for example,

},{)(321 vvxA  .
3x declares that

3x is satisfied with one

good, for example, }{)(43 vxA  .
3x declares a smaller

number than
1x , thus

3x can get one good whatever he

wants and depart.
3x gets

4v and departs. Currently, the

number of participants who have not yet been allocated is

one.
1x gets all remaining goods and departs.

1x gets
2v and

3v , and departs.

In this case, },{)(321 vvxA  , }{)(12 vxA  , }{)(43 vxA  ,

50)(1 Au , 80)(2 Au , 40)(3 Au , 40)(Au . In this

example, the proposed algorithm outputs the optimal
solution.

B. Example 2

Input: 4n , 8m , 100P , }2,2,2,2,2,20,50{1 P ,

}10,10,10,10,10,20,20,10{2 P , }10,10,10,10,10,10,20,20{3 P ,

}20,30,20,10,5,5,5,5{4 P .

The optimal solution for this example, that is obtained by

an exhaustive search, is as follows. }{)(11 vxA  ,

},{)(322 vvxA  , },,{)(8543 vvvxA  , },{)(764 vvxA  , 50)(1 Au ,

40)(2 Au , 30)(3 Au , 50)(4 Au , 30)
~

(Au .

Suppose the following order of arrivals. The first

participant
1x and the second participant

2x arrive. The

number of participants who have not yet been allocated is

four. The sum of the value of remaining goods is 100 for
1x ,

thus
1x is satisfied if he gets at least

4
100 points. The sum of

the value of remaining goods is 100 for
2x , thus

2x is

satisfied if he gets at least
4

100 points.
1x declares that

1x is

satisfied with one good, for example, }{)(11 vxA  .
2x

declares that
2x is satisfied with two goods, for example,

},{)(322 vvxA  .
1x declares a smaller number than

2x , thus

1x can get one good whatever he wants and depart.
1x gets

1v and departs. The third participant
3x arrives after

1x 's

depart. Currently, the number of participants who have not
yet been allocated is three. The sum of the value of
remaining goods is 90 for

2x , thus
2x is satisfied if he gets

at least
3

90 points. The sum of the value of remaining goods

is 80 for
3x , thus

3x is satisfied if he gets at least
3

80 points.

2x declares that
2x is satisfied with two goods, for example,

},{)(322 vvxA  .
3x declares that

3x is satisfied with two

goods, for example, },{)(323 vvxA  .
2x and

3x declares the

same number, thus the earliest participant
2x can get two

goods whatever he wants and depart.
2x gets

2v and
3v , and

departs. The fourth participant
4x arrives after

2x 's depart.

Currently, the number of participants who have not yet been
allocated is two. The sum of the value of remaining goods is

50 for
3x , thus

3x is satisfied if he gets at least
2

50 points.

The sum of the value of remaining goods is 85 for
4x , thus

4x is satisfied if he gets at least
2

85 points.
3x declares that

3x is satisfied with three goods, for example,

},,{)(6543 vvvxA  .
4x declares that

4x is satisfied with two

goods, for example, },{)(764 vvxA  .
4x declares a smaller

number than
3x , thus

4x can get two goods whatever he

wants and depart.
4x gets

6v and
7v , and departs. Currently,

the number of participants who have not yet been allocated is

one.
3x gets all remaining goods and departs.

3x gets
4v ,

5v ,

and
8v , and departs.

In this case, }{)(11 vxA  , },{)(322 vvxA  , },,{)(8543 vvvxA  ,

},{)(764 vvxA  , 50)(1 Au , 40)(2 Au , 30)(3 Au , 50)(4 Au ,

30)(Au . In this case,
3x knows)(4xA ,

4x arrives later

than
3x and departs before than

3x . If
3x feels envy to

4x ,

the allocation is not weakly immediately envy-free. However,

30)(3 Au and 20))((43 xAu .
3x does not feel envy to

4x .

59

In this example, the proposed algorithm outputs the weakly
immediately envy-free and optimal solution.

C. Example 3

Input: 4n , 8m , 100P ,

}5,10,10,10,10,15,20,20{1 P , }5,5,15,15,15,15,15,15{2 P ,

}25,25,15,15,10,5,3,2{3 P , }5,1010,10,10,10,10,35{4 P .

The optimal solution for this example, that is obtained by

an exhaustive search, is as follows. },{)(321 vvxA  ,

},,{)(6542 vvvxA  , },{)(873 vvxA  , }{)(14 vxA  , 35)(1 Au ,

45)(2 Au , 50)(3 Au , 35)(4 Au , 35)
~

(Au .

Suppose the following order of arrivals. The first

participant
1x and the second participant

2x arrive at this

allocation. The number of participants who have not yet been
allocated is four. The sum of the value of remaining goods is

100 for
1x , thus

1x is satisfied if he gets at least
4

100 points.

The sum of the value of remaining goods is 100 for
2x , thus

2x is satisfied if he gets
4

100 points.
1x declares that

1x is

satisfied with two goods, for example, },{)(211 vvxA  .
2x

declares that
2x is satisfied with two goods, for example,

},{)(212 vvxA  .
1x and

2x declares the same number, thus

the earliest participant
1x can get two goods whatever he

wants and depart.
1x gets

1v and
2v , and departs. The third

participant
3x arrives after

1x 's depart. Currently, the

number of participants who have not yet been allocated is

three. The sum of the value of remaining goods is 70 for
2x ,

thus
2x is satisfied if he gets at least

3
70 points. The sum of

the value of remaining goods is 95 for
3x , thus

3x is

satisfied if he gets at least
3

95 points.
2x declares that

2x is

satisfied with two goods, for example, },{)(432 vvxA  .
3x

declares that
3x is satisfied with two goods, for example,

},{)(873 vvxA  .
2x and

3x declares the same number, thus

the earliest participant
2x can get two goods whatever he

wants and depart.
2x gets

3v and
4v , and departs. The fourth

participant
4x arrives after

2x 's depart. Currently, the

number of participants who have not yet been allocated is

two. The sum of the value of remaining goods is 80 for
3x ,

thus
3x is satisfied if he gets at least

2
80 points. The sum of

the value of remaining goods is 35 for
4x , thus

4x is

satisfied if he gets at least
2

35 points.
3x declares that

3x is

satisfied with two goods, for example, },{)(873 vvxA  .
4x

declares that
4x is satisfied with two goods, for example,

},{)(654 vvxA  .
3x and

4x declares the same number, thus

the earliest participant
3x can get two goods whatever he

wants and depart.
3x gets

7v and
8v , and departs. Currently,

the number of participants who have not yet been allocated is

one.
4x gets all remaining goods and departs.

4x gets
5v and

6v , and departs.

In this case, },{)(211 vvxA  , },{)(432 vvxA  ,

},{)(873 vvxA  , },{)(654 vvxA  , 40)(1 Au , 30)(2 Au ,

50)(3 Au , 20)(4 Au , 20)(Au . The proposed algorithm

does not output the optimal solution for this example. The

reason is that we do not know
4P until

4x arrives. But this

allocation is weakly immediately envy free.

VI. APPROXIMATION RATIO

In this paper, we define the approximation ratio as the

ratio of)(Au by the proposed algorithm to)
~

(Au ()(Au by

an offline exhaustive search). The approximation ratio is

proved for the three cases, mn  , mn 2 and

121  nmn .

A. mn 

If mn  , every participant declares that he/she is

satisfied with one good. If there is a participant who cannot

get his/her most valuable good,
2

)
~

(PAu  . If every

participant values different good as the best one for him/her,
they can get the good they want by the proposed algorithm,
because of the characteristics of step 2 and 3 of the proposed
algorithm. If there are participants who values the same good
as the best one, at least one participant cannot obtain his/her

best good, thus
2

)
~

(PAu  . In this case, 1)(Au , because

each participant can get one good and there is no good that
has no value for any participants. Therefore, in the case of

mn  , the approximation ratio is at least
PP

21

2

 .

B. mn 2

In this algorithm, there is an upper limit T for the declare
number. (Every participant cannot declare more than T ,
where T is the number of remaining goods divided by the
number of participants who have not been obtained his/her
allocation.) Every participant can get more than one goods
such that he/she is satisfied with. Therefore, every participant

can get at least 2 points.)
~

(Au is less than P points.

Therefore, in mn 2 , the approximation ratio is at least

PP

21

2


.

C. 121  nmn

In this algorithm, a participant who arrives the earliest at
the time can at least get goods that he/she is satisfied. If

1)(Au , there is a participant who gets only one good. In

that case, there is a round that two participants declare two
and someone definitely gets two goods. If a participant
declare two, each value of all the remaining goods for the
participant is less than

n
P

 points, where n is the number of

participants who have not been obtained his/her allocation at
the time. When 2n , there are three cases. The first case is

60

when the number of the remaining goods is two. In this case,
there is a round that two participants declare two and gets
two goods. In this case, one of the participants gets two

goods, less than
n
P

 points, and n3 at that round.)

~
(Au is

maximized
3

22 P
n
P  . The second case is when the number

of the remaining goods is three. If mn 1 , there is no

round that two participants declare two and someone gets
two goods. In this case, if)(Au by the proposed algorithm is

1, the last participant and another participant need the same

good as the most valuable good. In this case,
2

)
~

(PAu  . If

mn  2 , there is a round that two participants declare two,

)
~

(Au is less than
3

2P . The third case is when the number of

the remaining goods more than three,)(Au by the proposed

algorithm is 2 and more. If there is not a round that two
participants declare two, as mentioned in mn  , participants

can get the good they want. In all cases, PAu )
~

(. If)(Au

is 2 and more, the approximation ratio is at least
P
2 .

Therefore, in the case of mn 1 , the approximation ratio

is at least
PP

21

2


. In the case of mn  2 , the approximation

ratio is at least
PP 2

31

3
2


.

VII. EXPERIMENT RESULTS

This algorithm is executed for 1000 randomly generated
problem instances with ,4,3n and ,5 ,9,8,7,6,5,4,3m and

,10 and 100P . The table shows the average ratio of)(Au

by the proposed algorithm to)
~

(Au .

In this table, the proposed algorithm is compared with an
exhaustive search that ignores weakly immediately envy-free.
With that in mind, the proposed algorithm can output good
solutions. The ratio tends to decrease if n increases, because

the exhaustive search ignores weakly immediately envy-free.

TABLE I. EXPERIMENT RESULTS

 n=3 n=4 n=5

m=3 0.7498 None None

m=4 0.7440 0.5716 None

m=5 0.7494 0.5611 0.4146

m=6 0.7177 0.5623 0.4187

m=7 0.7340 0.5534 0.4279

m=8 0.7203 0.5520 0.4470

m=9 0.7188 0.5830 0.4972

m=10 0.7375 0.6013 0.5145

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant
Number JP26330019.

REFERENCES

[1] Haris, A., Serge, G., Simon, M., Toby, W. : “Fair Assignment of
Indivisible Objects under Ordinal Preference”, AAMAS '14, 2014, pp.
1305-1312.

[2] Walsh,T. : “Online Cake Cutting”, Algorithmic Decision Theory,
COMSOC 2010, pp 292-305.

[3] Jonathan, G., Ariel, D. P. : “Spliddit: Unleashing Fair Division
Algorithms”, ACM SIGecom Exchange, Vol.13, No.2, 2014, pp. 41-
46.

[4] Procaccia, A. D., Wang, J. : “Fair enough: Guaranteeing approximate
maximin shares”, 14th ACM Conference on Economics and
Computation, 2014, pp. 675-692.

[5] Sylvain, B., Michel, L. : “Characterizing Conflicts in Fait Division of
Indivisible Goods Using a Scale of Criteria”, AAMAS '14, 2014, pp.
1321-1328.

[6] Richard, L., Evangelos, M., Elchanan, M., Amin, S. : “On
approximately fair allocations of indivisible goods”, 5th ACM
conference on Electronic commerce, 2004, pp. 125-131.

[7] Shimizu,K., Manabe,Y. : “An Allocation Algorithm of Indivisible
Goods”, 10th APSITT, August 2015, pp 112-114.

61

