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Abstract—This paper proposes a new online allocation 

algorithm of indivisible goods. In online algorithms, 

participants arrive to execute the algorithm at any time and 

exit from the algorithm when his/her allocation is given. We 

assume that the total value of the whole goods is the same for 

every participant. In cake-cutting algorithms for divisible 

goods, immediately envy-free has been defined as the desirable 

property. The property means that for any participants, any 

other participants who arrive after and depart before the 

participant obtain no more value than the participant. 

However, it is difficult for online allocation algorithms for 

indivisible goods to satisfy immediately envy-free. Therefore 

we propose a weakly immediately envy-free algorithm, which 

means that participants do not value goods allocated to 

participants who arrived later but departs earlier than them, 

more than their own. Our algorithm aims to maximize the 

worst obtained value among all participants. We show that this 

problem involves an NP-complete problem. Thus, it is very 

difficult to always output an optimal solution. We propose an 

approximation algorithm and prove its approximation ratio. 
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I. INTRODUCTION 

We consider the problem of fair allocation of multiple 
indivisible goods among multiple participants. This paper 
discusses an online allocation problem of indivisible goods 
that models allocating multiple presents among multiple 
participants in a party, paying rewards to multiple employee 
by indivisible goods, and so on. We aim to satisfy weakly 
immediately envy free, which means that participants do not 
value goods allocated to the participants who arrived later 
but departs earlier than them, more than their own. In 
addition, our algorithm aims to maximize the worst 
participant's obtained value of allocated goods among the 
participants. Several approximation algorithms have been 
discussed for different rating scales, such as the maximin 
share guarantee [1-3]. However, these algorithms first divide 
the goods into groups such that the minimum of each group's 
total value is guaranteed, and then assign the groups to the 
participants to maximize the sum of each participant's 
obtained value. Maximizing the sum is the aim of the second 
phase of the algorithm, and these algorithms are offline 
allocation algorithm. For divisible goods, online cake cutting 
algorithm was proposed [4], but as far as the authors know, 
there is no online algorithm of indivisible goods. We prove 
that this problem contains a case when solving an NP-
complete problem is necessary. Thus we propose an 

approximation algorithm and prove its approximation ratio. 
By a computer simulation, we show that the approximation 
ratio of our algorithm is much better than the worst case 
bound. 

II. PROBLEM DEFINITION 

This paper discusses an online allocation problem of 
indivisible goods. The allocation problem is defined as 
follows. 

The set of participants is denoted by }.,...,,{ 21 nxxxX   

The set of goods is denoted by }.,...,,{ 21 mvvvV   

The evaluation function of each participant for the goods 

is denoted by )1( niPi   : .V  

We assume that the evaluation functions satisfies the 
following:  

1)()1,1(,  ji vPmjniji , 

.)1()(
1

niPvP j

m

j i  
 

That is, the total evaluation of the whole goods is the 
same for every participant. Though the actual evaluation 
values might differ among the participants, they are 
normalized. This assumption is natural for the allocation 
problem, since obtaining all goods is the best result and the 
ratio compared with the best result is each participant's 
interest. In this paper we call the unit of evaluation as a point. 
In addition, there is no good that has no value for any 
participants. We assume that all participants are risk-adverse. 

An allocation is function A :
VX 2 (Subset of V). 

It must satisfy the following equations: VxA i

n

i  )(1  

and )()( 'ii xAxA  for any ).(, iiii   

The total points of allocated goods for ix  by allocation 

algorithm A  is denoted by .)()(
)( 


ij xAv jii vPAu  

The minimum value of iu  by the allocation A  is 

denoted by ).(min)( AuAu iXxi
  

The optimal )(Au  by an exhaustive search that ignores 

weakly immediately envy-free is denoted by )
~

(Au . 

This paper considers that the best allocation is as follows. 
(1) The allocation must be weakly immediately envy free, 
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which means that participants do not value goods allocated 
to participants who arrived later but departs earlier than them, 
more than their own. (2) If there are multiple allocations that 
satisfy (1), )(Au  is the largest. 

In many allocation problems, the participant who departs 
the allocation before the next participant arrives tends to 
cause bad effect for the allocation [4]. As a penalty, if there 
is a participant who wants to depart the allocation before the 
next participant arrives, we do not consider about weakly 
immediately envy free for the participant. 

III. NP-COMPLETENESS 

Even no matter how the participants arrive, there is an 
instance when the number of participants who have not yet 
been allocated is two. This allocation problem contains a 
case when solving an NP-complete problem is necessary. 
When the last allocation is executed between the last two 
participants, obtaining an optimal allocation is NP-complete, 
as shown in the following, because it belongs to NP and it 
has a reduction from a partition problem. 

For the proof of NP-completeness, let us consider the 
following decision problem [5-7]. 

Input: iPVX ,, , and integer k  

Question: Is there A such that kAu )( ? 

It is obvious that this decision problem belongs to NP. 
NP-hardness can be proved by a reduction from the 
following decision problem of the partition problem. 

Input: Set of integers },...,,{ 21 psss , that satisfies  

Ls
is i 2 

 

Question: Is there an allocation ),( 21   such that 

21   ,   21 , and  


21  ii s is i ss ? 

When 
21,,2 PPpmn   and Lk  , the partition 

problem has a solution if and only if the allocation problem 
has a solution. For example, partition problem 

( }6,2,2,1,9,5,12,4,8,3{ , 522 L ) can be converted to 

an allocation problem ( 2n , 10m , 52P , 

}6,2,2,1,9,5,12,4,8,3{1 P , }6,2,2,1,9,5,12,4,8,3{2 P , 

262/2  Lk ). In this case, there is allocation A , 

},,,,{)( 1074311 vvvvvxA  , },,,,{)( 986522 vvvvvxA  , 

26)( Au , as }6,1,12,4,3{1  , }2,2,9,5,8{1  . 

It is obvious that the partition problem has a solution if 
and only if the corresponding allocation problem has a 
solution. 

Since the partition problem is NP-complete, the 
allocation problem contains a case when solving an NP-
complete problem is necessary. Because of the NP-
completeness, we consider an approximate solution that is as 
close as possible to the optimal solution. 

IV. THE PROPOSED ALGORITHM 

We propose an approximation algorithm. Note that 

participants have 
iP  that satisfies the condition in the 

problem definition. 

1) Wait for participants until the number of participants 

who are waiting for allocation is two or more. If a 

participant wants to depart the allocation before the next 

participant arrives, he/she can get any one good he/she 

prefers and depart. 

2) Every participant checks currently remaining goods, 

and declares the minimum number of goods they are 

satisfied. (Every participant cannot declare more than T , 

where T  is the number of remaining goods divided by the 

number of participants who have not been obtained his/her 

allocation.) 

3) From the declared numbers, the participant who 

declares the minimum number gets the number of goods 

whatever he/she likes. If there are multiple participants who 

declare the minimum number, the participant who arrived 

the earliest gets the number of goods whatever he/she likes. 

The participant who got goods departs from the allocation.  

4) Repeat step 1, 2 and 3 until the number of 

participants who have not yet been allocated is one. 

5) The last participant gets all the remaining goods and 

departs. 

The proposed algorithm tends to keep more goods for 

participants who have not yet arrived. We cannot know 
iP  of 

a player who has not yet arrived, and there are no goods 

whose value is 0, therefore to keep more goods tend to lead a 

good allocation. Since all participants are risk-adverse, 

participants do not declare false number. 

If the proposed algorithm is not weakly immediately 

envy-free, there is a participant who knows another 

participant's )( ixA  and feel envy. Because of the 

characteristics of step 2 and 3 of the proposed algorithm, the 

participant who arrives earlier than the remaining 

participants can definitely get more value than he/she is 

satisfied. If he declares the minimum number, he can get 

goods that he wants, and if another participant declares a 

smaller number than his one, the participant gets low-value 

goods for him and departs. Therefore, this algorithm outputs 

weakly immediately envy-free solution. 

Let us discuss the early depart rule in step 1. Consider the 

case when one participant is waiting for next participant. If 

the participant declares one in the next round, the participant 

definitely wins in the round and obtains one good he/she 

prefers because of the rule in step 3. Thus, the participant can 

depart without waiting for the next participant if he/she is 

satisfied with one good. 
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V. EXAMPLE 

A. Example 1 

Input: 3n , 4m , 100P , }20,20,30,30{1 P , 

}5,5,10,80{2 P , }40,20,10,30{3 P . 

The optimal solution for this example, that is obtained by 

an exhaustive search, is as follows. },{)( 321 vvxA  , 

}{)( 12 vxA  , }{)( 43 vxA  , 50)(1 Au , 80)(2 Au , 

40)(3 Au , 40)
~

( Au . 

 
Suppose the following order of arrivals. The first 

participant 
1x  and the second participant 

2x  arrive. The 

number of participants who have not yet been allocated is 

three. The sum of the value of remaining goods is 100 for
1x , 

thus 
1x  is satisfied if he gets at least 

3
100  points. The sum of 

the value of remaining goods is 100 for 
2x , thus 

2x  is 

satisfied if he gets at least 
3

100  points. 
1x  declares that 

1x  is 

satisfied with two goods, for example, },{)( 211 vvxA  . 
2x  

declares that 
2x  is satisfied with one good, for example, 

}{)( 12 vxA  . 
2x  declares a smaller number than 

1x , thus 
2x  

can get one good whatever he wants and depart. 
2x  gets 

1v  

and departs. The third participant 
3x  arrives after 

2x 's depart. 

Currently, the number of participants who have not yet been 
allocated is two. The sum of the value of remaining goods is 

70 for 
1x , thus 

1x  is satisfied if he gets at least 
2

70  points. 

The sum of the value of remaining goods is 70 for 
3x , thus 

3x  is satisfied if he gets at least 
2

70  points. 
1x  declares that 

1x  is satisfied with two goods, for example, 

},{)( 321 vvxA  . 
3x  declares that 

3x  is satisfied with one 

good, for example, }{)( 43 vxA  . 
3x  declares a smaller 

number than 
1x , thus 

3x  can get one good whatever he 

wants and depart. 
3x  gets 

4v  and departs. Currently, the 

number of participants who have not yet been allocated is 

one. 
1x  gets all remaining goods and departs. 

1x  gets 
2v  and 

3v , and departs. 

In this case, },{)( 321 vvxA  , }{)( 12 vxA  , }{)( 43 vxA  , 

50)(1 Au , 80)(2 Au , 40)(3 Au , 40)( Au . In this 

example, the proposed algorithm outputs the optimal 
solution. 

B. Example 2 

Input: 4n , 8m , 100P , }2,2,2,2,2,20,50{1 P , 

}10,10,10,10,10,20,20,10{2 P , }10,10,10,10,10,10,20,20{3 P , 

}20,30,20,10,5,5,5,5{4 P .  

The optimal solution for this example, that is obtained by 

an exhaustive search, is as follows. }{)( 11 vxA  , 

},{)( 322 vvxA  , },,{)( 8543 vvvxA  , },{)( 764 vvxA  , 50)(1 Au , 

40)(2 Au , 30)(3 Au , 50)(4 Au , 30)
~

( Au . 

 
Suppose the following order of arrivals. The first 

participant 
1x  and the second participant 

2x  arrive. The 

number of participants who have not yet been allocated is 

four. The sum of the value of remaining goods is 100 for 
1x , 

thus 
1x  is satisfied if he gets at least 

4
100  points. The sum of 

the value of remaining goods is 100 for 
2x , thus 

2x  is 

satisfied if he gets at least 
4

100  points. 
1x  declares that 

1x  is 

satisfied with one good, for example, }{)( 11 vxA  . 
2x  

declares that 
2x  is satisfied with two goods, for example, 

},{)( 322 vvxA  . 
1x  declares a smaller number than 

2x , thus 

1x  can get one good whatever he wants and depart. 
1x  gets 

1v  and departs. The third participant 
3x  arrives after 

1x 's 

depart. Currently, the number of participants who have not 
yet been allocated is three. The sum of the value of 
remaining goods is 90 for 

2x , thus 
2x  is satisfied if he gets 

at least 
3

90  points. The sum of the value of remaining goods 

is 80 for 
3x , thus 

3x  is satisfied if he gets at least 
3

80  points. 

2x  declares that 
2x  is satisfied with two goods, for example, 

},{)( 322 vvxA  . 
3x  declares that 

3x  is satisfied with two 

goods, for example, },{)( 323 vvxA  . 
2x  and 

3x  declares the 

same number, thus the earliest participant 
2x  can get two 

goods whatever he wants and depart. 
2x  gets 

2v  and 
3v , and 

departs. The fourth participant 
4x  arrives after 

2x 's depart. 

Currently, the number of participants who have not yet been 
allocated is two. The sum of the value of remaining goods is 

50 for 
3x , thus 

3x  is satisfied if he gets at least 
2

50  points. 

The sum of the value of remaining goods is 85 for 
4x , thus 

4x  is satisfied if he gets at least 
2

85  points. 
3x  declares that 

3x  is satisfied with three goods, for example, 

},,{)( 6543 vvvxA  . 
4x  declares that 

4x  is satisfied with two 

goods, for example, },{)( 764 vvxA  . 
4x  declares a smaller 

number than 
3x , thus 

4x  can get two goods whatever he 

wants and depart. 
4x  gets 

6v  and 
7v , and departs. Currently, 

the number of participants who have not yet been allocated is 

one. 
3x  gets all remaining goods and departs. 

3x  gets 
4v , 

5v , 

and 
8v , and departs. 

In this case, }{)( 11 vxA  , },{)( 322 vvxA  , },,{)( 8543 vvvxA  , 

},{)( 764 vvxA  , 50)(1 Au , 40)(2 Au , 30)(3 Au , 50)(4 Au , 

30)( Au . In this case, 
3x  knows )( 4xA , 

4x  arrives later 

than 
3x  and departs before than 

3x . If 
3x  feels envy to 

4x , 

the allocation is not weakly immediately envy-free. However, 

30)(3 Au  and 20))(( 43 xAu . 
3x  does not feel envy to 

4x . 
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In this example, the proposed algorithm outputs the weakly 
immediately envy-free and optimal solution. 

C. Example 3 

Input: 4n , 8m , 100P , 

}5,10,10,10,10,15,20,20{1 P , }5,5,15,15,15,15,15,15{2 P , 

}25,25,15,15,10,5,3,2{3 P , }5,1010,10,10,10,10,35{4 P .  

The optimal solution for this example, that is obtained by 

an exhaustive search, is as follows. },{)( 321 vvxA  , 

},,{)( 6542 vvvxA  , },{)( 873 vvxA  , }{)( 14 vxA  , 35)(1 Au , 

45)(2 Au , 50)(3 Au , 35)(4 Au , 35)
~

( Au . 

Suppose the following order of arrivals. The first 

participant 
1x  and the second participant 

2x  arrive at this 

allocation. The number of participants who have not yet been 
allocated is four. The sum of the value of remaining goods is 

100 for 
1x , thus 

1x  is satisfied if he gets at least 
4

100  points. 

The sum of the value of remaining goods is 100 for 
2x , thus 

2x  is satisfied if he gets 
4

100  points. 
1x  declares that 

1x  is 

satisfied with two goods, for example, },{)( 211 vvxA  . 
2x  

declares that 
2x  is satisfied with two goods, for example, 

},{)( 212 vvxA  . 
1x  and 

2x  declares the same number, thus 

the earliest participant 
1x  can get two goods whatever he 

wants and depart. 
1x  gets 

1v  and 
2v , and departs. The third 

participant 
3x  arrives after 

1x 's depart. Currently, the 

number of participants who have not yet been allocated is 

three. The sum of the value of remaining goods is 70 for 
2x , 

thus 
2x  is satisfied if he gets at least 

3
70  points. The sum of 

the value of remaining goods is 95 for 
3x , thus 

3x  is 

satisfied if he gets at least 
3

95  points. 
2x  declares that 

2x  is 

satisfied with two goods, for example, },{)( 432 vvxA  . 
3x  

declares that 
3x  is satisfied with two goods, for example, 

},{)( 873 vvxA  . 
2x  and 

3x  declares the same number, thus 

the earliest participant 
2x  can get two goods whatever he 

wants and depart. 
2x  gets 

3v  and 
4v , and departs. The fourth 

participant 
4x  arrives after 

2x 's depart. Currently, the 

number of participants who have not yet been allocated is 

two. The sum of the value of remaining goods is 80 for 
3x , 

thus 
3x  is satisfied if he gets at least 

2
80  points. The sum of 

the value of remaining goods is 35 for 
4x , thus 

4x  is 

satisfied if he gets at least 
2

35  points. 
3x  declares that 

3x  is 

satisfied with two goods, for example, },{)( 873 vvxA  . 
4x  

declares that 
4x  is satisfied with two goods, for example, 

},{)( 654 vvxA  . 
3x  and 

4x  declares the same number, thus 

the earliest participant 
3x  can get two goods whatever he 

wants and depart. 
3x  gets 

7v  and 
8v , and departs. Currently, 

the number of participants who have not yet been allocated is 

one. 
4x  gets all remaining goods and departs. 

4x  gets 
5v  and 

6v , and departs. 

In this case, },{)( 211 vvxA  , },{)( 432 vvxA  , 

},{)( 873 vvxA  , },{)( 654 vvxA  , 40)(1 Au , 30)(2 Au , 

50)(3 Au , 20)(4 Au , 20)( Au . The proposed algorithm 

does not output the optimal solution for this example. The 

reason is that we do not know 
4P  until 

4x  arrives. But this 

allocation is weakly immediately envy free. 

VI. APPROXIMATION RATIO 

In this paper, we define the approximation ratio as the 

ratio of )(Au  by the proposed algorithm to )
~

(Au  ( )(Au  by 

an offline exhaustive search). The approximation ratio is 

proved for the three cases, mn  , mn 2  and 

121  nmn . 

A. mn   

If mn  , every participant declares that he/she is 

satisfied with one good. If there is a participant who cannot 

get his/her most valuable good, 
2

)
~

( PAu  . If every 

participant values different good as the best one for him/her, 
they can get the good they want by the proposed algorithm, 
because of the characteristics of step 2 and 3 of the proposed 
algorithm. If there are participants who values the same good 
as the best one, at least one participant cannot obtain his/her 

best good, thus 
2

)
~

( PAu  . In this case, 1)( Au , because 

each participant can get one good and there is no good that 
has no value for any participants. Therefore, in the case of 

mn  , the approximation ratio is at least 
PP

21

2

 . 

B. mn 2  

In this algorithm, there is an upper limit T  for the declare 
number. (Every participant cannot declare more than T , 
where T  is the number of remaining goods divided by the 
number of participants who have not been obtained his/her 
allocation.) Every participant can get more than one goods 
such that he/she is satisfied with. Therefore, every participant 

can get at least 2 points. )
~

(Au  is less than P  points. 

Therefore, in mn 2 , the approximation ratio is at least 

PP

21

2


. 

C. 121  nmn  

In this algorithm, a participant who arrives the earliest at 
the time can at least get goods that he/she is satisfied. If 

1)( Au , there is a participant who gets only one good. In 

that case, there is a round that two participants declare two 
and someone definitely gets two goods. If a participant 
declare two, each value of all the remaining goods for the 
participant is less than 

n
P

 points, where n  is the number of 

participants who have not been obtained his/her allocation at 
the time. When 2n , there are three cases. The first case is 
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when the number of the remaining goods is two. In this case, 
there is a round that two participants declare two and gets 
two goods. In this case, one of the participants gets two 

goods, less than 
n
P

 points, and n3  at that round. )

~
(Au  is 

maximized 
3

22 P
n
P  . The second case is when the number 

of the remaining goods is three. If mn 1 , there is no 

round that two participants declare two and someone gets 
two goods. In this case, if )(Au  by the proposed algorithm is 

1, the last participant and another participant need the same 

good as the most valuable good. In this case, 
2

)
~

( PAu  . If 

mn  2 , there is a round that two participants declare two, 

)
~

(Au  is less than 
3

2P . The third case is when the number of 

the remaining goods more than three, )(Au  by the proposed 

algorithm is 2 and more. If there is not a round that two 
participants declare two, as mentioned in mn  , participants 

can get the good they want. In all cases, PAu )
~

( . If )(Au  

is 2 and more, the approximation ratio is at least 
P
2 . 

Therefore, in the case of mn 1 , the approximation ratio 

is at least 
PP

21

2


. In the case of mn  2 , the approximation 

ratio is at least 
PP 2

31

3
2


. 

VII. EXPERIMENT RESULTS 

This algorithm is executed for 1000 randomly generated 
problem instances with ,4,3n and ,5  ,9,8,7,6,5,4,3m and 

,10  and 100P . The table shows the average ratio of )(Au  

by the proposed algorithm to )
~

(Au . 

In this table, the proposed algorithm is compared with an 
exhaustive search that ignores weakly immediately envy-free. 
With that in mind, the proposed algorithm can output good 
solutions. The ratio tends to decrease if n  increases, because 

the exhaustive search ignores weakly immediately envy-free. 

TABLE I.  EXPERIMENT RESULTS 

 n=3 n=4 n=5 

m=3 0.7498 None None 

m=4 0.7440 0.5716 None 

m=5 0.7494 0.5611 0.4146 

m=6 0.7177 0.5623 0.4187 

m=7 0.7340 0.5534 0.4279 

m=8 0.7203 0.5520 0.4470 

m=9 0.7188 0.5830 0.4972 

m=10 0.7375 0.6013 0.5145 
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