On Coterie for Generalized Distributed Resource
Allocation Algorithm *

Shao-Chin Sung
School of Information Science, JAIST
son@jaist.ac.jp

Abstract

This paper discusses the generalized resource allocation
problem defined by H. Kakugawa and M. Yamashita. A
set of processes shares a set of resources of an identical
type. Each process may have different accessible resources.
Each resource must be used by at most one process at any
time. They proposed a coterie-based distributed algorithm
for this problem, however their algorithm does not guar-
antee the requirement that the resource allocation for the
set of processes with no common accessible resources must
be performed without any interference. In order to guar-
antee the requirement, this paper defines a new structure,
sharing structure coterie. We show a necessary and suffi-
cient condition of the existence of a sharing structure co-
terie. The decision of the existence of a sharing structure
coterie with respect to a given distributed system is NP-
complete. We also show a distributed resource allocation
algorithm which guarantees the above requirement for dis-
tributed systems whose sharing structure coteries do not
exist or are difficult to obtain.

1 Introduction

In many distributed systems, processes shares some
common resources, such as files, memory, and printers.
Multiple processes must not access the same resource
at the same time. A resource allocation problem is to
guarantee that each resource is accessed by at most one
process at any time. Many distributed algorithms for
this problem, which include coterie-based algorithms
[3] have been presented for the case when there is one
unit of shared resource.

Fujita et al. [2], Manabe et al. [9], and Baldoni [1]
considered k-mutual exclusion problem in which there
are k (> 1) identical shared resources and all of the
resources are accessible to every process. They defined
k-coterie for the k-mutual exclusion problem.

*Part of this work was done while the first author was staying
at NTT Basic Research Laboratories.

Information Systems and Technologies for Network So-
ciety, Fukuoka, Japan, September 1997

356

Yoshifumi Manabe
NTT Basic Research Laboratories
manabe@theory.brl.ntt.co.jp

Kakugawa and Yamashita [5] defined a generaliza-
tion of the above problem, which is called the gener-
alized resource allocation problem in this paper. Each
process may have different accessible resources. They
proposed a distributed algorithm for the problem us-
ing a new class of coteries, called local coteries. Since
there may exist a set of processes with no common ac-
cessible resource, it is a natural requirement that the
resource allocation for the set of processes must be
performed without any interference. However, their
algorithm does not guarantee this requirement.

In order to guarantee the above requirement, this
paper introduces a new class of coteries, which is called
sharing structure coteries. By using a sharing struc-
ture coterie instead of a local coterie, the distributed
resource allocation algorithm proposed in [5] guaran-
tees the above requirement.

We show a necessary and sufficient condition of ex-
istence of a sharing structure coterie. The decision of
the existence of a sharing structure coterie for a given
distributed system is NP-complete. We also show a
distributed resource allocation algorithm which guar-
antees the above requirement for distributed systems
whose sharing structure coteries do not exist or are
difficult to obtain.

2 Local coteries

The model of a distributed system and the generalized
resource allocation problem are defined in the same way
as in [5]. A distributed system consists of a set of pro-
cesses U and a set of resources R which are shared
by processes in U. Any two processes are connected
by a bidirectional communication link. Information
exchange between the processes is based on message-
passing through the link. The delivery of messages
may have unpredictable finite delay, but the order of
messages is unchanged. Both the processes and the
links are assumed to be error-free. Each process has
its own local clock.

A resource accessible to process u is called a acces-

sible resource of process u. The set of all accessible
resources of u is denoted by a(u) C R for each v € U.
Triple S = (U, R, @) is called the sharing structure of
the system. A generalized resource allocation problem
for a given sharing structure S = (U, R,) is the prob-
lem to allocate the resources according to requests.
The allocation must satisfy the following conditions.

* Allocation validity: The resources which are ac-
cessed by process u are in a(u) for any process
ueU.

Mutual exclusion: Each resource r € R is accessed
by at most one process at the same time.

Coterie is introduced in [3] for a distributed resource
allocation algorithm (i.e., [R] = 1 and a(u) = R for
all w € U). Coterie Q) is a family of subset of U, i.e.,
Q C 2Y, that satisfies the following properties:

Non-emptiness: Vg € Q [g # 0].
Minimality: Vg,7 € Q [¢ € 7]
Intersection property: Vg,7 € Q [gNr # 0]

An element of a coterie is called a quorum. The coterie-
based algorithm for the resource allocation problem
[8, 10] can simply described as follows: Determine a
coterie (). Initially, each process has one “permission”.
If a process u wants to access the resource, it arbitrar-
ily selects a quorum ¢ € @, and sends a request to each
process in q. Then, u waits to receive a permission
from each process in ¢, and it accesses the resource.
After the access, u releases the resource and returns
the permission to each process in ¢. The intersection
property guarantees the mutual exclusion condition.

To make the algorithm deadlock-free and
starvation-free, a priority of requests 1is intro-
duced. The request with the smallest timestamp
has the highest priority. Suppose a process u had
sent its permission to a process v’s request whose
timestamp is T, however v has not received enough
permissions. If u receives a request from a process w
which has timestamp T,, < T3, then v has to return
the permission to u, and u sends the permission to w.

In the generalized resource allocation problem, each
process has a different set of accessible resources. Thus
Kakugawa and Yamashita introduced a new coterie,
which is called a local coteries. A local coterie {Q. C
2Y | € U} for sharing structure S satisfies the follow-
ing properties:

Non-emptiness: Vu € U [Q, # 0.
Minimality: Yu € U, Vg,r € Q. [q¢ € 7]-

Intersection property: Vu,v € U,

[a(u)Na(v) # 0 = Vg € Qu, Vr € Q, [gNr # B]].

357

a(us) - afus)
g
)
) mn

Figure 1: Sharing structure S.

They showed a construction of a local coterie for any
given sharing structure S.

Example: Consider a sharing structure S = (U, R, @),
where U = {uy,...,us}, R={ry,...,7¢}, and

a(u;) = {rai-1,72:} fori = 1,2,3,
a(uq) = {r1,73,75}, and
a(us) = {r2,74,76} (see Figure. 1).

The local coterie {Qy|u € U} for S is as follows.

Qu; = {{ui,uq,us}} for i = 1,2,3, and
Qu, = {{ui,u1,u2,us}} for i = 4,5.

The coterie-based distributed algorithm for the gen-
eralized resource allocation problem that uses a local
coterie in [5] is similar to the one for the resource al-
location problem. Instead of coterie, process u uses
local coterie Q.. Instead of a permission, a state list
is sent to the requesting process, where the state list
is a list of current states of all resources. Process u
has the right to lock and access to a set of resources
R, C a(u) if the following conditions are satisfied:

e Process u receives a state list from each process
in an arbitrary quorum of Q...

e States of all resources in R,, are free in every state
list.

The correctness of the resource allocation algorithm
is proved. However, unnecessary waiting among pro-
cesses might occur. In the above example, consider
the case that only »; and u, want to access the re-
sources at the same time. Since a(u;) N a(uz) = 0,
these two requests do not block each other. However,
Quy Nqu, = {us,us} # 0. Thus, uys and us first send the
state list to the higher priority request, say, u;. After
the state list update by u;, the updated state list is
sent to u, and wu, can use the resources. When there
exist k resources, there can be such a process waiting
chain whose length is O(k). This waiting is unnec-
essary since the processes have no common accessible
resource.

358

%

Ug
U2

Us
U3

Figure 2: Sharing structure graph Gs.
3 Sharing Structure Coteries

In order to guarantee no such unnecessary waiting in
the resource allocation, we define a sharing structure
coterie which satisfies the three properties of a local
coterie (i.e., non-emptiness, minimality, and intersec-
tion property) and the following property:

Disjointness property: Vu,v € U,
[a(w)Na(v) =0 = Vg € Qu, Vr € @, [gNr = 0]].

By using a sharing structure coterie, the algorithm
proposed in [5] guarantees that the resource alloca-
tion for the set of processes with no common accessible
resource must be performed without any interference
because of the disjointness property.

Unfortunately, there exist some sharing structures
that have no sharing structure coteries. The necessary
and sufficient condition of the existence of a sharing
structure coterie for a given sharing structure is shown
in the following.

Definition 1 For a given sharing structure S =
(U,R,), sharing structure graph Gs = (U, Eg) is an
undirected graph, where

Es ={(u,v) €U x U|u # v, a(u) Na(v) # 0}.

A sharing structure graph for the sharing structure of
the example in the previous section is shown in Fig. 2.

The existence condition is related to an NP-
complete problem, “COVERING BY CLIQUE” [4] for
the sharing structure graph Gs.

Definition 2 A clique cover of a graph G = (V, E) is
a collection of subsets V1,..., Vi of V such that,

o each V; induces a complete subgraph of G, and

o for each edge (u,v) € E, there exists some V; that
contains both u and v.

Given a greph G and a positive integer K < |E|, the
“COVERING BY CLIQUE” problem is:

“Is there a clique cover of G with cardinality
E<K?”

Theorem 3 For any sharing structure S, there exists
a sharing structure coterie with respect to S if and only
if there ezists a clique cover of the sharing structure
graph Gs with cardinality at most |U|. N

Proof. The keyword conflict problem [6] is as follows:
Given an n X n zero-one matrix P = [pij] such that
Pi; = pj; and p; = 1 for all 7 and 7, obtain an n x m
zero-one matrix Z = [z;;] such that for all s and ¢
(251211, 2522825 - - - » ZsmZtm) = (0,0,...0) if and only if
DPst = 0.

Matrix P can be constructed from a sharing struc-
ture S as follows. Let N be an arbitrary injective
mapping from {1,2,...,|U|} to U. p;; = 1 if and only
if a(N (7)) N (N (5)) # 0. Tt is obvious that p;; = pj;
and p;; = 1 for all z and ;.

Matrix Z can be constructed from a sharing struc-
ture coterie @ = {Qy|u € U} with respect to S as
follows. z;; = 1 if and only if N(j) € g for some ¢ €
Qn(i)- From the intersection property and disjointness
property, for all s and t (251241, 252282, - - - » Zsm Ztm) =
(0,0,...0) if and only if ps; = 0.

Thus, obtaining a sharing structure coterie is equiv-
alent to the keyword conflict problem with the restric-
tion m < |U|. The keyword conflict problem with the
restriction m < K for a given K has been proved to
be NP-complete since it is equivalent to obtaining a
clique cover on G5 whose cardinality is at most K [7].
Therefore, obtaining a sharing structure coterie with
respect to S is also equivalent to obtaining a clique
cover of the sharing structure graph Gs with cardinal-
ity at most |U| and it is NP-complete. n

For the sharing structure S in the example, there
is no sharing structure coterie with respect to .S, since
the sharing structure graph Gs has a unique clique
cover with with cardinality 6 > |U| = 5 (see Fig. 2).

Now we show a construction of a sharing structure
coterie from a clique cover Cs = {c1,...,cm} C 2V ofa
sharing structure graph Gs with cardinality m < |U].

Let py, = {c € Cs|u € ¢} for dach u € U. Let
o be an arbitrary injective mapping from Cs to U.
Note that such an injective mapping o exists, since
|Cs| = m < |U|. Then, a sharing structure coterie
Q = {Q. |u € U} for sharing structure S is defined as
Q. = {gu}, where

qu = {o(c)|c € pu} .
Note that if u is an isolated node, @, = {{}}

It can be easily shown that this coterie satisfies the
properties of a sharing structure coterie.

4 Distributed Resource Allocation Al-
gorithm

As shown in Theorem 3, there is no sharing struc-
ture coterie for some sharing structures. Even if there
is such a coterie, it is sometimes very difficult to-ob-
tain since the decision of the existence of a sharing
structure coterie is NP-complete. Then, we consider
a distributed resource allocation algorithm for sharing
structures whose sharing structure coterie do not exist
or are difficult to obtain.

For any sharing structure S = (U, R, @), suppose a
clique cover C for the sharing structure graph Gg is
given, where |C| > |U|. Note that it is not implying
that no sharing structure coterie with respect to S ex-
ists. Consider a sharing structure ' = (UUW, R, a'),
where UNW =0 and [UUW|=|C|,

e o'(u) = afu) for all w € U, and
e o/(w)=10forallweW.

Then, C is also a clique cover for sharing structure
graph Gg of S’, since each w € W is an isolated
node in Gg:. From Theorem 3, there exists a shar-
ing structure coterie with respect to §’. Thus, for a
given sharing structure S and a given clique cover C of
the sharing structure graph Gg, the resource allocation
for S can be performed by the algorithm in [5] using
a sharing structure coterie for S’, where the processes
in W are simulated by the processes in U.

The analysis of the message complexity for this al-
gorithm is the same as the one in [5] (see [5] for de-
tail). In the best case, the message complexity for one
request is 4|g|, where g is the smallest quorum. In the
worst case, the message complexity for one request is
(7+ |a(u)|)|¢’|, where ¢’ is the largest quorum.

By the local coterie construction algorithm in [5],
the size of process u’s quorum, [g|, satisfies |g,| =
{v € Ula(u) Na(v) # ¢}.

By the sharing structure coterie construction al-
gorithm, the size of u’s quorum g, |q.|, satisfies
lgu] < {v € Ulv # w, a(u) Nav) # ¢} < lqul
Though u € ¢, and u does not have to send a message
to itself, the number of messages sent using a sharing
structure coterie is not larger than that using a local
coterie.

Since the size of every quorum is not larger than the
one in [5], the message complexity of this algorithm is
not worse than the one in [5].

5 Conclusion

We have defined a new class of coteries, sharing struc-
ture coteries, for the distributed resource allocation

359

algorithm which guarantees that resource allocations
for processes with no common accessible resource are
performed without any interference.

We showed the existence condition of a sharing
structure coterie with respect to any sharing struc-
ture. It implies that the decision of the existence of a
sharing structure coterie is NP-complete.

For sharing structures whose sharing structure co-
terie do not exist or are difficult to obtain, we showed
that the distributed resource allocation can be per-
formed by the algorithm in [5] using a sharing struc-
ture coterie for a sharing structure with imaginary pro-
cesses.

Acknowledgments. The authors would like to
thank Prof. Masafumi Yamashita of Hiroshima Uni-
versity for pointing out the paper of Ref. [7]. They also
thank Dr. Hirofumi Katsuno of NTT Basic Research
Laboratories for his encouragement and suggestions.

References
[1] R. Baldoni. An O(NM/(M+1)y {istributed algorithm

for the k-out of-m resource allocation problem. In
Proc. 14th IEEE Int. Conf. on Distributed Computing
Systems, pages 81-87, 1994.

[2] S. Fujita, M. Yamashita, and T. Ae. Distributed k-
mutual exclusion problem and k-coteries. In Proc. 2nd
Int. Symposium on Algorithms, pages 22-31, 1991.
LNCS 557.

[3] H. Garcia-Molina and D. Barbara. How to assign
votes in a distributed system. Journal of the ACM,
32(4):841-860, 1985.

[4] M. R. Garey and D. S. Johnson. Computers and In-
tractability: a guide of the theory of NP-completeness.
W. H. Freeman and Company, San Francisco, 1979.

[5] Hirotsugu Kakugawa and Masafumi Yamashita. Lo-
cal coteries and a distributed resource allocation algo-
rithm. Transactions of Information Processing Society
of Japan, 37(8):1487-1498, 1996.

[6] E. Kellerman. Determination of keyword conflict.
IBM Tech. Disclosure Bull., 16(2):544-546, 1973.

[7] L.T. Kou, L.J. Stockmeyer, and C.K. Wong. Cover-
ing edges by cliques with regard to keyword conflicts
and intersection graphs. Communication of ACM,
21(2):135-139, 1978.

[8] M. Maekawa. A v/N algorithm for mutual exclusion
in decentralized systems. ACM Transactions on Com-
puter Systems, 3(2):145-159, 1985.

[9] Yoshifumi Manabe and Shigemi Aoyagi. A distributed
k-mutual exclusion algorithm using k-coterie. Techni-
cal Report COMP 93-43, IEICE, 1993.

[10] M. Singhal and N. G. Shivaratri. Advanced Con-
cepts in Operating Systems— Distributed, Database,

and Multiprocessor Operating Systems. McGraw-Hill,
1994.

