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Abstract. This paper considers the problem of matching between lab-
oratories and students when there are two types of students, such as
domestic and overseas students. Each laboratory has minimum and max-
imum quotas for the number of overseas students and the total number of
students. When there is only one type of student, a strategyproof match-
ing algorithm was shown by Fragiadakis et.al. Their algorithm uses a
precedence list (PL) to achieve fairness and nonwastefulness properties.
This paper generalizes the algorithm for the cases when there are two
types of students. Our algorithm achieves fairness based on the PL-list,
nonwastefulness, and strategyproofness.

Keywords: matching algorithm · deferred acceptance · minimum quo-
tas · maximum quotas

1 Introduction

Matching algorithms are widely discussed for many cases, such as between stu-
dents and laboratories, between medical students and hospitals, between work-
ers and farms, and so on. There are several surveys of matching algorithms
[2, 3, 10, 18]. Stable matching between schools and students was discussed in
[14, 17]. A protocol based on negotiation was shown in [16]. Matching under
imperfect preferences was shown in [12].

In many cases, there is a maximum quota for the latter party (laboratories,
hospitals, farms) that cannot be exceeded. In many real-world markets, there
is a minimum quota that must be achieved. First, the minimum quota was
introduced to open programs in a college [4]. For the assignment problem with
the minimum quotas proposed by Kamada and Kojima [13] and several matching
algorithms have been shown [7, 9, 19]. To obtain a matching that satisfies the
minimum and maximum quotas, the MSDA algorithm was proposed [8], which
uses a precedence list (PL) to achieve fairness and nonwastefulness properties.
It achieves PL-fareness.

In many real-world matching situations, agents have multiple types. Exam-
ples of the types are gender, nationality, age, and so on. Two different cases were
discussed. The first case is when an agent might simultaneously satisfy multiple
types [15]. The other case is when each agent satisfies one type [5,6]. This paper
considers the latter case.
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One of such problem settings is affirmative action [11]. Schools have minority
reserve slots, and any minority applicant is preferred to any majority applicant
until the slot is filled by minority students.

There are multiple types of student cases other than affirmative action. For
example, overseas students need special care with language, thus, it is not good
that some laboratories have many overseas students. If the number of male stu-
dents is small, it is not desirable for some laboratories to have many male stu-
dents. Such problems are not affirmative action, thus, preferential treatment in
matching is not a good solution. Since the MSDA algorithm can assign students
so that the maximum and minimum quotas are satisfied, using the MSDA al-
gorithm multiple times might seem to be one solution. Set the minimum and
maximum quota for each type of students (overseas/domestic, or female/male),
and the matching is independently done for each type. Though the algorithm is
simple, the number of assigned students might differ among laboratories: one lab-
oratory is assigned the minimum number for both types, and another laboratory
is assigned the maximum number for both types. This might produce dispro-
portionate results. Thus, a better solution is to set the minimum and maximum
quotas for the minor type of agents and the total number of agents.

This paper discusses the matching algorithm when the minimum and maxi-
mum quotas for the number of overseas students and the total number of students
are set. We cannot use the MSDA algorithm for this problem, thus, we show a
new algorithm for the problem. Section 2 defines the problem. Section 3 shows
our new algorithm. Section 4 concludes the paper.,

2 Problem Definition

This paper models the problem as a matching market between laboratories
and students. A market P consists of P = (S,R,C, p.q, pr, qr,≻T ,≻C). Let
S = {s1, s2, . . . , sn} and R = {r1, r2, . . . , rm} be the set of domestic and overseas
students, respectively. In this paper, a student refers to a domestic or interna-
tional student. Let T = S ∪R be the set of all students. Let C = {c1, c2, . . . , cl}
be the set of laboratories. Let p = (pc1 , pc2 , . . . , pcl) and q = (qc1 , qc2 , . . . , qcl) be
the list of minimum and maximum quotas of students for laboratories, respec-
tively. Let pr = (prc1 , prc2 , . . . , prcl) and qr = (qrc1 , qrc2 , . . . , qrcl) be the list
of minimum and maximum quotas of overseas students for laboratories, respec-
tively. For each laboratory c ∈ C, pc ≥ prc ≥ 0, qc ≥ qrc, qc ≥ pc, and qrc ≥
prc must be satisfied. In addition, inequalities

∑
c∈C qc ≥ n + m ≥

∑
c∈C pc,∑

c∈C qrc ≥ m ≥
∑

c∈C prc, and n ≥
∑

c∈C max(0, pc − qrc) must be satisfied
to have a matching that satisfies the maximum and minimum quotas. The last
inequality exists because each laboratory must have at least max(0, pc − qrc)
domestic students.

Each student t ∈ T has a strict preference relation ≻t over C, respectively.
Each laboratory c has a strict preference relation ≻c over T . Let ≻T= {≻t |t ∈ T}
and ≻C= {≻c |c ∈ C}.
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Definition 1 A matching is a mapping µ : T ∪ C → 2T ∪ C that satisfies the
following properties.

1. µ(t) ∈ C for all t ∈ T .
2. µ(c) ⊆ T for all c ∈ C.
3. For any t ∈ T and c ∈ C, µ(t) = c is satisfied if and only if t ∈ µ(c).

Definition 2 A matching µ is feasible if pc ≤ |µ(c)| ≤ qc and prc ≤ |µ(c)∩R| ≤
qrc for all c ∈ C. Let M be the set of feasible matchings.

Definition 3 A mechanism χ : (≻T ,≻C) → M is a function that takes as input
any possible preference profile of the students and laboratories and gives as an
output a feasible matching.

We write χi(≻T ,≻C) for the assignment of agent i ∈ T ∪ C.
Let ≻′

t be any (false) preference for student t ∈ T . Let (≻′
t,≻T\{t}) be the

tuple of preferences where student t’s preference is changed from true ≻t to ≻′
t.

Definition 4 A mechanism χ is strategyproof if χt(≻T ,≻C) ⪰t χt(≻′
t,≻T\{t}

,≻C) for all ≻T , t ∈ T , ≻C , and ≻′
t.

A mechanism is strategyproof if no student has any incentive to misreport his/her
preference.

To solve the problem, we introduce a precedence list (PL) ≻PL that ranks
all students as in [8]. One example of a precedence list is the GPA score of the
students. This paper assumes that S and R are sorted by PL, that is, s1 ≻PL

s2 ≻PL · · · ≻PL sn and r1 ≻PL r2 ≻PL · · · ≻PL rm holds.
We define two properties, nonwastefulness and no justified envy, as in [8].

Wastefulness means that a student claims to move to an empty seat in a labora-
tory. Justified envy means that a student claims to exchange seats with another
student whose rank in PL is lower than the student’s.

Definition 5 Matching µ is nonwasteful for domestic students if the following
property is satisfied. ∀s ∈ S, c ∈ C, (c ≻s µ(s) → (|µ(c)| ≥ qc ∨ |µ(µ(s))| ≤
pµ(s))).

Matching µ is nonwasteful for overseas students if the following property is
satisfied. ∀r ∈ R, c ∈ C, (c ≻r µ(r) → (|µ(c)| ≥ qc∨|µ(µ(r))| ≤ pµ(r)∨|µ(c)∩R| ≥
qrc ∨ |µ(µ(r)) ∩R| ≤ prµ(r))).

Matching µ is nonwasteful if it is nonwasteful for all students.

Definition 6 Matching µ has no justified envy between domestic students if the
following property is satisfied. ∀s ∈ S, c ∈ C, (c ≻s µ(s) → ∀s′ ∈ µ(c) ∩ S(s′ ≻c

s ∨ s′ ≻PL s)).
Matching µ has no justified envy between overseas students if the following

property is satisfied. ∀r ∈ R, c ∈ C, (c ≻r µ(r) → ∀r′ ∈ µ(c)∩R(r′ ≻c r∨ r′ ≻PL

r)).
Matching µ has no justified envy from domestic students to overseas students

if the following property is satisfied. ∀s ∈ S, c ∈ C, (c ≻s µ(s) → ∀r ∈ µ(c) ∩
R(r ≻c s ∨ r ≻PL s ∨ |µ(c) ∩R| ≤ prc ∨ qrµ(s) ≤ |µ(µ(s)) ∩R|)).
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Matching µ has no justified envy from overseas students to domestic students
if the following property is satisfied. ∀r ∈ R, c ∈ C, (c ≻r µ(r) → ∀s ∈ µ(c) ∩
S(s ≻c r ∨ s ≻PL r ∨ |µ(µ(r)) ∩R| ≤ prµ(r) ∨ qrc ≤ |µ(c) ∩R|)).

Matching µ has no justified envy if µ does not have any justified envy shown
above.

3 Multistage deferred acceptance algorithm for two types
of students

The new multistage deferred acceptance algorithm for two types of students,
two-type MSDA, is shown in Algorithm 1 and 2. The algorithm is based on the
MSDA algorithm [8], which considers one type of student. The outline of the
original MSDA algorithm is as follows. (1) Several students are reserved from
the bottom of the PL list to fill the minimum quota of each laboratory. (2) The
other students execute the standard deferred acceptance (DA) algorithm for the
school in [1]. Since some students might fill the seats in the minimum quotas
of some laboratories, the number of reserved students is decreased after a DA
execution. Then, some number of students are no longer reserved. The students
execute the DA algorithm. (3) These steps are repeated until the number of
reserved students does not change. If the stable state is obtained, the number
of currently reserved students equals the total number of empty seats to satisfy
the minimum quota of each laboratory. Thus, the final DA is executed between
the reserved students and empty seats for the minimum quotas. When there are
two types of students, we need to change all the above steps.

Algorithm 1 (Subroutine) Modified DA algorithm for two types of students
1: Let pc, qc, prc, qrc be current lower and upper quota of laboratory c ∈ C.
2: Each student t applies to his/her best laboratory by ≻t. If t is rejected from a

laboratory, t applies to the next laboratory by ≻t. t repeats the procedure until t
is not rejected.

3: For each laboratory c, let Sc and Rc be the set of domestic and overseas students
currently applying to c, respectively. Let Tc = Sc ∪Rc

4: if |Rc| > qrc then
5: Reject overseas students until |Rc| = qrc using the preference ≻c.
6: else if |Sc| > qc − prc then
7: Reject domestic students until |Sc| = qc − prc using the preference ≻c.
8: else if |Rc| ≤ qrc, |Sc| ≤ qc − prc and |Tc| > qc then
9: Reject any student until |Tc| = qc using the preference ≻c.

10: end if

The initialization of variables is executed at the top of Algorithm 2. The
upper and lower quotas change during executions. The variables in the k-th
iteration are written as qkc , p

k
c , and so on. First, some students are reserved to
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fill the minimum quotas for the laboratories. The set of reserved students V k is
the minimum number of students that satisfy the following four conditions.

1. |V k ∩R| ≥ vrk =
∑

c∈C prkc .
2. |vk ∩ S| ≥ vsk =

∑
c∈C max(0, pkc − qrkc ).

3. |V k| ≥ vtk =
∑

c∈C pkc .
4. If t ∈ V k, any student t′ who satisfies t ≻PL t′ must satisfy t′ ∈ V k.

Algorithm 2 Two-type MSDA algorithm
1: Set k = 0, V 0 = T , p1c = pc, q1c = qc, pr

1
c = prc, and qr1c = qrc for all c ∈ C.

2: repeat
3: k = k + 1
4: Let vsk =

∑
c∈C

max(0, pkc − qrkc ), vrk =
∑

c∈C
prkc , and vtk =

∑
c∈C

pkc .
5: Set V k be the minimum set of students with the lowest priority according to

≻PL which satisfies |V k| ≥ vtk, |V k ∩ S| ≥ vsk, and |V k ∩R| ≥ vrk.
6: if V k−1 \ V k ̸= ∅ then
7: Execute modified DA mechanism on the students in V k−1 \ V k. Let µk be

the matching in this round.
8: For each c ∈ C, set qk+1

c = qkc − |µk(c)|,
9: qrk+1

c = min(qrkc − |µk(c) ∩R|, qk+1
c ),

10: prk+1
c = max(0, prkc − |µk(c) ∩R|), and

11: pk+1
c = max(0, pkc − |µk(c) ∩ S| −max(prkc , |µk(c) ∩R|)) + prk+1

c .
12: else
13: Let C′(⊆ C) be the set of laboratories which satisfies pkc > 0.
14: if |V k ∩R| = vrk then
15: Execute DA algorithm on V k ∩ R and every laboratory c ∈ C′ with

prc = qrc = qrkc . (that is, for the other laboratory c′ ̸∈ C′, set prc′ = qrc′ = 0.)
16: Execute MSDA algorithm on V k∩S with pc = pkc−prkc and qc = qkc −prkc

for laboratory c ∈ C′ and pc′ = 0 and qc′ = qkc′ for laboratory c′ ̸∈ C′.
17: exit /* end of the algorithm */
18: else if |V k ∩ S| = vsk then
19: Execute DA algorithm on V k ∩S and every laboratory c ∈ C′ with pc =

qc = max(pkc − qrkc , 0). (that is, for the other laboratory c′ ̸∈ C′, set pc′ = qc′ = 0.)
20: Execute MSDA algorithm on V k ∩ R with prc = prkc and qrc = qrkc for

laboratory c ∈ C′ and prc′ = 0 and qrc′ = qrkc′ for laboratory c′ ̸∈ C′

21: exit /* end of the algorithm */
22: else /* |V k ∩R| > vrk and |V k| = vtk */
23: Execute two-type MSDA algorithm on the students in V k and every

laboratory c ∈ C′ with prc = pc = prkc , qrc = min(qrkc , p
k
c ), and qc = pkc . (That is,

for the other laboratory c′ ̸∈ C′, set pc′ = qc′ = prc′ = qrc′ = 0.)
24: exit /* end of the algorithm */
25: end if
26: end if
27: until forever

The set of students that satisfy (1), (2), and (3) is selected from the low-
est student by ≻PL. Because of the fourth condition, some extra students are
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selected in V k. For example, consider the case when vrk = 1, vsk = 2, and
vtk = 3 and (. . . , r1, s1, s2, s3) is the lower students in PL. In this case, the set
of reserved students must be V ′

1 = {r1, s1, s2, s3} to achieve all the conditions.
In the example, consider the case when s1 is not reserved and the reserved stu-
dents are V ′′

1 = {r1, s2, s3}. Though V ′′
1 satisfies conditions (1)(2)(3), a PL-fair

matching cannot be obtained. s1 can apply to his/her favorite laboratory and s1
is accepted to some laboratory c1. In the next round, vtk+1, vsk+1, and vrk+1

are re-calculated and there can be a case when r1 is no more included in V k+1.
Thus, r1 can freely apply to his/her favorite laboratory c1, but the seat is al-
ready taken by s1. Since r1 ≻PL s1, this can be a justified envy. To avoid this
situation, a student t can be excluded from the reservation list only when every
t′ that satisfies t′ ≻PL t is excluded.

After some students are reserved as V k, all the other students V k−1 \ V k

can freely apply to any laboratory. The algorithm is shown in Algorithm 1. As
in the standard DA algorithm, student t applies to his/her laboratory according
to ≻t. The rejection rule for each laboratory must be changed because there are
two types of students, and there are two maximum quotas for each laboratory.
Let Rc and Sc be the current overseas and domestic students applying to c,
respectively. Let Tc = Sc

⋃
Rc. If |Rc| > qrc, the number of overseas students

is more than the maximum quota. Thus, the number must be reduced to qrc.
Therefore, c rejects overseas students until |Rc| = qrc using ≻c. If |Sc| > qc−prc,
the number of domestic students is greater than the allowed number, since at
least prc overseas students must be accepted, and the total maximum quota is
qc. Thus, c rejects domestic students until |Sc| = qc − prc using ≻c. Last, even if
|Rc| ≤ qrc and |Sc| ≤ qc−prc are satisfied, the total number of applying students
|Tc| might satisfy |Tc| > qc. In this case, c needs to reject some students until
|Tc| = qc. c can reject either domestic or overseas students since |Rc| ≤ qrc and
|Sc| ≤ qc − prc.

By the above assignment µk, some students might fill the seats for the min-
imum quotas. Thus, the number of reserved students might be reduced. Thus,
the minimum and maximum quotas are recalculated.

For each laboratory c, the minimum quota of the overseas students is changed
as prk+1

c = max(0, prkc − |µk(c) ∩ R|), since |µk(c) ∩ R| overseas students are
accepted.

The minimum quota of all students is calculated as follows.

(Case 1) When overseas students are accepted more than the minimum quota
prkc , that is, |µk(c)∩R| ≥ prkC , the remaining minimum quota that must be filled
is max(0, pkc − |µk(c) ∩R| − |µk(c) ∩ S|). Note that in this case, prk+1

c = 0.

(Case 2) When overseas students are accepted less than the minimum quota
prkc , that is, |µk(c) ∩R| < prkc , the remaining minimum quota is the sum of the
remaining minimum quota for the overseas students prk+1

c and the remaining
minimum quota for both students max(0, pkc − prkc − |µk(c) ∩ S|). These two
cases are summarized in one equation pk+1

c = max(0, pkc − max(prkc , |µk(c) ∩
R|)− |µk(c) ∩ S|) + prk+1

c .
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Next, the maximum quota of all students is qk+1
c = qkc − |µk(c)|. The max-

imum quota of overseas students is qrk+1
c = min(qrkc − |µk(c) ∩ R|, qk+1

c ), since
the maximum quota of overseas students cannot be more than the maximum
quota of all students.

After the new maximum and minimum quotas are updated, the reversed
students are selected using the new quotas. Then, the newly released students
execute the modified DA algorithm. This procedure is repeated until there is no
change in the set of reserved students.

If there is no change in the reserved student set, that is, V k−1 = V k, then
we need to assign the remaining V k. There are three cases for V k.

(Case 1) |V k ∩ R| = vrk. The number of reserved overseas students is the
minimum, thus, they must be assigned to the empty slots for the overseas stu-
dents. The assignment can be executed by a standard DA algorithm with the
maximum quotas. The remaining domestic students in V k can be assigned using
the MSDA algorithm with the maximum and minimum quotas.

(Case 2) |V k ∩ S| = vsk. The number of reserved domestic students is the
minimum. The assignment can be executed by a standard DA algorithm with the
maximum quotas. The remaining students can be assigned using the standard
MSDA algorithm with the minimum and maximum quotas.

(Case 3) The remaining case is |V k∩R| > vrk, |V k∩S| > vsk, and |V k| = vtk.
In this case, we can execute the two-type MSDA again for the reserved set

of students with the new quotas. Let C ′ = c ∈ C|pkc > 0. About the overseas
students, prc = prkc and qrc = min(qrkc , p

k
c ) for every laboratory c ∈ C ′. The

maximum quota of overseas students is changed because the laboratory must
accept no more than the minimum quota pkc . The minimum and the maximum
quotas of all students can be changed as follows. pc = prkc and qc = pkc for every
laboratory c ∈ C ′. This condition means there is no minimum quota restriction
for either student. Since the number of empty seats in C ′ equals the number of
students, satisfying the maximum quotas automatically satisfies the minimum
quota conditions of both students. The students must fill all the slots in C ′, thus
pc′′ = qc′′ = prc′′ = qrc′′ = 0 for every laboratory c′′ ̸∈ C ′.

The recursive procedure always terminates since the number of reserved over-
seas students decreases.

Theorem 1. The two-type MSDA algorithm is strategyproof, nonwasteful, and
PL fair.

The proof is omitted because of the page limitation.

4 Conclusion

We showed the two-type MSDA algorithm which satisfies strategyproof, non-
wasteful, and PL-fair. It seems very hard to generalize this algorithm to more
than two types of students, because if there are only two types of students, a
seat that cannot be filled by a type of student must be filled by the other type
of student. This fact makes the algorithm simple.
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