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Abstract. This paper shows a zero-knowledge proof protocol of a so-
lution to ABC end view puzzle using physical cards. Card-based cryp-
tographic protocols are proposed to execute a secure multi-party calcu-
lation using physical cards instead of computers. This paper shows a
card-based zero-knowledge proof of the ABC end view puzzle. The puz-
zle needs a new technique to prove the nearest neighbor from an end.
We show a new zero-knowledge proof protocol to securely calculate the
nearest neighbor using physical cards.
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1 Introduction

This paper shows a zero-knowledge proof protocol of a solution of ABC end
view puzzle[6] using physical cards. Card-based cryptographic protocols[2, 18] are
proposed to execute a secure multi-party calculation using physical cards instead
of computers. These protocols can be used when the users cannot trust the
software on the computer. Many protocols were shown to calculate any boolean
functions[10, 13, 32] and specific problems such as voting[1, 17] and millionaires’
problem[14, 20, 21] and so on.

As another usage of card-based cryptographic protocols, zero-knowledge proof
of puzzle solutions was proposed. The protocol proves that a user has a solution
to the puzzle without leaking any information about the solution.

A zero-knowledge proof of Sudoku [8] was first considered. The proof has
a soundness error, thus improved zero-knowledge proofs were shown[26, 31].
Zero-knowledge proofs of the other puzzles are shown, for example, Akari[3],
Flow Free[9], Heyawake[23], Hitori[23], Juosan[15], Kakuro[3, 16], KenKen[3],
Makaro[4, 29], Masyu[12], Nonogram[5, 25], Norinori[7], Numberlink[27], Nurik-
abe[23], Nurimisaki[24], Ripple Effect[28], Shikaku[30], Slitherlink[12], Suguru[22],
Takuzu[3, 15], Topswops[11], and so on.

This paper shows a zero-knowledge proof of the ABC end view puzzle. The
proof needs a new technique to prove the nearest neighbor from an end. We show
a new protocol to securely calculate the nearest neighbor using physical cards.
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Section 2 shows the problem definition. Section 3 shows the protocol. Section
4 concludes the paper.

2 Definition of problem

A zero-knowledge proof for a language L is a protocol executed by two players,
called prover P and verifier V . The prover has an element x.

– (Completeness) If x ∈ L, an honest verifier V is convinced that x ∈ L by an
honest prover P .

– (Soundness) If x ̸∈ L, no cheating prover P can convince an honest verifier
V that x ∈ L.

– (Zero-knowledge) If x ∈ L, no verifier V learns anything other than the fact
that x ∈ L.

For the problem of a solution to a puzzle, if the prover has a solution, an honest
verifier is convinced that the prover has a solution. If the prover does not have
a solution, the prover cannot convince an honest verifier that the prover has a
solution. By the execution of the protocol, the verifier has no information about
the solution.

ABC end view (aka “Easy as ABC” or “Last man standing”) [6] is a pencil
puzzle. The problem is given as a grid and a range of letters, for example, A-
E. Each different letter must occur exactly once in each row and column. The
letters outside the grid show which letter comes across first from that direction.
An example of the problem of a 5*5 grid and range A-C is shown in the left of
Fig. 1. The solution to the problem is shown on the right of Fig. 1, where “×”
means no letter is written in the space.
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C 
B 

C   A       B  
B  B × A  C  × C 
A  A C  × × B

× × B  A   C   C
B  × B   C  × A 

C 
C   A  × B  × B 

Fig. 1. An example of ABC end view problem and its solution

Card-based cryptographic protocols use physical cards to securely calculate
values. For calculations of boolean functions, two kinds of cards, ♣ and ♡ are
used. Cards of the same marks cannot be distinguished. In addition, the back of
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both types of cards is ? . It is impossible to determine the mark on the back

of a given card of ? . Some additional cards are used for the zero-knowledge
proof protocols. The first type of card is the number card, whose marks are
1 , 2 , . . . , n , where n is the size of the grid. The second type of card is the

letter card, whose marks are A , B , C , and so on. The last type of card is

the empty card, whose mark is × , which means “no letter”. Cards of the same
marks cannot be distinguished. In addition, the back of all types of cards is
? . Note that any kind of card can be represented by an appropriate encoding

using the two kinds of cards ♣ and ♡ . For example, a number card can be

represented by ⌈log n⌉ ♣ and ♡ cards. Each bit of the number is represented by

the encoding rule ♣ ♡ = 0 and ♡ ♣ = 1. For the letter cards and the empty
card, a similar encoding rule can be introduced and one card is represented by
several numbers of ♣ and ♡ cards. For the simplicity of the discussion, this
paper uses additional cards.

3 Protocol for ABC end view

Zero-knowledge proof of a solution to an ABC end view puzzle is executed as
follows. First, the prover P sets the solution of the given puzzle in a committed
manner, that is, V cannot see the values of the solution. Then P and V execute
the verification protocol to prove the solution is correct without knowing the
values. They need to prove the following two properties

– nearest neighbor property: The letter in the grid that is nearest to the letter
written outside of the grid must be correct.

– uniqueness property: Every row and column has just one letter for the given
range of letters.

For an example of the uniqueness property, if the range is A-C, A, B, and C
appear once in the squares of each row and column. All the other squares have
× as the example in Fig. 1.

Initially, we show card-based cryptographic protocols used in this paper.
One-bit data is represented by two cards as follows: ♣ ♡ = 0 and ♡ ♣ = 1.

One pair of cards that represents one bit x ∈ {0, 1}, whose face is down, is

called a commitment of x, and denoted as commit(x). It is written as ? ?︸ ︷︷ ︸
x

.

Note that when these two cards are swapped, commit(x̄) can be obtained. Thus,
logical negation can be easily calculated.

A set of cards placed in a row is called a sequence of cards. A sequence of
cards S whose length is n is denoted as S = s1, s2, . . . , sn, where si is i-th card
of the sequence. S = ?︸︷︷︸

s1

?︸︷︷︸
s2

?︸︷︷︸
s3

. . . ?︸︷︷︸
sn

.

A shuffle is executed on a sequence of cards S. Its parameter is (Π,F), where
Π is a set of permutations on S and F is a probability distribution on Π. For a
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given sequence S, each permutation π ∈ Π is selected by the probability distri-
bution F and π is applied to S. If π is applied on S = s1, s2, . . . , sn, the result is
sπ−1(1), sπ−1(2), . . . , sπ−1(n). Since π is selected from Π, the result is not deter-
ministic. Non-deterministic shuffles are necessary for card-based cryptographic
protocols to make the protocols secure at opening cards. As shown in the below
protocol, cards on each row are randomly shuffled and then opened to show that
A, B, and C appear once. If the shuffle is deterministic, the players know the
initial position where the A card was set as the answer. Therefore, a random
shuffle whose result is unknown to the players is necessary.

We show examples of shuffles used in the protocols shown below. A random
shuffle is randomly changing the positions of the cards for the given sequence
of cards. When S = s1, s2, s3, the result of a random shuffle is S1 = s1, s2, s3,
S2 = s1, s3, s2, S3 = s2, s1, s3, S4 = s2, s3, s1, S5 = s3, s1, s2, or S6 = s3, s2, s1.
The probability of obtaining each result is 1/|S|!.

A random bisection cut is swapping the left half and the right half of a given
even-length sequence. When S = s1, s2, s3, s4, s5, s6, the result of a random bisec-
tion cut is S0 = s1, s2, s3, s4, s5, s6 or S1 = s4, s5, s6, s1, s2, s3. The probability of
obtaining each result is 1/2. The random bisection cut is considered as selecting
a random bit b ∈ {0, 1} and obtaining Sb.

Next, we introduce piles of cards. A pile of cards is a sequence of cards whose
order cannot be changed using some additional tools such as clips or envelopes.
For example, consider a case when cards xi,j(i = 1, 2, . . . , n, j = 1, 2, . . .m)
are given. The players make piles of cards such that pliei = xi,1, . . . , xi,m(i =
1, 2, . . . , n) using clips or envelopes. The players treat each pile pilei just like
a single card during shuffle operations. The order of cards in a pile cannot be
changed because of the clip or envelope. For a pile y, let y(i) be i-th card in y.
Players can rearrange piles by removing clips, setting new sequences of cards,
and making new piles. Let y[2−] be the new pile that y(1) is removed from y.

The shuffles can be executed for piles of cards. Consider the case shuffle π is
executed on the above piles pilei(i = 1, 2, . . . , n). The result is pileπ−1(1), pileπ−1(2),
. . . , pileπ−1(n), where pileπ−1(i) = xπ−1(i),1, xπ−1(i),2, . . . , xπ−1(i),m. Random shuf-
fles on piles are called pile-scramble shuffles.

Next, we show logical AND and copy protocols used in this paper.

Protocol 1 (AND protocol)[19]

Input: commit(x) and commit(y).

Output: commit(x ∧ y).

1. Input commit(x) and commit(y) are set as Fig. 2 (a).

2. The positions of the cards are changed as Fig. 2 (b).

3. Execute a random bisection cut on the sequence of the cards. The result can
be written as follows: select a random bit b ∈ {0, 1}, that is unknown to the
players. If b = 0, there is no change in the order of the cards. If b = 1, the
left half and the right half are swapped as Fig. 2 (c).

4. Change the sequence of the cards as Fig. 2 (d).
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5. Open the left two cards. If the sequence is ♣ ♡ , the center two cards are
commit(x ∧ y). Otherwise, the right two cards are commit(x ∧ y), as Fig. 2
(e).

？ ？

𝑐𝑜𝑚𝑚𝑖𝑡ሺ𝑥ሻ

？ ？

𝑐𝑜𝑚𝑚𝑖𝑡ሺ𝑦ሻ0

(a) Setting inputs

？ ？ ？ ？

1         2         3         4         5        6

1         3        4         2         5       6

？ ？ ？ ？ ？ ？

？ ？ ？ ？ ？ ？

Face down

(b) Rearrangement of cards 

？ ？ ？ ？ ？ ？
1          3         4         2         5       6

b=0

b=1

？ ？ ？ ？ ？ ？
1          3         4         2         5       6

2          5         6         1         3       4

？ ？ ？ ？ ？ ？

(c) Random bisection cut 

？ ？ ？ ？ ？ ？

1         3        4         2         5       6
2         5        6         1         3       4  

？ ？ ？ ？ ？ ？
1        2         3         4         5       6
2        1         5         6         3       4  
(d) Rearrangement of cards 

𝑥 ⊕ 𝑏 

？ ？

𝑐𝑜𝑚𝑚𝑖𝑡ሺ𝑥 ∧ 𝑦ሻ

？ ？

𝑐𝑜𝑚𝑚𝑖𝑡ሺ𝑥 ∧ 𝑦ሻ

？ ？

？ ？

(e) Opening left two cards 

Fig. 2. AND protocol in [19] .
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The protocol outputs

x ∧ y =

{
y if x = 1 (♡ , ♣ )

0 if x = 0 (♣ , ♡ )
(1)

That is, the output is the left two cards if x = 1. The output is the center two
cards if x = 0. The protocol opens two cards x⊕ b. Since b is a random number
unknown to the players, the security of the private input data is achieved. The
detailed proof is shown in [19].

Next, we show copy protocol, which gives multiple copies of a given input
commitment.

Protocol 2 (copy protocol using random bisection cuts)[19]

Input: commit(x).

Output: two copies of commit(x).

1. Input commit(x) and two copies of commit(0) are set as Fig. 3 (a).

2. The positions of the cards are changed as Fig. 3 (b).

3. Execute a random bisection cut on the sequence of the cards. The result can
be written as follows: select a random bit b ∈ {0, 1}, that is unknown to the
players. If b = 0, there is no change in the order of the cards. If b = 1, the
left half and the right half are swapped as Fig. 3 (c).

4. Change the sequence of the cards as Fig. 3 (d).

5. Open the left two cards. If the sequence is ♣ ♡ , the remaining pairs are
commit(x). Otherwise, the remaining pairs are commit(x̄), as Fig. 3 (e). In
this case, commit(x) can be obtained by swapping the two cards of commit(x̄).
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？ ？

𝑐𝑜𝑚𝑚𝑖𝑡ሺ𝑥ሻ

？ ？

𝑐𝑜𝑚𝑚𝑖𝑡ሺ0ሻ

(a) Setting inputs

？ ？

𝑐𝑜𝑚𝑚𝑖𝑡ሺ0ሻ

  1         2         3         4         5        6

1         3        5         2         4       6

？ ？ ？ ？ ？ ？

？ ？ ？ ？ ？ ？

(b) Rearrangement of cards 

？ ？ ？ ？ ？ ？
1          3         5         2         4       6

b=0

b=1

？ ？ ？ ？ ？ ？
1          3         5 2         4       6

2          4 6         1         3       5

？ ？ ？ ？ ？ ？

(c) Random bisection cut 

  1         3         5         2         4        6
  2         4         6         1         3        5

1 2         3 4         5 6
2        1         4        3         6        5

？ ？ ？ ？ ？ ？

？ ？ ？ ？ ？ ？

(d) Rearrangement of cards 

𝑥 ⊕ 𝑏 

？ ？

𝑐𝑜𝑚𝑚𝑖𝑡ሺ�̅�ሻ

？ ？

𝑐𝑜𝑚𝑚𝑖𝑡ሺ𝑥ሻ

？ ？

？ ？

(e) Opening left two cards 

𝑐𝑜𝑚𝑚𝑖𝑡ሺ𝑥ሻ

𝑐𝑜𝑚𝑚𝑖𝑡ሺ�̅�ሻ

Fig. 3. Copy protocol in [19].

We show the zero-knowledge proof protocol for ABC end view in Algorithms
1-3. Algorithm 1 is the main routine and Algorithm 2 is the subroutine to ver-
ify the nearest neighbor property. Algorithm 3 is the subroutine to verify the
uniqueness property. In the following protocol description, the corresponding
code at Line j of Algorithm i is written as “(L. j(i))”. The outline of the pro-
tocol is as follows. Suppose that the grid is n ∗ n and the number of letters is c.
In the example in Fig. 1, n = 5 and c = 3. First, the prover P sets the solution
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in a committed manner as follows. For the square at i-th row and j-th column
(denoted as square (i, j)), P puts face-down ♡ , ♣ , and L in this order if

the solution is letter L. P puts face-down ♣ , ♡ , and × in this order if the

solution is “no letter” (L. 3-5(1)). Thus the sequence ♡ , ♣ means the solution
is a letter. These cards are denoted as xi,j(1), xi,j(2), and xi,j(3) (L. 6(1)).

Algorithm 1 Zero knowledge proof protocol of ABC end view

1: procedure main
2: Let k = n− c+ 1
3: At square (i, j), P sets

4: face-down ♡ , ♣ , and L in this order if the solution is letter L,

5: face-down ♣ , ♡ , and × in this order if the solution is ‘no letter’.
6: These cards are denoted as xi,j(1), xi,j(2), and xi,j(3).
7: for i=1 to n do
8: for j=1 to n do

9: P and V put face-up card j to the right of three cards on square (i, j).
10: They face down the card. The card is denoted as xi,j(4).
11: The pile of cards at (i, j) is denoted as xi,j .
12: end for
13: if There is a letter at the left end of i-th row then
14: Execute nearestneighbor.
15: end if
16: if There is a letter at the right end of i-th row then
17: Execute nearestneighbor.
18: end if
19: Execute uniqueness at i-th row.
20: Face-down x′

j(1), x
′
j(2), and x′

j(3) for each pile x′
j .

21: Execute pile scramble shuffle on x′
1, . . . , x

′
n.

22: Let the results be x′′
1 , . . . , x

′′
n.

23: Open x′′
j (4) of each pile.

24: If x′′
j (4) = l, put x′′

j (1), x
′′
j (2), and x′′

j (3) to square (i, l).
25: end for/* Each row check is finished. */
26: for i=1 to n do
27: if There is a letter at the top end of i-th column then
28: Execute nearestneighbor.
29: end if
30: if There is a letter at the bottom of i-th column then
31: Execute nearestneighbor.
32: end if
33: Execute uniqueness at i-th column.
34: end for/* Each column check is finished. */
35: end procedure

P and V set number cards to remember the positions of the cards, since the
positions are changed by the verification. P and V publically put face-up card
j to the right of three cards on square (i, j) and then face down the card (L.
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Algorithm 2 Subroutine: nearest neighbor verification

1: procedure nearestneighbor
2: Select k plies on the squares in the current row or column.
3: Let yi(1 ≤ i ≤ k) be the piles, where y1 is the closest to the end.
4: Let z be yk.
5: for j = k − 1 downto 1 do
6: Execute copy protocol on (yj(1), yj(2)).
7: Let the obtained pair be (y′

j(1), y
′
j(2)).

8: Execute AND protocol using (y′
j(1), y

′
j(2), yj(1), yj [2−], z(1), z[2−]).

9: if The left two opened cards are (♣ , ♡ ) then
10: Set the right card-pile pair as new z.
11: Set the center card-pile pair as new yj+1.
12: else
13: Set the center card-pile pair as new z.
14: Set the right card-pile pair as new yj+1.
15: end if
16: end for
17: Open z(3) and verify that the letter is the same as the one written outside.
18: Face-down z(3) and set pile z to new y1.
19: Put y1, y2, . . . , yk to the original squares.
20: end procedure

Algorithm 3 Subroutine: uniqueness verification

1: procedure uniqueness
2: Let x1, . . . , xn be the piles in the current row or column.
3: Execute pile scramble shuffle on x1, . . . , xn.
4: Let the results be x′

1, . . . , x
′
n.

5: Open x′
j(1), x

′
j(2), and x′

j(3) of each pile x′
j .

6: Verify that (1) if x′
j(3) is a letter, (x′

j(1), x
′
j(2)) is (♡ , ♣ ), otherwise

(x′
j(1), x

′
j(2)) is (♣ , ♡ ) and (2) all letters on the letter cards differ from each

other and the number of × cards is n− c.
7: end procedure
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9(1)). The card is denoted as xi,j(4)(L.10(1)). The four cards form a pile xi,j (L.
11(1)).

First, we show the procedure to verify the neighborhood property(called at
L. 14(1), 17(1), 28(1), and 31(1)). Let i be the current row to verify and consider
the case when there is a letter L at the left end. Let k = n−c+1. The candidate
of the nearest square that has a letter is (i, 1), (i, 2) . . . (i, k), since the number
of “no letter” squares is n− c (L. 2(2)).

The procedure to obtain the nearest neighbor is as follows:

1. Let yj = xi,j(1 ≤ j ≤ k − 1) and z = yk.

2. For j = k − 1 down to 1 Do

3. If (yj(1), yj(2)) = (♡ , ♣ ) then z = yj
4. EndFor

5. Return z

Initially, the candidate z is yk, the farthest from the border (L. 4(2)). If the nearer

square has a letter (that is, (yj(1), yj(2)) = (♡ , ♣ )), replace the candidate.
After the test at j = 1 is finished, z has the nearest letter. For example, consider
the case when the players verify the left end “B” in the first row in Fig. 1. Since
k = 3, the players set yi = x1,i(1 ≤ i ≤ 2), and z = x1,3. Execute the for loop

and when j = 2, (yj(1), yj(2)) = (♣ , ♡ ) and z is unchanged. When j = 1,

(yj(1), yj(2)) = (♡ , ♣ ) and z = y1 is executed. Thus the final z = y1 and the
letter is “B”.

We need to execute the above procedure without knowing the value (yj(1), yj(2)).
We use AND protocol to solve the problem. The if statement in step 3 can be
written as follows:

new z =

{
yj if yj = 1 (♡ , ♣ )

z if yj = 0 (♣ , ♡ )
(2)

Comparing this equation and Equation (1), we can obtain the result using AND
protocol if we set yj(1), yj(2), z(1), z[2−], yj(1), yj [2−] in this order1 at the first
step in Fig. 2(a) (L. 8(2)). We need a copy of (yj(1), yj(2)), thus the copy protocol
is executed to (yj(1), yj(2)) in advance (L. 6(2)). Another difference between the
AND protocol is that z[2−] and yj [2−] are a pile of cards. This change does not
reveal the secret random value b of the AND protocol, because the positions of
piles are the fourth and sixth positions in Fig. 2(b) and (c), The piles come to
the same positions when b = 0 and b = 1. Thus, the difference between a card
and a pile does not reveal the secret random value b.

When a new z is selected, the unused pile (old z or yj) is put to the square
(i, j + 1) for further verification from the other side(L. 11(2), L. 14(2)).

1 It is unnecessary to divide the piles as z(1) and z[2−]. We set yj(1), yj(2), z, yj in
this order, swap the second and the third, execute a random bisection cut, swap the
second and the third, open the left two cards, and obtain the result as the AND
protocol. The result is the same as the protocol shown in this paper.
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When the procedure is finished, the players open z(3) to see the final result
(L. 17(2)). If the letter on the card is the same as the letter written outside of
the grids, the verification succeeds.

The final z is put to the square (i, 1) (L.18(2)). Though the positions of the
piles differ from the initial position set by P , the change does not affect the next
verification from the other side. The reason is as follows. Pile z with some letter
might go left (to the position of the smaller index), but it will not go left further
to the position where another letter exists. If yj has a letter, new z becomes
yj , and old z is put to the position of (i, j + 1). Thus, the relative order of the
letters in the i-th row does not change. For example, consider the case when the
players verify the left end “B” in the first row in Fig. 1. After the verification,
the letters in the first row become “B A× C×”, but the relative order of “B”
and “A” is not changed. Thus, the verification for the right end works with this
modified sequence.

After the right and left nearest neighbor verifications of i-th row, uniqueness
verification of i-th row is executed(L. 19(1)). Note that the position of each
pile differs from the initial positions P set, but the change does not affect the
verification since the set of letters in i-th row does not change during the nearest
neighbor verifications.

The verification technique is just the same as the one used for Sudoku [31].
Execute a pile-scramble shuffle to the piles xi,1, . . . , xi,n in i-th row(L. 3(3)). Let
the results be x′

1, x
′
2, . . . , x

′
n (L. 4(3)). Then open x′

j(l)(1 ≤ j ≤ n, 1 ≤ l ≤ 3) (L.

5(3)). V verifies that all the letters in x′
j(3) differ and the number of × in x′

j(3)
is n− c. In addition, V checks the consistency of cards, that is, (x′

j(1), x
′
j(2)) =

(♡ , ♣ ) or (♣ , ♡ ) must be satisfied. If (x′
j(1), x

′
j(2)) = (♡ , ♣ ), x′

j(3) must

be a letter card, otherwise x′
j(3) must be × (L. 6(3)).

After the verification is finished, P and V face-down x′
j(l)(1 ≤ j ≤ n, 1 ≤ l ≤

3) (L. 20(1)). Then the players execute a pile-scramble shuffle on x′
1, x

′
2, . . . , x

′
n

(L. 21(1)). Let the results be x′′
1 , x

′′
2 , . . . , x

′′
n (L.22(1)). Then open x′′

j (4)(1 ≤ j ≤
n) (L.23(1)). If x′′

j (4) = l, put x′′
j to square (i, l) (L.24(1)). Each pile is moved

to the original square P set. Note that the number cards are no more necessary
for the verifications of each column because it is unnecessary to move the plies
to the original squares again.

For each column, execute the above nearest neighbor check and uniqueness
check (L.26-34(1)). The only difference is each pile consist of three cards. Since
the number cards are used only for resetting the positions of piles and are not
used in the verification itself, there is no change in the procedure.

(Example) We show the steps for the first row of the problem in Fig. 1. P sets
the solution by face-down cards as in Fig. 4 (a). Since the solution is “B× A C

×”, P sets (x1,1(1), x1,1(2), x1,1(3)) = (♡ , ♣ , B ), (x1,2(1), x1,2(2), x1,2(3)) =

(♣ , ♡ , × ), (x1,3(1), x1,3(2), x1,3(3)) = (♡ , ♣ , A), (x1,4(1), x1,4(2), x1,4(3)) =

(♡ , ♣ , C ), and (x1,5(1), x1,5(2), x1,5(3)) = (♣ , ♡ , × ) in the face-down man-
ner (Note that in Fig. 4, the sequence of cards at each square are written from
the top to bottom).
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B
1

×
2

A
3

C
4

×
5

？ ？ ？ ？ ？
(a) Setting piles

P sets in 
face-down

P and V 
set 

𝑥ଵ,ଵ     𝑥ଵ,ଶ        𝑥ଵ,ଷ         𝑥ଵ,ସ       𝑥ଵ,ହ

？ ？
𝑧 𝑦copy

𝑦 1 𝑦 2  𝑦 1  𝑦 2 െ  𝑧 1  𝑧 2 െ

？ ？ ？？？ ？
AND (𝑏 ൌ 1ሻ

𝑦 2 𝑦 1  𝑧 1  𝑧 2 െ   𝑦 1  𝑦ሾ2െሿ

？ ？ ？？

new  𝑧          new 𝑦ାଵ
(b) Nearest neighbor calculation (j=2)

？ ？ ？ ？ ？

B
?

×
?

A
?

C
?

×
?

pile-scramble shuffle

open (1) (2) (3)
34 25

5 4 1 2 3

1

？
1

？
3

？2 ？
5

？4

pile-scramble shuffle

？
1

？
3 ？2

？
5 ？4

open (4)

？？ ？？ ？

5 3 1 4 2

(1,5)    (1,3)      (1,1)     (1,4)    (1,2)
move to squares

(c) Uniqueness verification 

Fig. 4. Example of execution in the first row.

Then P and V sets x1,1(4) = 1 , x1,2(4) = 2 , x1,3(4) = 3 , x1,4(4) =

4 , and x1,5(4) = 5 . These cards are turned face-down. They make piles
x1,1, x1,2, x1,3, x1,4 and x1,5 as Fig. 4 (a). Then they execute the nearest neighbor
verification algorithm. Since n = 5 and c = 3, k = n − c + 1 = 3. Thus, the
players select three piles from the left end. y1 = x1,1, y2 = x1,2, and y3 = x1,3.
Then set z = y3. First, the modified AND protocol is executed between y2 and
z, as shown in Fig. 4(b). Execute the copy protocol on (y2(1), y2(2)). Note that
since the cards are face-down, the marks of the cards are unknown, but they
are written in Fig. 4(b) by small marks for the explanation. In this example,
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(y2(1), y2(2)) = (♣ , ♡ ). Set sequence y2(1), y2(2), y2(1), y2[2−], z(1), z[2−] and
execute AND protocol. Suppose that b = 1 by the random bisection cut. In the
case, the final sequence becomes y2(2), y2(1), z(1), z[2−], y2(1), y2[2−]. The left

two cards are opened. Since they are (♡ , ♣ ), the center two elements are se-
lected as the new z. The left two elements are set as y3. In this case, z remains
at the position of z and y2 is moved to y3 as in Fig. 4(b).

Next, the players execute the modified AND protocol between z and y1. Since
(y1(1), y1(2)) = (♡ , ♣ ), y1 becomes the new z. Old z is moved to y2. The final

value of z is obtained. Since it is y1, B appears when z(3) is opened. Thus,
the verification succeeds. z is then set at the position of y1. The piles are then
moved to the squares. Thus, the letter cards of (x1,1, x1,2, x1,3) are changed as

(B , A , × ).
Next, the players verify the right end card. k = 3 and y1 = x1,5, y2 = x1,4

and y3 = x1,3. Note that the letter card of x1,3 is currently × by the above
procedure. Initially, z = y3 and execute modified AND protocol between z and
y2. Since (y2(1), y2(2)) = (♡ , ♣ ), y2 becomes the new z. Old z is set as y3. Next,
the modified AND protocol is executed between z and y1. Since (y1(1), y1(2)) =

(♣ , ♡ ), z remains unchanged. y1 is set as new y2. Thus, when z(3) is opened,

the card is C and the letter is correct.
Then the uniqueness verification is executed. After the nearest neighbor veri-

fications, the letter cards of (x1,1, x1,2, x1,3, x1,4, x1,5) are changed as (B , A , × , × ,

C ), that is, the number cards are ( 1 , 3 , 2 , 5 , 4 ). Note that in Fig 4(c), the
numbers are written in a small font for the explanation, but the players cannot
see the cards. Then the players execute a pile-scramble shuffle. The order of the
piles is randomly changed. Suppose that the order is changed as (5, 4, 1, 2, 3) as
Fig. 4(c). Let the result as x′

1, x
′
2, x

′
3, x

′
4, x

′
5. The players open xj(1), xj(2), and

xj(3) for every j(j = 1, 2, . . . , 5). The players verify that the numbers of each

card of A , B , and C are one. Pile xi with a letter card has (xi(1), xi(2)) =

(♡ , ♣ ). Pile xj with × card has (xj(1), xj(2)) = (♣ , ♡ ). Thus the unique-
ness verification is finished. The players face down the opened cards and make
piles again. The players execute a pile-scramble shuffle again. Let the result be
x′′
1 , x

′′
2 , x

′′
3 , x

′′
4 , x

′′
5 . The players open x′′

j (4) for every j(j = 1, 2, . . . , 5). If x′′
j (4) = i,

x′′
j (1), x

′′
j (2), x

′′
j (3) are moved to square (1, i). Each pile is moved to the origi-

nal square P set as in Fig. 4(c). The piles are used for the verification of each
column.

The number of cards used by the algorithm is as follows: n2 + 4 cards for
each of ♡ and ♣ , n cards for each of A B , . . . , L card when the range of

letters is A− L. n2 − n ∗ c cards of × and one card for each of 1 , 2 , . . . , n .
Thus the total number of cards is 3n2 + n+ 8.

Last, we show the correctness of the protocol.

Theorem 1. The procedure is a zero-knowledge proof of solutions to the ABC
end view problem.

(Proof)
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(Completeness) When P has a solution to the given problem and correctly
sets the cards, the nearest neighbor verification and uniqueness verification suc-
ceeds in each row and column as shown above.

(Soundness) When P sets the cards that are not a solution, the fact can
be detected by V . The reason is as follows. At the uniqueness verification, all
cards in a row or a column are simultaneously opened. Thus, if the cards are
not correct, the fact can be detected by V . In addition, the nearest neighbor
verification protocol outputs the letter nearest to the end, thus if the letter is
not correct, V can detect that.

(Zero-knowledge) During the uniqueness verification, V gets no information
other than the fact that each row and column has one letter for each A-L. During
the nearest neighbor verification, V gets no information other than the nearest
letter is correct. The protocol uses AND protocol and copy protocol. They leak
no information from the opened cards, as shown in [19].

During the uniqueness verification protocol, all cards in a row or a column are
opened. However, they leak no information since the positions are randomized
by the pile-scramble shuffles. ⊓⊔

4 conclusion

This paper showed a card-based zero-knowledge proof of a solution of the ABC
end view puzzle. The nearest neighborhood calculation is a new technique to
solve the problem. Zero-knowledge proof to the other puzzle problems is one of
the further studies.
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