
68
IEICE TRANS. FUNDAMENTALS, VOL.E96–A, NO.1 JANUARY 2013

PAPER Special Section on Cryptography and Information Security

Efficient Secure Auction Protocols Based on the Boneh-Goh-Nissim
Encryption

Takuho MITSUNAGA†a), Nonmember, Yoshifumi MANABE††b), and Tatsuaki OKAMOTO†††c), Members

SUMMARY This paper presents efficient secure auction protocols for
first price auction and second price auction. Previous auction protocols
are based on a generally secure multi-party protocol called mix-and-match
protocol based on plaintext equality tests. However, the time complexity
of the plaintext equality tests is large, although the mix-and-match protocol
can securely calculate any logical circuits. The proposed protocols reduce
the number of times the plaintext equality tests is used by replacing them
with the Boneh-Goh-Nissim encryption, which enables calculation of 2-
DNF of encrypted data.
key words: secure auction, 1st price auction, 2nd price auction, Boneh-
Goh-Nissim encryption, mix-and-match protocol

1. Introduction

1.1 Background

Recently, as the Internet has expanded, many researchers
have become interested in secure auction protocols and var-
ious schemes have been proposed to ensure the safe transac-
tion of sealed-bid auctions. A secure auction is a protocol in
which each player can find only the highest bid and its bid-
der (called the first price auction) or the second highest bid
and the first price bidder (called the second price auction).
A simple solution is to assume a trusted auctioneer. Bidders
encrypt their bids and send them to the auctioneer, and the
auctioneer decrypts them to decide the winner.

To remove the trusted auctioneer, some secure multi-
party protocols have been proposed. The common essential
idea is the use of threshold cryptosystems, where a private
decryption key is shared by the players. Jakobsson and Juels
proposed a secure MPC protocol to evaluate a function com-
prising a logical circuit, called mix-and-match [6]. As for a
target function f and the circuit that calculates f , C f , all
players evaluate each gate in C f based on their encrypted
inputs and the evaluations of all the gates in turn lead to
the evaluation of f . Based on the mix-and-match protocol,
we can easily find a secure auction protocol by repeating
the millionaires’ problem for two players. However, the
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mix-and-match protocol requires two plaintext equality tests
for a two-input one-output gate. Furthermore, one plain-
text equality test requires one distributed decryption among
players. Thus, it is important to reduce the number of gates
in C f to achieve function f .

Kurosawa and Ogata suggested the “bit-slice auction”,
which is an auction protocol that is more efficient than the
one based on the millionaire’s problem [9].

Boneh, Goh and Nissim suggested a public evalua-
tion system for 2-DNF formula based on an encryption of
Boolean variables [3]. Their protocol is based on Pallier’s
scheme [13], so it has additive homomorphism in addition
to the bilinear map, which allows one multiplication on en-
crypted values. As a result, this property allows the eval-
uation of multivariate polynomials with the total of degree
two on encrypted values. In this paper, we introduce first
and second price auction protocols based on BGN scheme
introduced in [3] and show that we can reduce the number
of plaintext equality tests in both protocols.

1.2 Related Works

As related works, there are many auction protocols, how-
ever, they have problems such as those described hereafter.
The first secure auction scheme proposed by Franklin and
Reiter [5] does not provide full privacy, since at the end of
an auction players can know the other players’ bids. Naor,
Pinkas and Sumner achieved a secure second price auc-
tion by combining Yao’s secure computation with oblivi-
ous transfer assuming two types of auctioneers [11]. How-
ever, the cost of the bidder communication is high because
it proceeds bit by bit using the oblivious transfer protocol.
Juels and Szydlo improved the efficiency and security of
this scheme with two types of auctioneers through verifiable
proxy oblivious transfer [7], which still has a security prob-
lem in which if both types of auctioneers collaborate they
can retrieve all bids.

Lipmaa, Asokan and Niemi proposed an efficient M +
1st secure auction scheme [10]. The M + 1st price auc-
tion is a type of sealed-bid auction for selling M units of a
single kind of goods, and the M + 1st highest price is the
winning price. M bidders who bid higher prices than the
winning price are winning bidders, and each winning bid-
der buys one unit of the goods at the M + 1st winning price.
In this scheme, the trusted auction authority can know the
bid statistics. Abe and Suzuki suggested a secure auction
scheme for the M + 1st auction based on homomorphic en-
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cryption [1]. However in their scheme, a player’s bid is not
a binary expression. So, its time complexity is O(m2k) for a
m-player and k-bit bidding price auction. Tamura, Shiotsuki
and Miyaji proposed an efficient proxy-auction [15]. This
scheme only considers the comparison between two sealed
bids, the current highest bid and a new bid. However, this
scheme does not consider multiple players because of the
property of the proxy-auction.

1.3 Our Result

In this paper, we introduce bit-slice auction protocols based
on the public evaluation of the 2-DNF formula. In the both
of first and second price auction, our protocols are more ef-
ficient than original protocol suggested in [9].

2. Preliminaries

2.1 The Model of Auctions and Outline of Auction Proto-
cols

This model involves m players, denoted by P1, P2, . . . , Pm

and assumes that there exists a public board. The players
agree in advance on the presentation of the target function,
f as a circuit C f . The aim of the protocol is for players
to compute f (B1, . . . , Bm) without revealing any additional
information. Its outline is as follows.

1. Input stage: Each Pi(1 ≤ i ≤ m) computes cipher-
texts of the bits of Bi and broadcasts them and proves
that the ciphertext represents 0 or 1 by using the zero-
knowledge proof technique in [3].

2. Mix-and-match stage: The players blindly evaluates
each gate, G j, in order.

3. Output stage: After evaluating the last gate
GM, the players obtain OM, a ciphertext encrypting
f (B1, . . . , BM). They jointly decrypt this ciphertext
value to reveal the output of function f .

2.1.1 Requirements for the Encryption Function

Let E be a public-key probabilistic encryption function. We
denote the set of encryptions for a plaintext v by E(v) and a
particular encryption of v by c ∈ E(v).

Function E must satisfy the following properties.

1.Homomorphic property There exist polynomial time
computable operations, −1 and ⊗, as follows. For a
large prime q,

1. If c ∈ E(v), then c−1 ∈ E(−v mod q).
2. If c1 ∈ E(v1) and c2 ∈ E(v2), then c1⊗c2 ∈ E(v1+v2

mod q).

For a positive integer a, define
a · c = c ⊗ c ⊗ · · · ⊗ c︸�����������︷︷�����������︸

a

.

2.Random re-encryption Given c ∈ E(v), there is a prob-
abilistic re-encryption algorithm that outputs c′ ∈ E(v),

where c′ is uniformly distributed over E(v).
3.Threshold decryption For a given ciphertext c ∈ E(v),

any t out of m players can decrypt c along with a zero-
knowledge proof of the correctness. However, any t-1
out of m players cannot decrypt c.

2.1.2 MIX Protocol

The MIX protocol [4] takes a list of ciphertexts,
(ξ1, . . . ., ξL), and outputs a permuted and re-encrypted list
of the ciphertexts (ξ′1, . . . , ξ

′
L) without revealing the relation-

ship between (ξ1, . . . , ξL) and (ξ′1, . . . , ξ
′
L), where ξi or ξ′i can

be a single ciphertext c, or a list of l ciphertexts, (c1, . . . , cl),
for some l > 1. For all players to verity the validity of
(ξ′1, . . . , ξ

′
L), we use the universal verifiable MIX net pro-

tocol described in [14].

2.1.3 Plaintext Equality Test

Given two ciphertexts c1 ∈ E(v1) and c2 ∈ E(v2), this proto-
col checks if v1 = v2. Let c0 = c1 ⊗ c−1

2 .

1. (Step 1) For each player Pi (where i = 1,. . . ,m):
Pi chooses a random element ai ∈ Z∗q and computes
zi = ai · c0. He broadcasts zi and proves the validity of
zi in zero-knowledge.

2. (Step 2) Let z = z1⊗z2⊗· · ·⊗zm. The players jointly de-
crypt z using threshold verifiable decryption and obtain
plaintext v. Then it holds that

v =

{
0 i f v1 = v2
random otherwise

2.1.4 Mix-and-Match Stage

For each logical gate, G(x1, x2), of a given circuit, m play-
ers jointly computes E(G(x1, x2)) from c1 ∈ E(x1) and
c2 ∈ E(x2) keeping x1 and x2 secret. For simplicity, we
show the mix-and-match stage for AND gate.

1. m players first consider the standard encryption of each
entry in the table shown in Table 1.

2. By applying a MIX protocol to the four rows of the
table, m players jointly compute blinded and permuted
rows of the table. Let the ith row be (a′i , b

′
i , c
′
i) for i =

1,. . . ,4.
3. m players next jointly find the row i such that the plain-

text of c1 is equal to that of a′i and the plaintext of c2

is equal to that of b′i by using the plaintext equality test
protocol.

4. For the row i, it holds that c′i ∈ E(x1 ∧ x2).

Table 1 Mix-and-match table for AND.

x1 x2 x1 ∧ x2

a′1 ∈ E(0) b′1 ∈ E(0) c′1 ∈ E(0)

a′2 ∈ E(0) b′2 ∈ E(1) c′2 ∈ E(0)

a′3 ∈ E(1) b′3 ∈ E(0) c′3 ∈ E(0)

a′4 ∈ E(1) b′4 ∈ E(1) c′4 ∈ E(1)
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2.2 Bit-Slice Auction Circuit

We introduce an efficient auction circuit called the bit-slice
auction circuit described in [6]. In this scheme, we assume
only one player bids the highest bidding price, so we do not
consider a case more than one player becomes the winners.
Suppose that Bmax = (b(k−1)

max , . . . , b
(0)
max)2 is the highest bid-

ding price and a bid of a player i is Bi = (b(k−1)
i , . . . , b(0)

i )2,
where ()2 is the binary expression. Then the proposed cir-
cuit first determines b(k−1)

max by evaluating the most significant
bits of all the bids. It next determines b(k−2)

max by looking at
the second most significant bits of all the bids, and so on.
For two m-dimensional binary vectors X = (x1, . . . , xm) and
Y = (y1, . . . , ym),

X ∧ Y = (x1 ∧ y1, . . . , xm ∧ ym)

Let Dj be the highest price when considering the upper
j bits of the bids. That is,

D1 = (b(k−1)
max , 0, . . . , 0)2

D2 = (b(k−1)
max , b

(k−2)
max , 0, . . . , 0)2

· · ·
Dk = (b(k−1)

max , . . . , b
(0)
max)2

In the j-th round, we find b(k− j)
max and eliminate a player Pi

such that his bid satisfies Bi < Dj. For example, in the case
of j = 1, a player Pi is eliminated if his bid Bi satisfies Bi <
D1. By repeating this operation for j = 1 to k, at the end the
remaining bidder is the winner.

For this purpose, we update W = (w1, . . . , wm) such that

wi =

{
1 i f Bi ≥ Dj

0 otherwise

for j = 1 to k. The circuit is obtained by implementing the
following algorithm. For given m bids, B1, . . . , Bm, Vj is
defined as

Vj = (b( j)
1 , . . . , b

( j)
m )

for j = 0,. . . ,k − 1, that is, Vj is the vector consisting of the
( j+1)th lowest bit of each bid. Let W = (w1, . . . , wm), where
each w j = 1. For j = k − 1 to 0, perform the following.
(Step 1) For W = (w1, . . . , wm), let

S j =W ∧ Vj

= (w1 ∧ b( j)
1 , . . . , wm ∧ b( j)

m )

b( j)
max = (w1 ∧ b( j)

1 ) ∨ · · · ∨ (wm ∧ b( j)
m ).

(Step 2) If b( j)
max = 1, then let W = S j.

Then the highest price is obtained as Bmax =

(b(k−1)
max , . . . , b

(0)
max)2. Let the final W be (w1, . . . , wm). Then

Pi is the winner if and only if wi = 1. We summarize the
algorithm as the following property.

Property 1: [9] In the bit-slice auction above,

- Bmax is the highest bidding price.
- For the final W = (w1, . . . , wm), Pi is a winner if and only
if wi = 1 and Pi is the only player who bids the highest price
Bmax.

2.3 Evaluating 2-DNF Formulas on Ciphertexts

Given encrypted Boolean variables x1, . . . , xn ∈ {0, 1}, a
mechanism for public evaluation of a 2-DNF formula was
suggested in [3]. They presented a homomorphic public key
encryption scheme based on finite groups of composite or-
der that supports a bilinear map. In addition, the bilinear
map allows for one multiplication on encrypted values. As
a result, their system supports arbitrary additions and one
multiplication on encrypted data. This property in turn al-
lows the evaluation of multivariate polynomials of a total
degree of two on encrypted values.

2.3.1 Bilinear Groups

Their construction makes use of certain finite groups of
composite order that supports a bilinear map. We use the
following notation.

1. G and G1 are two (multiplicative) cyclic groups of fi-
nite order n.

2. g is a generator of G.
3. e is a bilinear map e : G × G→ G1.

2.3.2 Subgroup Decision Assumption

We define algorithm G such that given security parameter
τ ∈ Z+ outputs a tuple (q1, q2,G,G1, e) where G,G1 are
groups of order n = q1q2 and e : G × G → G1 is a bilinear
map. On input τ, algorithm G works as indicated below,

1. Generate two random τ-bit primes, q1 and q2 and set
n = q1q2 ∈ Z.

2. Generate a bilinear group G of order n as described
above. Let g be a generator of G and e : G × G → G1

be the bilinear map.
3. Output (q1, q2,G,G1, e).

We note that the group action in G and G1 as well as
the bilinear map can be computed in polynomial time.

Let τ ∈ Z+ and let (q1, q2,G,G1, e) be a tuple produced by
G where n = q1q2. Consider the following problem. Given
(n,G,G1, e) and an element x ∈ G, output ‘1’ if the order of
x is q1 and output ‘0’ otherwise, that is, without knowing the
factorization of the group order n, decide if an element x is
in a subgroup ofG. We refer to this problem as the subgroup
decision problem.

2.3.3 Homomorphic Public Key System

We now describe the proposed public key system which
resembles the Pallier [13] and the Okamoto-Uchiyama en-
cryption schemes [12]. We describe the three algorithms
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comprising the system.

1.KeyGen Given a security parameter τ ∈ Z, run G to ob-
tain a tuple (q1, q2,G,G1, e). Let n = q1q2. Select two

random generators, g and u
R←− G and set h = uq2 . Then

h is a random generator of the subgroup of G of order
q1. The public key is PK = (n,G,G1, e, g, h). The pri-
vate key is S K = q1.

2.Encrypt(PK,M) We assume that the message space con-
sists of integers in set {0, ..., T } with T < q2. We en-
crypt the binary representation of bids in our main ap-
plication, in the case T = 1. To encrypt a message
M = v using public key PK, select a random number
r ∈ {1, ..., n − 1} and compute

C = gvhr ∈ G.

Output C as the ciphertext.
3.Decrypt(S K,C) To decrypt a ciphertext C using the pri-

vate key S K = q1, observe that Cq1 = (gvhr)q1 = (gq1 )v.
Let ĝ = gq1 . To recover m, it suffices to compute the
discrete log of Cq1 base ĝ.

2.3.4 Homomorphic Properties

The system is clearly additively homomorphic. Let
(n,G,G1, e, g, h) be a public key. Given encryptions C1

and C2 ∈ G1 of messages v1 and v2 ∈ {0, 1, ..., T } respec-
tively, anyone can create a uniformly distributed encryption
of v1 + v2 mod n by computing the product C = C1C2hr

for a random number r ∈ {1, ..., n − 1}. More importantly,
anyone can multiply two encrypted messages once using the
bilinear map. Set g1 = e(g, g) and h1 = e(g, h). Then g1 is
of order n and h1 is of order q1. Also, write h = gαq2 for
some (unknown)α ∈ Z. Suppose we are given two cipher-
texts C1 = g

v1 hr1 ∈ G and C2 = g
v2 hr2 ∈ G. To build an

encryption of product v1 · v2 mod n given only C1 and C2,
1) select random r ∈ Z∗n, and 2) set C = e(C1,C2)hr

1 ∈ G1.
Then

C = e(C1,C2)hr
1 = e(gv1 hr1 , gv2hr2 )hr

1

= gv1v21 hv1r2+v2r1+q2r1r2α+r
1 = gv1v21 hr′

1 ∈ G1

where r′ = v1r2+v2r1+q2r1r2α+r is distributed uniformly in
Zn as required. Thus, C is a uniformly distributed encryption
of v1v2 mod n, but in the group G1 rather than G (this is
why we allow for just one multiplication). We note that the
system is still additively homomorphic inG1. For simplicity,
in this paper we denote an encryption of message v in G as
EG(v) and one in G1 as EG1 (v).

2.4 Key Sharing

In [2], efficient protocols are presented for a number of play-
ers to generate jointly RSA modulus N = pq where p and q
are prime, and each player retains a share of N. In this pro-
tocol, none of the players can know the factorization of N.

They then show how the players can proceed to compute a
public exponent and the shares of the corresponding private
exponent. At the end of the computation, N becomes pub-
lic and the players are convinced that N is a product of two
large primes by using zero-knowledge proof. Then, follow-
ing the algorithm introduced 2.3.2, Bilinear group (G,G1, e)
is also generated from N. Their protocol was based on the
threshold decryption that m out of m players can decrypt
the secret. The cost of key generation for the shared RSA
private key is approximately 11 times greater than that for
simple RSA key generation. However the cost for compu-
tation is still practical. We use this protocol to share private
keys among the players to jointly decrypt the ciphertexts.

3. New Efficient Auction Protocol

In this section, we show bit-slice auction protocols based on
the evaluation of multivariate polynomials with the total de-
gree of two on encrypted values. Both first and second price
auction protocols on 2-DNF formula on encrypted values
and with the mix-and-match protocol. To maintain secrecy
of the players’ bidding prices through the protocol, we need
to use the mix-and-match protocol. However, we can reduce
the number of times we use it. As a result, the proposed pro-
tocol is more efficient than that in [9]. Here, we define three
types of new tables, S electk, MAP1 and MAP2 for the sec-
ond price auction. In the proposed protocol, the MAP1 and
MAP2 tables are created among AM before an auction. On
the other hand, S electk is created through the protocol cor-
responding to the players’ inputs. The AM jointly computes
values in the mix-and-match table for distributed decryption
of plaintext equality test. Table S electk is also used for the
second price auction protocol in [9]; MAP1 and MAP2 are
new tables that we propose. Given a message t, MAP1 and
MAP2 are tables for mapping an encrypted value a1 ∈ EG1 (t)
(which is an output of a computation with one multiplica-
tion) to a2 ∈ EG(t). Table S electk has 2k + 1 input bits and k
output bits as follows.

S electk(b, xk−1, . . . , x0, yk−1, . . . , y0)

=

{
(xk−1, . . . , x0) i f b = 1
(yk−1, . . . , y0) otherwise

For two encrypted input vectors (xk−1, . . . , x0) and
(yk−1, . . . , y0), b is an encryption of the check bit that se-
lects which vector to output, (xk−1, . . . , x0) or (yk−1, . . . , y0).
For secure computation, the AM re-encrypts the output vec-
tor. In the proposed protocol, the S electk table is created
through the auction to update W corresponding to an input
value E(bj). The function of table MAP1, shown in Table 2,
is a mapping x1 ∈ {EG1 (0), EG1 (1)} → x2 ∈ {EG(0), EG(1)}.
The table MAP2, shown in Table 3, is the one for mapping
x1 ∈ {EG1 (0), EG1 (1), . . . , EG1 (m)} → x2 ∈ {EG(0), EG(1)}.
These tables can be constructed using the mix-and-match
protocol because the Boneh-Goh-Nissim encryption has ho-
momorphic properties.
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Table 2 Table for MAP1.

x1 x2

a1 ∈ EG1 (0) b1 ∈ EG(0)
a2 ∈ EG1 (1) b2 ∈ EG(1)

Table 3 Table for MAP2.

x1 x2

a1 ∈ EG1 (0) b1 ∈ EG(0)
a2 ∈ EG1 (1) b2 ∈ EG(1)
· · · bi ∈ EG(1)

am+1 ∈ EG1 (m) bm+1 ∈ EG(1)

3.1 First Price Auction Using 2-DNF Scheme and Mix-
and-Match Protocol

We assume m players, P1, . . . , Pm and a set of auction man-
agers, AM. We can assume that AM is either a subset of
players or a different group such as management group for
auctions. The players bid their encrypted prices. Then, the
AM executes an auction with players’ encrypted bids and at
the end of the auction and jointly decrypts the results of the
protocol. Players find the highest price through the protocol
and the winner by decrypting the results.

3.1.1 Setting

AM jointly generates and shares private keys among them-
selves using the technique described in [2].

3.1.2 Bidding Phase

Each player Pi computes a ciphertext of his bidding price,
Bi, as

ENCi = (ci,k−1, . . . ., ci,0)

where ci, j ∈ EG(b( j)
i ), and publishes ENCi on the bulletin

board. He also proves in zero-knowledge that b( j)
i = 0 or 1

by using the technique described in [3].

3.1.3 Opening Phase

Suppose that c1 = g
b1 hr1 ∈ EG(b1) and c2 = g

b2 hr2 ∈ EG(b2),
where b1, b2 are binary, r1, r2 ∈ Z∗n are random numbers and
c′1 ∈ EG1 (b1) and c′2 ∈ EG1 (b2). We define two polynomial
time computable operations Mul and ⊗ by applying a 2DNF
formula for AND, OR respectively.

Mul(c1, c2) = e(c1, c2) = e(gb1 hr1 , gb2hr2 ) ∈ EG1 (b1 ∧ b2)
c′1 ⊗ c′2 ∈ EG1 (b1 + b2)

by applying a 2DNF formula for AND.
The AM generates W = (w1, . . . , wm), where each w j =1,
and encrypts them as W̃ = (w̃1, . . . , w̃m). The AM shows
that W̃ is the encryption of (1,. . . ,1) with the verification
protocols.
(Step 1) For j = k -1 to 0, perform the following.

(Step 1-a) For W̃ = (w̃1, . . . , w̃m), AM computes si, j =

Mul(w̃i, ci, j) for each player i, and

S j = (Mul(w̃1, c1, j), . . . ,Mul(w̃m, cm, j))

hj = Mul(w̃1, c1, j) ⊗ · · · ⊗ Mul(w̃m, cm, j)

(Step 1-b) The AM uses table MAP1 for si, j for each i and
finds the values of s̃i, j. Let S̃ j = (s̃1, j, . . . , s̃m, j). The AM
takes a plaintext equality test regarding whether hj is an en-
cryption of 0. If hj is an encryption of 0, AM publishes 0
as the value of b( j)

max and proves it with the verification pro-
tocols, otherwise, AM publishes 1 as the value of b( j)

max.
(Step 1-c) If b( j)

max = 1, AM update W̃ = S̃ j, otherwise W̃
remains.
(Step 2) For the final W̃ = (w̃1, . . . , w̃m), AM decrypts each
w̃i with the verification protocols and obtains plaintext wi.
The highest price is obtained as Bmax = (b(k−1)

max , . . . , b
(0)
max)2.

Pi is a winner if and only if wi = 1.

3.2 Second Price Auction Using 2-DNF Scheme and Mix-
and-Match Protocol

In the second price auction, the information that players can
find is the second highest price and the bidder of the high-
est price. The setting and bidding phases are the same as
those for the first price auction, so we start from the opening
phase.

3.2.1 Opening Phase

Let W̃ = (w̃1, .., w̃m), where each w̃ j ∈ EG(1) shown above.
(Step 1) For j = k -1 to 0, perform the following.
(Step 1-a) For W̃ = (w̃1, . . . , w̃m), AM computes si, j =

Mul(w̃i, ci, j) for each player i, and

S j = (Mul(w̃1, c1, j), . . . ,Mul(w̃m, cm, j))

hj = Mul(w̃1, c1, j) ⊗ · · · ⊗ Mul(w̃m, cm, j)

(Step 1-b) The AM uses table MAP1 for si, j for each i and
finds the values of s̃i, j. Let S̃ j = (s̃1, j, . . . , s̃m, j). The AM
also uses the table MAP2 for hj as an input value. By using
this table, AM retrieves E(bj) ∈ EG(0) if hj is a ciphertext
of 0, otherwise he retrieves E(bj) ∈ EG(1).
(Step 1-c) AM creates the table S electk as input values
(E(bj), S̃ j, W̃).
The AM executes W̃ = S electk(E(bj), S̃ j, W̃), that is, if
E(bj) is the encryption of 1, W̃ is updated as S̃ j.
(Step 2) For the final W̃ = (w̃1, . . . , w̃m), AM decrypts each
w̃i with verification protocols and obtains the plaintext wi.
Pi is the winner if and only if wi = 1. The AM remove the
player who bids the highest price and run the first price auc-
tion protocol again. The second highest price is obtained as
Bmax = (b(k−1)

max , . . . , b
(0)
max)2.

Verification protocols
Verification protocols are the protocols for players to con-
firm that AM decrypts the ciphertext correctly. By using the
protocols, each player can verify the results of the auction
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are correct. We denote b as a plaintext and C as a BGN en-
cryption of b (C = gbhr), where g, h and r are elements used
in BGN scheme and f = C(gb)−1. Before a player verifies
whether b is the plaintext of C, the player must prove that
a challenge ciphertext C′ = gx f r is created by himself with
zero-knowledge proof that he has the value of x.

1. A player proves that he has random element x ∈ Z∗n
with zero-knowledge proof.

2. The player computes f = C(gb)−1 from the published
values, h, g and b, and select a random integer r ∈ Z∗n.
He sends C′ = gx f r to AM.

3. The AM decrypts C′ and sends value x′ to the player.
4. The player verifies whether x = x′. AM can decrypt C′

correctly only if order( f ) = q1, which means that the
AM correctly decrypts C and publishes b as the plain-
text of C.

3.3 Security

1. Privacy for bidding prices
Each player can not retrieve any information except
the winner and the highest price or the second highest
price (the first price auction and second price auction
respectively). An auction scheme is secure if there is
no polynomial time adversary that breaks privacy with
non-negligible advantage ε(τ). Here, we introduce the
mix-and-match oracle which enable to execute an auc-
tion protocol without calculation of plaintext equality
test and mix-and-match. The calculation of plaintext
equality test and mix-and-match are used in proposed
auction protocols such as checking whether hj is 0 and
updating W̃. However, to calculate plaintext equality
test and mix-and-match needs the secret key of auc-
tion protocols. The reason we put mix-and-match or-
acle in security proof is to execute auction protocols
without the secret key. Then, we prove that the pri-
vacy for bidding prices in the proposed auction proto-
cols under the assumption that BGN encryption with
the mix-and-match oracle is semantically secure. An
adversary can use the mix-and-match oracle which re-
ceives an encrypted value x1 ∈ EG1 (m) and returns
the encrypted value x2 ∈ EG(m) for given a message
m according to the mix-and-match table shown in Ta-
ble 3 (which has the same function as MAP2). We
consider cases only where the range of input values
is {0,1,. . . ,m} and the range of the output is {0,1} for
MAP2. MAP1 can also be computed if the range of
the input value is restricted in {0,1}. If mix-and-match
oracle receives an improper value, the request is sup-
posed to be aborted. An adversary can also calculate
S electk(b, xk−1, . . . , x0, yk−1, . . . , y0) = b(xk−1, . . . , x0)+
(1−b)(yk−1, . . . , y0) with an additional polynomial com-
putation. Because, by using this mix-and-match oracle,
an adversary can compute any logical function without
the limit where BGN encryption scheme can use only
one multiplication on encrypted values. We define two

(PK, S K)← KeyGen
(m0,m1, s)← Ao1

1 (PK)
b← {0, 1}

c← Encrypt(PK,mb)
b′ ← Ao1

2 (c, s)
return 1 iff b = b′

Fig. 1 EXPTA,Π.

semantic secure games and advantages for BGN en-
cryption scheme and the proposed auction protocols.
We also show that if there is adversary B that breaks
the proposed auction protocol, we can compose adver-
sary A that breaks the semantic security of the BGN
encryption with the mix-and-match oracle by using B.

Definition 1:
Let Π = (KeyGen, Encrypt,Decrypt) be a BGN en-
cryption scheme, and let AO1 = (AO1

1 , A
O1
2 ), be a prob-

abilistic polynomial-time algorithm, that can use the
mix-and-match oracle O1.

BGN-Adv(τ) = Pr[EXPTA,Π(τ)⇒ 1] − 1/2

where, EXPTA,Π is a semantic security game of the
BGN encryption scheme with the mix-and-match or-
acle shown in Fig. 1. We then define an adversary B
for an auction protocol and an advantage for B.

Definition 2: Let Π = (KeyGen, Bid, WinnerDeci-
sion) be a secure auction protocol, and let B be two
probabilistic polynomial-time algorithm B1 and B2.

Auction-Adv(τ) = Pr[EXPTB,Π(τ)⇒ 1] − 1/2

where EXPTB,Π is a semantic security game of the pri-
vacy of the auction protocol shown in Fig. 2. Bid is
the function of encrypting the bidding price of each
player. WinnerDecision is the function of execut-
ing the auction with encrypted bids in order to find
the winner and winning price. First of all, B1 gen-
erates k-bit integers, b1, b2, . . . , bm−1 as plaintexts of
bidding prices for player P1,. . . ,Pm−1, and two chal-
lenge k-bit integers as bm0 , bm1 where bm0 and bm1 are
the same bits except for i-th bit mi

0 and mi
1. We

assume bm0 and bm1 are not the first price bid in a
first price auction and the second highest price in
a second price auction. Then the function Bid is
used for encrypting players’ bidding prices such as
(c1 = Bid(PK, b1), c2 = Bid(PK, b2), . . . , cm−1 =

Bid(PK, bm−1), cm = Bid(PK, bmb)) where b
r←− {0,1}.

Finally the auction is executed with the function
WinnerDecision(c1, c2, . . . , cm−1, cm) as the players’
encrypted bidding prices. After the auction, B2 outputs
b’ ∈ {0,1} as a guess for b. B wins if b = b’.

Theorem 1: The privacy of the auction protocols is
secure under the assumption that the BGN encryption
is semantically secure with a mix-and-match oracle.

(Proof) We show if there is adversary B that breaks
the security of the proposed auction protocol, we can
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(PK, S K)← KeyGen
(b1, b2, . . . , bm−1, bm0 , bm1 , s) ← B1(PK)

b← {0, 1}
c1 ← Bid(PK, b1), c2 ← Bid(PK, b2), . . . , cm−1 ← Bid(PK, bm−1), cm ← Bid(PK, bmb )

(winner, winning price)← WinnerDecision(c1, c2, . . . , cm−1, cm)
b′ ← B2(winner, winning price, s, viewWinnerDecision)

return 1 iff b = b′

Fig. 2 EXPTB,Π.

compose adversaryA that breaks the semantic security
of the BGN encryption with the mix-and-match oracle.
A receives two challenge k-bit integers as bm0 and bm1

from B and then A uses mi
0 and mi

1 as challenge bits
for the challenger of the BGN encryption. Then A
receives Encrypt(PK,mi

b) and executes a secure auc-
tion protocol with the mix-and-match oracle. When
calculation of plain equality test or mix-and-match is
needed such as checking whether hj is 0 and updating
W̃, A uses mix-and-match oracle to transfer encrypted
value over EG1 to EG. bm0 and bm1 are not the win-
ning bidding prices and A knows all the input values,
b1, b2, . . . , bm−1 except the i-th bit of bmb . So, A with
mix-and-match oracle can simulate an auction for the
adversary of auction B. Through the auction, B ob-
serves the calculation of the encrypted values and the
results of the auction. After the auction, B outputs b′,
which is the guess for b. A outputs b′, which is the
same guess with B’s output for bmb . If B can break
the privacy of the bidding prices in the proposed auc-
tion protocol with advantage ε(τ), A can break the se-
mantic security of the BGN encryption with the same
advantage.

2. Correctness
For correct players’ inputs, the protocol outputs the
correct winner and price. From Property 1 introduced
in Sect. 2.2, the bit-slice auction protocol obviously sat-
isfies the correctness.

3. Verification of the evaluation
To verify whether the protocol works, players need to
validate whether the AM decrypts the evaluations of
the circuit on ciphertexts through the protocol. We use
the verification protocols introduced above so that each
player can verify whether the protocol is computed cor-
rectly.

4. Comparison of Auction Protocols

4.1 First Price Auction

BGN encryption is based on bilinear groups of compos-
ite order. So, we assume the keys size of N is 1024
bit to be infeasible to factor. The protocol proposed in
[9] requires mk AND computations to calculate S j =

(Mul(w̃1, c1, j), . . . ,Mul(w̃m, cm, j)) for j = k -1 to 0 and k
plaintext equality tests when it checks whether b(i)

max is the
ciphertext of 0. One AND computation requires two plain-
text equality tests. So, the total number of plaintext equality

Table 4 Comparision in the first price auction.

Proposed [9]
Type of Encryption Elliptic Curve Finite Field

Modular mod n(= p × q) mod p
PET(Total) mk + k 2mk + k

Pairing mk 0

tests is 2mk + k. On the other hand, in the proposed proto-
col, S j can be computed by addition and multiplication of
ciphertexts with 2-DNF scheme. It also requires mk MAP1

computation to update W̃ , k plaintext equality tests to check
b(i)

max and mk pairing calculation. A comparison between the
proposed protocol and that in [9] is shown in Table 4. Al-
though the number of PET in the proposed protocol is re-
duced compared to the protocol in [9], the proposed protocol
needs mk pairing calculation. The computation cost of pair-
ing calculation is approximately 4 times than that of group
calculation in the worst case [8]. Thus, the complexity of
one pairing is much less than that of one PET. Therefore, for
the evaluation of efficiency, the greatest factor is the number
of PET and the proposed protocol for first price auction is
certainly more efficient than that in [9]. As for the commu-
nication costs, communication during Bidding and Opening
phase in [9] and proposed protocol is the same, so it de-
pends on the encrypted message sizes(that is, proportional
to the key sizes) of each protocol.

4.2 Second Price Auction

In the second price auction protocol, the protocol in [9] re-
quires (2m − 1)k AND, (m − 2)k OR and k S electk gates.
One OR gate requires two plaintext equality tests. S electk
requires one test to check whether b is the ciphertext of 1, so
in total approximately 6mk − 5k plaintext equality tests are
required. Conversely, the proposed protocol requires MAP1

2mk times and MAP2 k times. MAP1 requires one plain-
text equality test which uses to check whether input value
is a ciphertext of 0 or 1. The range of input value in the
table MAP2 is m + 1 (from 0 to m) and use one plaintext
equality test for each column in the mix-and-match table.
MAP2 requires approximately m/2+1 times on average. It
also requires k plaintext equality tests to decide the second
highest price among the rest of player except the winner. In
total, the calculation cost for PET is 5/2mk + 2k. mk and
(m − 1)k times pairing calculation are needed to decide the
winner of auction and the second highest price respectively.
A comparison between the proposed protocol and that in [9]
is shown in Table 5. In the second price auction we can re-
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Table 5 Comparision in the second price auction.

Proposed [9]
Type of Encryption Elliptic Curve Finite Field

(1024 bit) (1024 bit)
Modular mod n(= p × q) mod p

PET(Total) 5/2mk + 2k 6mk − 5k
Pairing 2mk − k 0

duce the number of times when the plaintext equality test is
executed.

5. Conclusion

We introduced new efficient auction protocols based on the
BGN encryption and showed that they are more efficient
than that proposed in [9]. As a topic of future work, we
will try to compose a secure auction protocol without using
the mix-and-match protocol.

References

[1] M. Abe and K. Suzuki, “M + 1st price auction using homomorphic
encryption,” Proc. Public Key Cryptography 2002, LNCS vol.2274,
pp.115–124, 2002.

[2] D. Boneh and M. Franklin, “Efficient generation of shared RSA
keys,” Invited paper Public Key Cryptography 1998, LNCS,
vol.1431, pp.1–13, 1998.

[3] D. Boneh, E. Goh, and K. Nissim, “Evaluating 2-DNF formulas
on ciphertexts,” Proc. Theory of Cryptography (TCC) 2005, LNCS,
vol.3378, pp.325–341, 2005.

[4] D. Chaum. “Untraceable electronic mail, return addresses, and digi-
tal pseudonyms,” Commun. ACM, ACM 1981, pp.84–88, 1981.

[5] M.K. Franklin and M.K. Reiter, “The design and implementation
of a secure auction service,” IEEE Trans. Softw. Eng., vol.22, no.5,
pp.302–312, 1995.

[6] M. Jakobsson and A. Juels, “Mix and match: Secure function eval-
uation via ciphertexts,” Proc, Asiacrypt 2000, LNCS, vol.1976,
pp.162–177, 2000.

[7] A. Juels and M. Szydlo, “A two-server sealed-bid auction proto-
col,” Proc. Financial Cryptography 2002, LNCS, vol.2357, pp.72–
86, 2002.

[8] T. Kerins, W.P. Marnane, E.M. Popovici, and P.S.L.M. Barreto,
“Hardware accelerators for pairing based cryptosystems” IEE Proc.
Information Security 2005, vol.152, no.1, pp.47–56, 2005.

[9] K. Kurosawa and W. Ogata, “Bit-slice auction circuit,” Proc. 7th Eu-
ropean Symposium on Research in Computer Security 2002, LNCS,
vol.2502, pp.24–38, 2002.

[10] H. Lipmaa, N. Asokan, and V. Niemi, “Secure Vickrey auctions
without threshold trust,” Proc. 6th Annual Conference on Financial
Cryptography, LNCS, vol.2357, pp.87–101, 2002.

[11] M. Naor, B. Pinkas, and R. Sumner, “Privacy preserving auctions
and mechanism design” Proc. 1st ACM Conference on Electronic
Commerce (ACM-EC), pp.129–139, ACM press 1999, 1999.

[12] T. Okamoto and S. Uchiyama, “A new public-key cryptosystem
as secure as factoring,” Proc. Eurocrypt 1998, LNCS, vol.1403,
pp.308–318, 1998.

[13] P. Pallier, “Public-key cryptosystems based on composite de-
gree residuosity classes,” Proc. Eurocrypt 1999, LNCS, vol.1592,
pp.223–238, 1999.

[14] C. Park, K. Itoh, and K. Kurosawa, “All/nothing election scheme
and anonymous channel,” Proc. Eurocrypt 1993, LNCS, vol.765,
pp.248–259, 1993.

[15] Y. Tamura, T. Shiotsuki, and A. Miyaji, “Efficient proxy-bidding
system,” IEICE Trans. Fundamentals (Japanese Edition), vol.J87-A,

no.6, pp.835–842, June 2004.

Takuho Mitsunaga received the B.Ec. and
M.E. degrees from Osaka University and Kyoto
University, Osaka and Kyoto, Japan, in 2008
and 2010, respectively. Currently, he is a doc-
tor course student of Kyoto University. His re-
search interests are cryptograpy and information
security

Yoshifumi Manabe received the B.E.,
M.E., and Dr.E. degrees from Osaka University,
Osaka, Japan, in 1983, 1985, and 1993, respec-
tively. In 1985, he joined Nippon Telegraph and
Telephone Corporation. Currently, he is a senior
research scientist, supervisor of NTT Commu-
nication Science Laboratories. His research in-
terests include distributed algorithms, cryptog-
raphy, and graph theory. He has been a guest
associate professor of Kyoto University since
2001. He is a member of ACM, IPSJ, JSIAM,

and IEEE.

Tatsuaki Okamoto received the B.E., M.E.,
and Dr.E. degrees from the University of To-
kyo, Tokyo, Japan, in 1976, 1978, and 1988, re-
spectively. He is a Fellow of NTT Secure Plat-
form Laboratories. He is presently engaged in
research on cryptography and information secu-
rity. Dr. Okamoto is a guest professor of Kyoto
University.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /FlateEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


