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Abstract

This paper presents a new distributed mutual exclusion
protocol that can tolerate Byzantine faults. We use the pro-
tocol to create Byzantine fault-tolerant storage systems. We
show a necessary and sufficient condition to achieve dis-
tributed Byzantine fault-tolerant mutual exclusion. The con-
dition is n ≥ 3f + 1 where n is the number of servers
and f is the number of Byzantine failure servers, which
is just the result as yielded by Martin et al.’s Byzantine
fault-tolerant storage algorithm. The message complexity
of Martin et al.’s algorithm is 3n for write operations and
3n + cn for read operations, where c is the number of con-
current writes to the read operations. Our protocol requires
(3+3c′)�(n+3f +1)/2� messages for read or write oper-
ations, where c′ is the number of concurrent conflicting op-
erations. c′ is at most one for read requests. Thus, when the
number of concurrent operations to write requests is small
and the number of faults is small, our protocol is more effi-
cient than that of Martin et al.

1 Introduction

Quorums are used in read/write operations to
achieve replicated databases and distributed mutual
exclusion. A quorum system(coterie [7]) is a set of
quorums that mutually intersect. Malkhi and Re-
iter [10] proposed quorum systems that can tolerate
arbitrary (Byzantine) failures of servers. Many dif-
ferent Byzantine quorum systems have been presented
[1][2][3][4][5][11][12][13][14][16][18][19].

This paper discusses the case when copies of data are
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stored to multiple servers and some servers might fail arbi-
trarily. Malkhi and Reiter [10] showed read and write pro-
tocols to provide safe semantics, defined as follows: when
a read operation is not concurrent with any write operation,
the read returns the value of the latest write operation. If
the read is concurrent with a write operation, it returns any
value.

Martin et al. [15] showed a protocol that offers atomic
semantics to implement Byzantine fault-tolerant storage.
The definition of atomic semantics is as follows: safe se-
mantics is guaranteed and if a read operation is concurrent
with one or more writes, it returns either the latest com-
pleted write relative to the read or one of the values be-
ing written concurrently with the read. In addition, the se-
quence of values read by any given client is consistent with
the global serialization order.

A simple implementation of atomic semantics is as fol-
lows: Achieve mutual exclusion among read and write re-
quests and serialize conflicting requests. For each read
(write) request, execute a simple read (write) operation,
since conflicting requests are suppressed by the serializa-
tion.

Thus, achieving mutual exclusion when there are Byzan-
tine servers leads to a new algorithm for implementing
Byzantine fault-tolerant storage systems. Though some al-
gorithms [6][9] have been considered to achieve distributed
Byzantine fault-tolerant mutual exclusion, they are proba-
bilistic algorithms and they assume synchronous communi-
cation.

This paper first shows a deterministic distributed Byzan-
tine fault-tolerant mutual exclusion algorithm with asyn-
chronous communication. To achieve this, we define a
new quorum system, called the Byzantine access quorum
system. We show a necessary and sufficient condition to
achieve distributed Byzantine fault-tolerant mutual exclu-
sion. The condition is n ≥ 3f + 1 where n is the number
of servers and f is the number of Byzantine failure servers.
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Thus, the existence condition of the algorithm matches that
of Martin et al.’s algorithm. The message complexity of
Martin et al.’s algorithm is 3n for write operations and
3n + cn for read operations, where c is the number of con-
current writes to the read operations. Our protocol requires
(3+3c′)|Q| messages for read or write operations, where c′

is the number of concurrent conflicting operations and |Q|
is quorum size given by �(n + 3f + 1)/2�. In addition, c′

is at most one for read requests. Thus, when the number
of concurrent operations to write requests is small and the
number of faults is small, our protocol is more efficient than
that of Martin et al.

Section 2 shows fundamental definitions. Section 3 in-
troduces the new protocol for distributed Byzantine fault-
tolerant mutual exclusion. Section 4 presents an algorithm
for Byzantine fault-tolerant storage systems. Section 5 con-
cludes the paper.

2 Preliminaries

We assume a universe U of servers, |U | = n, and an ar-
bitrary number of clients that are distinct from the servers.
A failure pattern F = {F1, F2, . . . , Fm} defines the set
of possible faulty servers. Each Fi is a non-empty sub-
set of U and Fi �⊆ Fj for any i and j. The set of actual
faulty servers B satisfies the relation B ⊆ Fi for some
Fi ∈ F . Note that the processes do not know B. An exam-
ple of a failure pattern is the f -threshold pattern in which
F = {F ⊆ U | |F | = f}. f -threshold pattern means that
the number of faulty servers is at most f . A faulty server
may deviate from its specification arbitrarily including: do
nothing at all, send arbitrary (maybe false) message, and
store a value that can be anything. Servers and clients that
obey their specifications are correct. This paper assumes
that every client is correct, as is assumed by existing papers.

Communication among processes (clients and servers)
is done by message-passing. The communication channel
between any two processes is asynchronous, authenticated,
and reliable. That is, the eventual delivery of a message sent
by a process to another process is assured and a process can
not distinguish between a delayed message and no response.
Note that FIFO(First-in, First-out) property is not assumed.

We assume that every request is given a priority such that
older requests have higher priority, which avoids starvation.
One implementation is the combined use of Lamport’s log-
ical clock[8] and process ID. Ties of logical clocks are bro-
ken using the process ID.

3 Distributed Byzantine fault-tolerant mu-
tual exclusion protocol

Mutual exclusion by exchanging messages among
clients might seem to be a simple solution since clients are

correct. However, such a protocol is not easy to maintain
since clients dynamically appear and disappear. In addition,
since exchanging messages between servers is necessary to
read or write in Byzantine fault-tolerant storage systems, it
would be better if mutual exclusion could be achieved to-
gether with the read and write operations. Thus, we base
distributed mutual exclusion on message exchange between
servers and clients.

The protocol is designed so that the server set that each
client sends a request to is explicitly defined. A quorum sys-
tem Q is a set of quorum, where every Q ∈ Q is a nonempty
subset of U .

First, we define the condition that the quorums must sat-
isfy. Just as in the simple distributed mutual exclusion with-
out Byzantine failure, no correct server sends permission to
two conflicting requests at the same time.

Theorem 1 The necessary and sufficient condition to
achieve distributed Byzantine fault-tolerant mutual exclu-
sion is (Q1 − F1) ∩ (Q2 − F2) �⊆ F3 for any Q1, Q2 ∈ Q
and F1, F2, F3 ∈ F .

(Proof) Suppose that clients pi(i = 1, 2) send requests to
Qi(i = 1, 2) at the same time and these two requests con-
flict.

First, necessity is discussed. pi must not wait to receive
a reply from every server in Qi, since Byzantine failure
servers might not send a reply at all, and waiting for a reply
from a Byzantine failure server would result in a deadlock.
Therefore, pi must be able to detect that it has the right
when permission arrives from Qi − Fi for some Fi ∈ F .
Consider the following scenario. Assume that there are
F1, F2, F3 ∈ F such that (Q1 − F1) ∩ (Q2 − F2) ⊆ F3

and the actual fault server set B is F3. Every correct server
(other than B) sends permission to p1 or p2. The replies
from the correct servers F1 to p1 have not arrived at p1 be-
cause of message delay. The replies from the correct servers
F2 to p2 have not arrived at p2 because of message delay.
Every Byzantine failure server in B = F3 sends permission
to BOTH p1 and p2. In this case, p1 receives permission
from every server in Q1 − F1, so p1 detects that it has the
right. p2 receives permission from every server in Q2 − F2

and p2 also detects that it has the right, thus mutual exclu-
sion is not satisfied. Therefore, (Q1−F1)∩(Q2−F2) �⊆ F3

must be satisfied.
On the other hand, when (Q1 − F1) ∩ (Q2 − F2) �⊆ F3

is satisfied, mutual exclusion is achieved as follows. As-
sume that pi(i = 1, 2) sends requests to Qi and receives
permission from Qi − F ′

i for some F ′
i ∈ F and thus mu-

tual exclusion is not satisfied. In this case, the server set
R which sends permission to both of p1 and p2 is at least
(Q1−F ′

1)∩ (Q2−F ′
2). Since (Q1−F ′

1)∩ (Q2−F ′
2) �⊆ F ′

3

for any F ′
3 ∈ F is satisfied, R contains at least one correct
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server. This contradicts the fact that a correct server does
not send permission to two conflicting requests at the same
time.

We define the Byzantine access quorum Q as follows.

Definition 1 A quorum system Q is a Byzantine access
quorum system for failure pattern F if the following prop-
erties are satisfied.
(1) BA-Consistency: ∀Q1, Q2 ∈ Q ∀F1, F2, F3 ∈ F :
(Q1 − F1) ∩ (Q2 − F2) �⊆ F3

(2) BA-Minimality: ∀Q1, Q2 ∈ Q : Q1 �⊆ Q2

BA-Minimality is just the same as the minimality property
in the definition of coterie[7]. It is defined to improve pro-
tocol efficiency.

For f -threshold failure pattern, n ≥ 3f + 1 is necessary
for the existence of a Byzantine access quorum system. The
reason is as follows. If n ≤ 3f , U satisfies U = F ′

1∪F ′
2∪F ′

3

for mutually disjoint F ′
i (i = 1, 2, 3) whose size is at most

f . For any Qj(j = 1, 2), Q1−F ′
1 ⊆ F ′

2∪F ′
3 and Q2−F ′

2 ⊆
F ′

1 ∪F ′
3 are satisfied and thus (Q1 −F ′

1)∩ (Q2 −F ′
2) ⊆ F ′

3

is satisfied. Therefore, there is no Byzantine access quorum
system when n ≤ 3f . When n ≥ 3f + 1, an example
of Byzantine access quorum is Q = {Q ⊂ U : |Q| =
�(n + 3f + 1)/2�}.

Details of the distributed mutual exclusion algorithm are
as follows. The mechanism used to avoid deadlock and star-
vation is cancellation of lower priority requests, a technique
used in simple distributed mutual exclusion without Byzan-
tine failure [17].

When a client wants to get permission, it sends
“request(pri)” to every member in quorum Q, where pri
is the priority of the request. Each server sends permission
“ok” to the highest priority request(this request is called a
pivot) and requests which do not conflict with the pivot.
(For simplicity, we assume that if the pairs of (p, p′) and
(p′, p′′) do not conflict each other, (p, p′′) also do not con-
flict. We can easily remove this restriction.)

When a higher priority conflicting request arrives later,
the server tries to cancel the “ok” message by sending “can-
cel” to the clients. The client that receives “cancel” before
getting the right replies “cancelled” to inform the accep-
tance of the cancellation and waits for another “ok” mes-
sage from the server. When a client receives “ok” message
from at least Q − F for some F ∈ F , the client detects
that it has the right (and ignores further “cancel”). When
it releases the permission, it sends “finished” message to Q
to inform the release of the right. When the server receives
“finished”, the server removes the request and tries to send
permission to the new highest priority request and requests
which do not conflict with the new pivot. The detailed al-
gorithm is written in Figure 1. Note that since the commu-
nication channel is not FIFO, “cancel” might arrive before

“ok” arrives, but it is easy to handle this situation through
message sequence numbers; thus the procedure is not stated
in Fig. 1 for simplicity.

Theorem 2 The algorithm in Fig. 1 achieves mutual exclu-
sion.

Since no correct server sends “ok” to two conflicting re-
quests simultaneously and a Byzantine access quorum sys-
tem is used, it is obvious that the algorithm in Fig. 1 does
not allow any two conflicting clients to acquire the right at
the same time.

Next, we show deadlock-freedom and starvation-
freedom.

Theorem 3 No deadlock or starvation occurs with the al-
gorithm in Fig. 1.

(Proof) First assume that a deadlock occurs. Assume that
no new requesting client appears after the deadlock and ev-
ery client that had the right at the deadlock has sent “re-
lease”. Let p be the client whose priority is the highest and
Q be the quorum it selects. Let B be the actual set of faulty
servers. Each server q in Q−B eventually sends “ok” to p.
The reason is as follows. If q has not sent “ok” to a conflict-
ing client, q sends “ok” to p. Otherwise (q has sent “ok” to
conflicting request p′), q cancels the “ok” by sending “can-
cel” message, because the priority of p′ is lower than that of
p. Eventually q can send “ok” to p. Therefore, p can get the
right since it receives “ok” from every member of Q − B
and no deadlock occurs.

Next, assume that starvation occurs. Let p1 be the high-
est priority request that can never get the right. Since the
priority is given such that older requests have higher prior-
ity, there is a time instant t such that p1 is the highest priority
request that cannot get the right at some time t. The priority
of any new request that appears after t is lower than that of
p1. Thus, p1’s priority is the highest after t. By a similar
discussion as in the case of deadlock-freedom, we can show
that p1 can get the right.

Last, communication complexity is estimated. The sim-
plest case is there is no conflicting request. The client sends
“request” to Q, every correct server responds “ok”, and the
client gets the right. The client sends “finished” when it re-
leases the right. The number of messages is 3|Q|. Next con-
sider the case when there are several conflicting requests.
Let c′ be the number of current requests to which “ok” has
been sent. When a server receives a new request, it might
send “cancel” to c′ requests, whose priority is lower than
this request. After receiving “cancelled” from the clients,
the server sends “ok” to the request. After this request is
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finished (receiving “finished”), the server sends “ok” again
to c′ requests. Though this request might also be cancelled
by some other request p′, these messages are counted for the
case of p′. Thus, the total number of messages per request
is (3 + 3c′)|Q|.

4 New Byzantine fault-tolerant storage pro-
tocols

This section shows read and write protocols to imple-
ment Byzantine fault-tolerant storage systems using the
Byzantine fault-tolerant mutual exclusion algorithm and
Byzantine access quorum systems.

This section assumes that mutual exclusion is achieved
by the algorithm described in the previous section, thus all
conflicting operations are serialized. Thus, for each read op-
eration, its most recent write is uniquely defined. Therefore,
if each read operation returns the value of its most recent
write, atomic semantics is satisfied.

As in the former algorithms for Byzantine fault-tolerant
storage systems, a timestamp is assigned to each value, thus
a pair < v, t > is stored in each server, where v is the value
and t is its timestamp. Algorithms for mutual exclusion and
read can be done simultaneously by sending the currently
stored pair < v, t > on the “ok” message from each server.

If a read protocol is obtained, a write protocol is imple-
mented as follows. When p1 wants to write value v′, first
it selects a quorum Q1 and executes the mutual exclusion
algorithm. When it gets the right by receiving “ok” from
Q1−F1 for some F1 ∈ F , p1 uses the algorithm in the read
operation and obtains the value pair < v, t > of the most
recent write. p1 then sends “write(< v′, t + 1 >)” to ev-
ery server in Q1. This message is piggybacked on the “fin-
ished” message. When a correct server receives this mes-
sage, it updates the stored value. Since < v, t > is the most
recent write, t is the correct timestamp, thus t + 1 must be
the correct timestamp for this write operation.

Therefore, we just need a read protocol. Details of the
read operation and its correctness are shown below.

In a “ok” reply to a read request, non-faulty server s
sends the pair of the value and timestamp, < v, t >, of
the last write operation performed at s. When a client re-
ceives the replies from the servers, the different reply val-
ues < v, t > are stored in the list vlist. Elements in vlist
are ordered such that the larger timestamp comes first. Note
that there might be pairs < v1, t1 > and < v2, t2 > such
that v1 �= v2 and t1 = t2. The order of such pairs in vlist is
arbitrary. In addition, the set of servers from which < v, t >

arrives are stored in variable R(< v, t >). The set of servers
from which a reply is received is stored in variable R. Note
that “cancel” might appear during execution. In that case,
the value pair (and server id) is also removed from vlist
(and R(< v, t >), R).

Throughout this section, the value set by the most recent
write is called the correct value. The value set by an older
write is called an out-of-date value. The other values (by
Byzantine failure servers) are called false values. The cor-
rect value and out-of date values are called fair values.

First, we state some fundamental observations of the re-
ply values. Suppose that all replies sent by servers in Q
arrive at the client. Among the replies,
(O1) any value and timestamp pair < v, t > such that R(<
v, t >) ⊆ F for some F ∈ F is not a correct value (an
out-of-date value or a false value).
(O2) If R(< v, t >) �⊆ F for any F ∈ F , < v, t > is a fair
value (an out-of-date or the correct value). A fair value is
sent from at least one correct server.
(O3) Among fair values, the one with the highest timestamp
is the correct value.

Suppose that the most recent write is executed by p1 us-
ing Q1, and a read by p2 is then executed using Q2. p1

sends “write” to Q1 when it receives “ok” from Q1−F1 for
some F1 ∈ F .

Since the server which sent “ok” to p1 does not send
“ok” to any other request until it receives “write” (pig-
gybacked on “finished”) from p1, every correct server in
Q1−F1 sends the correct value to a read request in the mes-
sage “ok”. Note that messages to F1 might be delayed and
Byzantine failure servers might exist in Q1 − F1. Among
the servers in Q2, F2 might be the set of actual Byzantine
failure servers. Thus, the correct value is returned to p2

from at least (Q1 − F1) ∩ (Q2 − F2). Because of the BA-
consistency property, (Q1 − F1) ∩ (Q2 − F2) �⊆ F3. Thus,
R(< v, t >) �⊆ F3 is satisfied for the correct value and (O1)
is satisfied.

(O2) is obvious since a false value is obtained from the
actual Byzantine failure servers. (O3) is obvious from the
timestamp setting rule.

The read protocol cannot be directly derived from the
above observations, since waiting for every reply might trig-
ger a deadlock; Byzantine failure servers do not reply at all.
The read protocol waits for reply arrival only when no dead-
lock occurs.

In the read protocol, when a client has the right to read,
Q − F ⊆ R for some F ∈ F is satisfied. The read pro-
tocol does nothing until this condition is satisfied. When
this occurs, the correct value exists in vlist. Though new
values < v0, t0 > might arrive from every server in Q−R,
Q−R ⊆ F , thus < v0, t0 > is not a correct value according
to (O1).

After the wait, test the elements in vlist by the following
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rules. Initialize < v∗, t∗ > is the first element.
(Condition C1) If R(< v∗, t∗ >) �⊆ F for any F ∈ F , v∗

is the correct value and the read operation is terminated.
(Condition C2) If R(< v∗, t∗ >) ∪ (Q − R) ⊆ F for
some F ∈ F , < v∗, t∗ > cannot be the correct value, thus
< v∗, t∗ > is ignored and test (C1)(C2) for the next element
in vlist.

If a tested element satisfies none of (C1)(C2), the client
waits for a further reply. If a new reply arrives, the above
conditions are tested for the updated set of replies. The de-
tailed algorithm is shown in Fig. 2.

Theorem 4 If the read protocol returns a value, it is the
correct value.

(Proof) Since the failure node set is some F ∈ F , any value
and timestamp pair < v, t > such that R(< v, t >) �⊆ F
for any F ∈ F is a fair value, but it might be an out-of-date
value. We show that the return value cannot be an out-of-
date value.

First, when the most recent write is executed, it receives
“ok” from at least Q1 − F1, where Q1 ∈ Q and F1 ∈ F .
The writing client sends “write” to Q1.

Now let Q be the quorum used by the read request client
p. Since p returns a value, it receives “ok” from at least
Q− F2 for some F2. The servers that sent “ok” to the most
recent write, but “write” is not arrived yet, cannot send “ok”
to p. Thus, among the servers in Q1 ∩ Q, the servers that
sent “ok” to p are categorized as follows.
(1) “write” has not arrived yet: send “ok” with an out-of-
date value. These servers are at most F1.
(2) Byzantine failure servers B: send “ok” with an arbitrary
value. These servers are at most F3 for some F3 ∈ F .
(3) “write” is executed: send “ok” with the correct value.

From (1) and (2), the set of servers that return the correct
value is at least (Q1 − F1) ∩ (Q − F3) and (Q1 − F1) ∩
(Q − F3) �⊆ F for any F ∈ F . Thus, the correct value will
be returned to p from more than F . Therefore, throughout
the read protocol, the correct value < v∗, t∗ > satisfies R(<
v∗, t∗ >) ∪ (Q − R) �⊆ F for any F ∈ F . Thus, rule (C2)
is never applied to the correct value.

Suppose that < v∗, t∗ > is the return value. During the
execution, consider the time when it has the right to read
by mutual exclusion, that is, ∃F2 ∈ F , Q − F2 ⊆ R is
satisfied. The set of servers from which a reply has not
yet been received is thus less than or equal to F2. At this
time, any new value and timestamp pair < v′, t′ > such
that < v′, t′ >�∈ vlist satisfies R(< v′, t′ >) ⊆ F2.
Thus, < v′, t′ > cannot be the correct value. Therefore,
the correct value is included in current vlist. When return-
ing the final answer, some pairs might be ignored in vlist.
Let < v′′, t′′ > be an ignored pair. Such an ignored pair

< v′′, t′′ > satisfies (Q − R) ∪ R(< v′′, t′′ >) ⊆ F4

for some F4 ∈ F . At this moment, the set of servers
from which a reply is not received is Q − R. Thus, the
reply < v′′, t′′ > is received from at most F4. There-
fore, < v′′, t′′ > cannot be the correct value. In addi-
tion, < v′′, t′′ > cannot be an out-of-date value either.
The reason is as follows. If < v′′, t′′ > is an out-of-date
value, there must be a correct value < v, t > which sat-
isfies t > t′′ and the correct value is not ignored. Thus,
< v′′, t′′ > is not tested in vlist. Therefore, every ignored
value is a false value. When v∗ is returned, < v∗, t∗ >
is the largest timestamp pair other than the ignored ones.
Since R(< v∗, t∗ >) �⊆ F for any F . < v∗, t∗ > is a fair
value. Therefore, if the algorithm returns a value, it is the
largest timestamp pair among the fair values. Thus, the re-
turn value is correct.

This protocol makes clients wait for more replies even
after it has the right to read. Next we show that this addi-
tional wait does not cause a deadlock.

Theorem 5 The read client with the highest priority even-
tually returns a value.

(Proof) Suppose that the read protocol returns no value for-
ever. Let B be the actual Byzantine fault servers. All servers
in Q−B send a reply to the read request. On the other hand,
some servers in B, say B1, send a (false) reply to the client.
These replies eventually arrive at the client. The other faulty
servers, B2(= B − B1), send no reply. Thus, replies arrive
from Q − B2. Thus, eventually R becomes Q − B2, the
condition “∃F ∈ F , Q − F ⊆ R” is satisfied for F = B,
and the condition (C1)(C2) is tested starting with the top
element in vlist.

We now show that the following two cases do not occur.
(Case 1) All elements in vlist satisfy (C2).
(Case 2) The first element in vlist that does not satisfy (C2)
also does not satisfy (C1) even if R becomes Q − B2.

It is obvious that if (Case 1)(Case 2) do not occur, (C1)
is satisfied for some element and a value is returned.

From (O1), every pair < v, t > that satisfies (C2) is not
the correct value. Thus, (Case 1) does not occur.

Next consider (Case 2). Let < v∗, t∗ > be the first el-
ement in vlist that does not satisfy (C2) when the client
receives a reply from Q − B2. Since (C2) is not satis-
fied, ∀F ∈ F , (Q − R) ∪ R(< v∗, t∗ >) �⊆ F is satis-
fied. If F = B and R = Q − B2, the condition becomes
B2 ∪ R(< v∗, t∗ >) �⊆ B, thus R(< v∗, t∗ >) �⊆ B1.
Therefore, R(< v∗, t∗ >) has at least one reply from a cor-
rect server. Thus < v∗, t∗ > is a fair value. From the dis-
cussion of the proof of the above theorem, elements not in
vlist cannot be correct values and all ignored values are not
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correct. Therefore, < v∗, t∗ > is a fair value with the high-
est timestamp. Therefore, < v∗, t∗ > is the correct value,
thus R(< v∗, t∗ >) �⊆ F for any F must be satisfied when
all messages have arrived. Therefore, (Case 2) cannot oc-
cur.

Last we discuss communication complexity. The read
and write protocol can be done with no extra messages.
Thus, the message complexity of the read and write protocol
is (3+3c′)|Q|. Next, let us estimate c′. If mutual exclusion
is performed among read and write requests, multiple write
requests conflict and read and write requests conflict. Mul-
tiple read requests do not conflict. For a read request, there
is at most one request to cancel in each server, since each
server has sent “ok” to at most one write request simultane-
ously. Thus, c′ is at most one for read requests. On the other
hand, there can be multiple read requests to cancel when a
write request arrives at a server.

5 Conclusion

This paper showed a distributed Byzantine fault-tolerant
mutual exclusion algorithm. Using the algorithm, we de-
veloped a new protocol for Byzantine fault-tolerant storage
systems. One remaining problem is tolerating Byzantine
failure clients.
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program mutualexclusion /* program for clients */

When the client wants to get the right:
begin

select Q ∈ Q arbitraly;
R := null;
send “request(pri)” to every server in Q;
/* pri : priority */

end /* end of initiation */

When “ok” arrives from q:
begin

R := R ∪ {q};
if ∃F ∈ F , R ⊇ Q − F then

begin
/* It has the right, execute its task */
send “finished” to every server in Q;

end
end /* end of ok arrival */

When “cancel” arrives from q:
begin

R := R − {q};
send “cancelled” to q;

end /* end of cancel arrival */

program server /* protocol for servers */
var

sent = null /* “ok” has been sent */
pivot = 0 /* highest priority request in sent */
list = null /* priority queue of requests*/
status = none /* ’none’ : no request */

procedure newlock; /* subroutine */
begin

if list = null then status := none
else begin

let “(pri, p′)” be the top element in list;
send “ok” to p′ and requests not conflicting with p′;
set sent be the above proceses;
pivot := p′;
status := ok;

end /* end of list �= null */
end /* end of procedure newlock */

When “request(pri) arrives from p:
begin

insert “(pri, p)” to list
if status = none then

begin
send “ok” to p;
sent := {p};
pivot := p;
status := ok;

end /* end of status = none */
else if status = ok then

begin
if p is not conflicting with pivot then

begin
send “ok” to p;
sent := sent ∪ {p};
update pivot;

end
else /* conflicting with pivot */

if this request is highest priority then
begin

send “cancel” to sent;
status := cancel;

end
end /* end of status = ok */

end /* end of request arrival */

When “cancelled” arrives from p:
begin

sent := sent − {p};
if sent = null then newlock;

end /* end of cancelled arrival */

When “finished” arrives from p:
begin

delete “(*, p)” from list;
sent := sent − {p};
if sent = null then newlock
else /* sent �= null */

begin
update pivot;
if highest priority request �= pivot then

begin
send “cancel” to sent;
status = cancel;

end /* end of pivot �= highest */
end /* end of sent �= null */

end /* end of finished arrival */

Figure 1: Byzantine mutual exclusion protocol.
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program readprotocol

When read(pri) is initiated
/* pri: priority */

begin
initiate mutual exclusion;
set variable R, R(< v, t >), vlist empty;

end /* end of read initiation */

While executing mutual exclusion:
maintain R, R(< v, t >), and vlist

using the value piggybacked on “ok”
R: the set of servers “ok” is arrived
vlist: list of pair < v, t > on “ok” sorted

by the deceasing order of t
R(< v, t >): the set of servers which sent < v, t >

When the process has the right:
begin

let < v∗, t∗ > be the first element in vlist;
while (∀F ∈ F , R(< v∗, t∗ >) �⊆ F ) or
(∃F ∈ F , (Q − R) ∪ R(< v∗, t∗ >) ⊆ F ) do

begin
if ∀F ∈ F , R(< v∗, t∗ >) �⊆ F then

begin
set v∗ as the read value;
exit; /* read is finished */

end /* end of if */
let < v∗, t∗ > be next element in vlist;

end /* end of do loop */
end /* end of when */

program writeprotocol

When write(v, pri) is initiated:
/* v: value, pri: priority */

begin
initiate mutual exclusion;
obtain timetamp using read protocol;

end /* end of write initition */

When value < v∗, t∗ > is returned by read:
begin

send “write(v, t∗ + 1)” to every server in Q;
(piggybacked on “finished”)

end /* end of write program */

program server /* protocol for servers */
var

v /* value*/
t = 0 /* timestamp */

While executing mutual exclusion
piggyback “(< v, t >)” on ’ok’

When “write(v′, t′)” arrives from p:
begin

if t′ > t then
begin

v := v′;
t := t′;

end
end /* end of write arrival */

Figure 2: Byzantine storage protocol.
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