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This paper proposes a cake-cutting protocol using cryptography when the cake is a heterogeneous
good that is represented by an interval on a real line. Although the Dubins-Spanier moving-knife pro-
tocol with one knife achieves simple fairness, all players must execute the protocol synchronously.
Thus, the protocol cannot be executed on asynchronous networks such as the Internet. We show
that the moving-knife protocol can be executed asynchronously by a discrete protocol using a se-
cure auction protocol. The number of cuts isn−1 wheren is the number of players, which is the
minimum.

1 Introduction

Cake-cutting is an old problem in game theory [2,15]. It can be employed for such purposes as dividing
territory of a conquered island or assigning jobs to members of a group.

This paper discusses achieving a moving-knife protocol using cryptography in cake-cutting when the
cake is a heterogeneous good that is represented by an interval,[0,1], on a real line.

The moving-knife protocol is a common technique for achieving fair cake-cutting. The trusted third
party (TTP) or one of the players moves a knife on the cake. Every player watches the movement and
calls ‘stop’ when the knife comes to some specific point that is desirable for the player. Cake is cut at
the points the calls are made. Many protocols that use one or more knives were shown to achieve some
desirable property such as exact division [2].

The simplest moving-knife protocol using one knife was proposed by Dubins and Spanier [5]. The
protocol achieves simple-fairness and it is truthful.

Moving-knife protocols have several disadvantages. First, all players must watch the knife movement
simultaneously, thus moving-knife protocols cannot be executed on networks such as the Internet, in
which transmission delays cannot be avoided. In addition, moving knives means cutting the cake at an
infinite number of places, thus it is considered to be inefficient.

Many discrete protocols have been proposed that achieve simple fairness [8,10,16,18,19]. Several
different models were proposed that concern the allowed types of primitives. The simplest model is just
minimizing the number of cuts. Then, Robertson-Webb model was proposed [15]. In the model, ‘cut’
and ‘eval’ operations are allowed. The complexity of the protocol is given by the total number of the two
operations.

However, the cake-cutting problem when applied to the simplest model has not yet been completely
solved. Discrete versions of the Dubins-Spanier moving-knife protocol considered in [7, 18] are not
truthful.
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Cryptography is not commonly used in cake-cutting protocols. A commitment protocol [3] is used in
meta-envy-free cake-cutting protocols [12] for multiple parties to declare simultaneously their respective
private values. Complicated cryptographic protocols have not been used for cake-cutting protocols so
far.

1.1 Our result

We show a cryptographic cake-cutting protocol that achieves simple fairness with the minimum number
of cuts. We use a secure auction protocol that calculates the maximum bid and the winning player while
hiding the bid of each player. The protocol output is the same as that of Dubins-Spanier moving-knife
protocol. The protocol achieves simple fairness and it is truthful.

2 Preliminaries

Throughout the paper, the cake is a heterogeneous good that is represented by interval[0,1] on a real
line. Each playerPi has a utility function,µi , that has the following three properties.

1. For any intervalX ⊆ [0,1] whose size is not empty,µi(X) > 0.

2. For anyX1 andX2 such thatX1∩X2 = /0, µi(X1∪X2) = µi(X1)+ µi(X2).

3. µi([0,1]) = 1.

The tuple of the utility function ofPi(i = 1, . . . ,n) is denoted as(µ1, . . . ,µn). Utility functions might
differ among players. No player has knowledge of the utility of the other players.

An n-player cake-cutting protocol,f , assigns several portions of[0,1] to the players such that every
portion of [0,1] is assigned to one player. We denotefi(µ1, . . . ,µn) as the set of portions assigned to
playerPi by f , when the tuple of the utility function is(µ1, . . . ,µn).

All players are risk-averse, namely they avoid gambling. They try to maximize the worst case utility
they can obtain.

A desirable property for cake-cutting protocols is truthfulness. A protocol is truthful if there is no
incentive for any player to lie about his utility function. If a player obtains more utility by declaring a false
value, the protocol is not robust. For example, consider the simplest cake-cutting protocol ‘divide-and-
choose.’ In this protocol, Divider first cuts the cake into two pieces[0,x] and[x,1], such thatµ([0,x]) =
µ([x,1]) = 1/2 for Divider. Chooser selects the piece she prefers. Divider obtains the remaining piece.
Since the utility function of Divider is unknown to Chooser, Divider can lie about his utility function and
cut the cake as[0,x′] and[x′,1], for anyx′(̸= x). In this case, Chooser might select the piece such that
the utility for Divider is more than half and Divider might obtain less than half. Thus, the risk-averse
Divider obeys the rule of the protocol and cuts the cake in half. ‘Divide-and-choose’ is thus truthful for
risk-averse players.

Several desirable properties of cake-cutting protocols have been defined [15]. Simple fairness, which
is the most fundamental one, is defined as follows.

For anyi, µi( fi(µ1, . . . ,µn))≥ 1/n.
This paper discusses simple-fair cake-cutting protocols. One of the other types of the desirable

property is the social surplus, that is, the total utilities the players obtain. For two protocolf and f ′

which has the same properties (for example, both truthful and simple fair),f is better thanf ′ in the sense
of social surplus if∑n

i=1 µi( fi(µ1, . . . ,µn)) > ∑n
i=1 µi( f ′i (µ1, . . . ,µn)).

Several kinds of complexity models of discrete cake-cutting problems are defined. The simplest
model is that the complexity is the total number of cuts. This model is further divided into two categories.
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• Cut-and-calculate model: Any operation that uses the utility function of each player is possible
other than cutting.

• Cut-only model: No operation other than cutting is allowed. Thus, the utility of playerPi can be
known only byPi performing a cut.

Another model called the Robertson-Webb model is introduced. The operations are restricted to the
following two types in the model.

• Cuti(I ,α): PlayerPi cuts intervalI = [x1,x2] such thatµi([x1,y]) = αµi(I), where 0≤ α ≤ 1.

• Evali(I): PlayerPi evaluates intervalI = [x1,x2], which is one of the cuts previously performed
using the protocol.Pi returnsµi(I).

The complexity of the Robertson-Webb model is defined as follows.

• Robertson-Webb cut-complexity model: The complexity is measured by the number of cuts. That
is, evaluation queries can be issued for free.

• Robertson-Webb cut-and-query-complexity model: The complexity is measured by the total num-
ber of cuts and queries.

For the cut-only model, when the number of players isn= 3, the minimum number of cuts for simple-
fair division is three [15]. Whenn = 4, the minimum number of cuts is four [8]. For a general number
of players, the Divide and Conquer protocol [8] achieves 1+nk−2k cuts, wherek = ⌊log2n⌋ [14]. The
lower bound of the cut-only model isΩ(nlogn) [4].

For the Robertson-Webb cut-and-query-complexity model, the lower bound isΩ(nlogn) [17]. Ed-
monds and Pruhs extended theΩ(nlogn) lower bound to the cases when a player obtains a union of
intervals and approximate fairness is achieved [6].

3 Dubins-Spanier moving-knife protocol

This section outlines the Dubins-Spanier moving-knife protocol [5] shown in Fig.1.

1: begin
2: Let k← n andx← 1.
3: repeat
4: The TTP moves the knife fromx toward 0. Lety be the current position of the knife.
5: PlayerPi calls ‘stop’ if µi([y,x]) = µi([0,x])/k.
6: The TTP immediately stops moving the knife when ’stop’ is called. Letx′ be the point of the

knife when ‘stop’ is called.
7: The TTP cuts the cake atx′. The player who said ‘stop’ obtains the piece[x′,x] and exits the

protocol.
8: Let k← k−1 andx← x′.
9: until k = 1

10: The remaining player obtains the rest of the cake ([0,x]).
11: end.

Figure 1:Dubins-Spanier moving-knife protocol

When the number of remaining players isk and the remaining cake is[0,x], each remaining player
Pi calls ‘stop’ if the knife comes to pointy which satisfiesµi([y,x]) = µi([0,x])/k, that is, the value of
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piece[y,x] is 1/k of the remaining cake. The first player who calls ‘stop’ obtains piece[y,x] and exits the
protocol. The remaining players continue the same procedure for the remaining cake[0,y].

Each player obtains at least 1/n based on the utility function of the player, thus simple-fairness is
achieved.

In addition, the protocol is truthful for risk-averse players. Consider the case when playerPi tells a lie.
Assume that the number of current remaining players isk. Let the remaining players bePi ,Pi+1, . . . ,Pi+k−1

and the remaining cake be[0,x]. The actual place thatPi to call ‘stop’ is xi , that is, µi([xi ,x]) =
µi([0,x])/k.

If Pi calls ‘stop’ earlier thanxi , Pi obtains less thanµi([0,x])/k and the result is worse than telling the
truth.

If Pi does not call ‘stop’ even if the knife comes toxi , playerPi+1 might call ‘stop’ atxi − ε . The
remaining piece is[0,xi−ε ] andµi([0,xi−ε ]) < (k−1)µi([0,x])/k. Let xi+1 = xi−ε . After that, player
Pj( j = i +2, i +3, . . . , i + k−1) calls ‘stop’ at pointx j such thatµi([x j ,x j−1]) = µi([0,x])/k. If Pi calls
‘stop’ beforex j( j > i +1), Pi obtains less thanµi([0,x])/k. If Pi does not call ‘stop’ and obtains the last
remaining piece[0,xi+k−1], the utility ofPi , µi([0,xi+k−1]), is less thanµi([0,x])/k. Therefore, not calling
’stop’ at the true point can be worse than telling the truth.

Note that the moving-knife protocol is not a discrete protocol. A protocol is presented by Endriss [7]
shown in Fig.2 that makes the protocol discrete.

1: begin
2: Let k← n andx← 1.
3: repeat
4: Each playerPi declares pointxi such thatµi([xi ,x]) = µi([0,x])/k.
5: Let x′ be the maximum ofxis. LetPi be the player who calledx′.
6: Pi obtains piece[x′,x] and exits the protocol.
7: Let k← k−1 andx← x′.
8: until k = 1
9: The remaining player obtains the rest of the cake ([0,x]).

10: end.

Figure 2:Endriss protocol

It seems that this protocol is the same as the Dubins-Spanier moving-knife protocol, but it is actually
not. In this protocol, all players know the cut point of the other players. The cut point information can
offer a hint to a player and the player can obtain more utility by behaving dishonestly. Suppose thatk = 3
and the density functions for the utility of the players are as follows.

u1(z) =

{
4/5 0≤ z≤ 5/6

2 5/6 < z≤ 1

u2(z) = 1(0≤ z≤ 1),

u3(z) =

{
2 0≤ z≤ 1/3

1/2 1/3 < z≤ 1

The utility of Pi for [x,y], µi([x,y]), is calculated by
∫ y

x ui(z)dz. Since
∫ 1

0 ui(z)dz= 1(i = 1,2,3), these
density functions satisfy the conditions of the utility functions.
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At the first round, each player declaresc1 = 5/6, c2 = 2/3, andc3 = 1/3, since
∫ 1

5/6u1(z)dz= 1/3,∫ 1
2/3u2(z)dz= 1/3, and

∫ 1
1/3u3(z)dz= 1/3. Since 5/6 > 2/3 > 1/3, P1 obtains[5/6,1] and exits the

protocol. The next round is performed byP2 and P3 with the remaining cake[0,5/6]. The honest

declaration,c′2, at the next round byP2 is 5/12, since
∫ 5/6

5/12u2(z)dz= 1/2
∫ 5/6

0 u2(z)dz= 5/12. Since∫ 5/6
11/48u3(z)dz= 1/2

∫ 5/6
0 u3(z)dz, P3 will declare 11/48 as the cut pointc′3, for the next round.

Although P2 cannot knowc′3 in advance, it knows thatc′3 < c3 is satisfied for any utility function.
Thus,P2 can declare a false value 1/3(= c3), instead of the true value of 5/12 asc′2, if P2 knows that the
declared value byP3 in previous round isc3. WhenP2 declares false value 1/3, P2 wins in this round and
obtains[1/3,5/6]. The utility of P2 is 1/2, which is larger than utility 5/12 whenP2 declares the true cut
point, 5/12.

Thus knowledge of the declared values of other players destroys the truthful characteristic of the
protocol. The trimming protocol [18], which also achieves simple-fair by a discrete protocol, has the
same problem about truthfulness, since a player might be able to know all other players’ cut points in the
previous round.

Sgall and Woeginger showed a protocol in which the number of cuts isn−1, shown in Fig.3.

1: begin
2: Each player,Pi , simultaneously declaresn−1 pointsxi, j(1≤ j ≤ n−1) such thatµi([xi, j ,xi, j+1]) =

1/n(0≤ j ≤ n−1) (Note thatxi,0 = 0 andxi,n = 1).
3: Let y← 0.
4: for k = 1 to n−1 do
5: begin
6: Let z←minxi,k, where the minimum is taken among the remaining players.
7: Let Pj be the player who declaresz.
8: Pj obtains[y,z] and exits the protocol.
9: Let y← z.

10: end
11: The remaining player obtains the rest of the cake ([y,1]).
12: end.

Figure 3:Sgall-Woeginger protocol

This protocol achieves simple fairness. Whenk= 1, playerPi who obtains piece[0,z] satisfiesz= xi,1,
thusµi([0,xi,1]) = 1/n. Next consider the casek> 1. If playerPi obtains[y,xi,k] in thek-th round,Pi could
not obtain its piece in the previous round. Thus,y≤ xi,k−1 is satisfied for for any currently remaining
playerPi at line 6 andµi([y,xi,k])≥ µi([xi,k−1,xi,k]) = 1/n.

Since all players declare their cut points simultaneously, no player can know the other players’ cut
points in advance. Thus, telling a false value such as in the Endriss protocol is not effective in this
protocol.

The assignment result differs from the one of original Dubins-Spanier moving-knife protocol. In the
moving-knife protocol, whenPi exits in the first round with obtaining[x,1], each of the remaining player
Pj obtains at leastµ j([0,x])/(n−1), which is greater than 1/n. SincePj did not win in the first round,
µ j([x,1]) < 1/n, thusµ j([0,x]) > (n−1)/n. Therefore, from the second round, the cake is more than
(n−1)/n for the remaining players. The other rounds have the same characteristic. If a player exits with
a “small”(in the other players’ view) portion of the cake, all of the remaining players obtains more utility.
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On the other hand, in the Sgall-Woeginger protocol, when a player exits with a “small” portion of
the cake, the extra part of the cake is automatically assigned to the next round’s winner. For example,
Pi wins in the first round and obtains[0,x] and exits, remaining playerPj thinks that the remaining cake
is (n−1)/n+ µ j([x,x j,1]), whereµ j([0,x j,1]) = 1/n. In the next round, the playerPk wins whosexk,2 is
smallest among the remaining players, but the value of the extra partµk([x,xk,1]) might not large among
the remaining players.

In Dubins-Spanier moving-knife protocol, next round call is done for all of the remaining cake, thus
the extra part (such as[x,x j,1]) is also considered by the remaining players. Next round winner is the
player who values the highest to the extra part of the remaining cake. The next round winner is satisfied
with a relatively ‘small’ portion of the cake because of the extra part, thus the next round remaining
cake can be larger than in the Sgall-Woeginger protocol. Thus, in the view of the social surplus, the
Dubins-Spanier moving knife is more desirable than Sgall-Woeginger protocol.

4 Cryptographic moving-knife protocol

The important characteristics of the Dubins-Spanier moving-knife protocol are that (1) the declaration is
done round by round and (2) when a playerP calls ‘stop’, no player knows the other remaining players’
cut points because the knife is moving so that the size of the cutting piece increases.

Because of the first characteristic, the social surplus is better than Sgall-Woeginger protocol. Because
of the second characteristic, every player does not know the previous round cut point information of the
other remaining players.

The simplest solution to keep the protocol truthful and make the protocol discrete would be to have
a TTP. In each round, every remaining player privately sends its cut point to the TTP. The TTP decides
the largest value and the player who gave the maximum value from the cut point information.

However, it might be difficult to have such a TTP. There might be collusion between a player and the
TTP. The TTP might send the player cut point information to the colluding player.

In order to address this problem, we introduce a secure auction protocol. Secure auction protocols
have been proposed in cryptography theory [1,11,13]. They are outlined as follows.

• PlayerPi generates its share of public key and secret key,(PKi ,SKi) of a homomorphic encryption
scheme.

Pi broadcastsPKi and the public encryption keyPK is calculated by any player from(PK1, . . . ,PKn).
SKi is the private key ofPi for decryption.

Any player can execute encryption procedureEncusingPK. The ciphertext obtained by executing
Encon plaintextm is Enc(PK,m).
If P1, . . . ,Pn jointly execute decryption procedureDec with their private keysSK1, . . . ,SKn, they
can decryptEnc(PK,m) and obtainm. That is,Dec(Enc(PK,m),SK1, . . . ,SKn) = m. Note that the
decryption can be performed without revealing the value ofSKi to any other players.

For any set of players whose size is less thann, they cannot decryptEnc(PK,m) by themselves.

• Pi encrypts his bidbi using the public key, that is,Pi calculatesci = Enc(PK,bi).

• P1, . . . ,Pn jointly calculatesbmax = max(b1, . . . ,bn) and playerPj who bidsbmax from c1, . . . ,cn

without directly decryptingc1, . . . ,cn using the homomorphic property.

• During execution of the secure auction protocol, each player gives a zero-knowledge proof [9] that
the player acts correctly. The proof can be verified by any other player.



Y. Manabe & T. Okamoto 7

The correctness of the obtained highest bid and the winner player is also given as a zero-knowledge
proof. The proof can be verified by any player. That is, no player can deny its bid afterwards.

The details are shown in [1, 11, 13]. Secure auction protocols use a homomorphic encryption, in
which addition of encrypted values can be accomplished without decrypting them. Homomorphic en-
cryption has the following properties.

• There exists polynomial time computable operation⊗ and−1 as follows. For any two ciphertext
c1 = Enc(PK,m1) andc2 = Enc(PK,m2), c1⊗c2 ∈ Enc(PK,m1 +m2).
For any ciphertextc = Enc(PK,m), c−1 ∈ Enc(PK,−m).

• The encryption is semantically secure, that is, the advantage of the adversary for the following
game is negligible.

The adversary obtains allPKi ’s and allSKi ’s except for someSKj . First, the adversary can repeat-
edly obtainDec(SK,c) for any ciphertextc that it selects. It then outputs two plaintextm0,m1.
Challenger randomly selects bitb←{0,1} andc = Enc(PK,mb) is given to the adversary.

Then the adversary outputsb′. It wins if b = b′

The advantage of the adversary isPr[b = b′]−1/2.

The first property is calculating sum of two ciphertexts without decrypting them. Using the homomor-
phic characteristics, it is possible to compare multiple bids without decrypting them, that is, they can
obtainC = Enc(PK,max(b1, . . . ,bn)) from c1, . . . ,cn. They jointly decryptC and obtain the maximum
bid without knowing each bid. In some secure auction protocol [13], another type of homomorphic
encryption scheme is used in which multiplication of two ciphertexts are also possible.

The second property means that no player can obtain information of the plaintext from a given ci-
phertext if at least one of the secret keys is unknown.

The moving-knife protocol using a secure auction protocol is shown in Fig.4. In auction protocols,
the bids are considered to be an integer. Thus, we convert cake[0,1] to [0,2m] for some large integerm
and each player must bid an integer value for the cutting point. Note thatm must be large enough such
that for any playerPi and anyc∈ [0,1], µi([⌊c·2m⌋/2m,c]) is negligible, that is, bidding integer values is
not a bad approximation.

1: begin
2: Let k← n, x← 2m.
3: repeat
4: Pi decidesxi such thatµi([xi ,x]) = µi([0,x])/k.
5: Pi encryptsxi and broadcasts it.
6: All players execute a secure auction protocol together and obtain maximum bidc and playerP

who bidsc.
7: [c,x] is marked as the piece forP andP cannot bid any more.
8: Let x← c, k← k−1.
9: until k = 1.

10: [0,x] is marked as the piece for the remaining player and every player obtains his/her piece.
11: end.

Figure 4:Cryptographic moving-knife protocol.

This protocol achieves simple fairness. The protocol is asynchronous, that is, no two events in this
protocol need to be executed simultaneously. The number of cuts isn−1, which is the minimum.
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A difference between the Dubins-Spanier moving-knife protocol and this protocol is that no player
exits the protocol during the execution. If a player exits, the set of players who execute the secure auction
protocol changes in each round. Changing the set of players requires that the keys be re-generated for the
secure auction protocol, thus the protocol would be inefficient. Therefore, the set of players is unchanged
in this protocol. However, if a player obtains a piece, the player has no incentive to execute the secure
auction protocol honestly any more. Thus, in the proposed protocol, the pieces are actually assigned to
the players at the end of the protocol. During the execution of the secure auction protocol, each player
presents a proof that the player executes the protocol correctly. If a player misbehaves, it is detected by
verifying the proof and the player does not obtain the piece marked for the player. This assignment at
the end of the protocol must also be done without TTP. If this protocol is executed just once, there is
no way to prevent a player from misbehaving. If this protocol is executed multiple times or some other
protocol will be executed among the same players, there is a record of the proof that a player misbehaved
in this execution of the protocol, and the player will be rejected from joining another protocol or another
execution of this protocol. If a player wants not to be rejected, the player has an incentive to act correctly.

Theorem 1. The protocol in Fig.4 is truthful for risk-averse players and simple fair. The number of cuts
is minimum.

Proof. These properties are achieved because the assignment is exactly the same as the Dubins-Spanier
moving-knife protocol.

5 Conclusion

This paper proposed a cryptographic cake-cutting protocol. The protocol is discrete and truthful It
achieves simple fairness with the minimum number of cuts.

Further study will include the use of cryptography in other cake-cutting protocols.
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