Debugging Dynamic Distributed Programs Using Global Predicates

Yoshifumi Manabe

Shigemi Aoyagi

NTT Basic Research Laboratories
3-9-11 Musashino-shi, Tokyo 180 Japan

Abstract

This paper describes a debugger for distributed pro-
grams based on a replay technique. Distributed pro-
grams may dynamically fork child processes and open
and close communication channels between processes.
This debugger features breakpoint setting and selec-
tive trace commands with global predicate conditions
called Conjunctive Predicate and Disjunctive Predi-
cate, which are related to multiple processes. It can
halt or test the processes at the first global state for a
gwen Conjunctive Predicate breakpoint condition.

1 Introduction

Distributed programs are much more difficult to de-
bug than sequential programs, because there might be
a bug related to multiple processes. If every bug were
related to only a single process, then conventional se-
quential program debuggers could be used to debug
distributed programs. Thus, one of the main problems
in debugging distributed programs is how to detect
bugs related to multiple processes[13}[15]. One of the
most basic and useful tools is a mechanism for detect-
ing predicate satisfaction related to multiple processes.
For example, let us consider that process p;(i = 1,4)
has a variable z;, and that z; = 1 means p; has the
right to access some common data. In this case, sat-
isfying 2; = 1 and z4 = 1 at the same time is a bug.
In order to detect this bug, it is convenient if there is
a mechanism to detect the satisfaction of the predi-
cate “z; = 1{z4 = 17. We call a predicate related
to multiple processes a global predicate. This paper
considers how to detect global predicate satisfaction
in distributed programs.

Two kinds of global predicates were introduced
in [9]. One, the Disjunctive Predicate (DP) consists
of simple predicates joined by disjunctive operators
“J”, where a simple predicate is a predicate whose
true/false state can be detected by a single process.
The other, the Conjunctive Predicate (cP) consists
of simple predicates and conjunctive operators “(]”.
This paper considers both types of predicates.

There are three major requirements for detecting
global predicate satisfaction. One is that the probe
effect must be small. Distributed programs are asyn-
chronous so their behavior varies with the timing of
events, and the additional execution required for sat-
isfaction detection may alter the timing. Thus, the

0-8186-3200-3/92 $03.00 © 1992 IEEE

additional execution required for debugging must be
minimized.

Another requirement is that it should be possible to
test the same execution repeatedly. Cyclic debugging
is one of the most common methods[7]. In the example
in Fig. 1(a). when the program is halted by the pred-
icate “z; = 1[)z4 = 17, the user might set another
breakpoint and execute the program again to deter-
mine the cause of the bug. For cyclic debugging, the
behavior must be the same in every execution. How-
ever, the execution behavior might be nondetermin-
istic. For example, there might be another behavior,
such as shown m Fig. 1(b), for the same distributed
program because of a connect request delay. This be-
havior has no bug, since “z; = 1 z4 = 1” does not
hold. A similar situation might occur due to a message
transmission delay (for example, the message from p4
arrives earlier than the one from ps). Thus, in one
execution a bug is found, but in the next execution,
in which user tries to find the cause of the bug, the
behavior might be different and the bug might occur
at another point (or not at all). This makes debugging
very difficult. Thus, for cyclic debugging, repeatedly
testing of the same execution is necessary.

The third requirement is that distributed debug-
gers should let a user see the state just after a given
predicate is satisfied. Since the predicate defines a
bug condition, the execution that follows after it is
satisfied might be meaningless for the user. The ex-
tra execution might also hide the real cause of the
bug from the user. Thus, debuggers must show the
user the exact state where the predicate is satisfied.
Consider the case in Fig. 1(a) that the given global
predicate P is “xy = 1{ x4 = 1. This predicate has
no condition concerning processes other than p; or py.
Where should we halt the other processes? The cause
for the predicate becoming true might not only be in
P1 o1 pg, but in the other processes. The message from
pe might cause P to be true. Thus, ps should stop at
the state when it has sent a message to p;, which is
the last event for ps to make P to be true. The same
situation might occur for the other processes. There-
fore, all processes should halt at the state in which
each process has executed the minimum requirements
for making P true.

Current research on detecting global predicate sat-
isfaction falls into three categories: detection during
execution, after execution, and during replay. De-
tection during execution tests the process state dur-

-~ -
connect/accept
—_———
process fork
———f
message
® event
O state
time

(b)

Figure 1: Examples of distributed program behavior.

ing execution(5][9]{14]. This needs no replay mecha-
nism or execution of the whole programs in advance.
Miller and Choi[14] have presented an algorithm for
detecting a global predicate called a Linked Predicate.
The Linked Predicate has the form “SP, — SPy —
...SP,”, where SP, is a simple predicate. The ar-
row “—” is Lamport’s “happens before” relation[10].
Thus, “SP; — SP, — ...SP,” means that “SP; is
satisfied, and then SP; is satisfied and so on, and then
SP, is satisfied”. This predicate is relatively easy to
detect, since the predicate can be piggybacked onto
messages between processes. However, the probe ef-
fect is not small since it tries to detect satisfaction
during execution. And the exact state when the pred-
icate 1s satisfied cannot be obtained, since this algo-
rithm lets the process with SP; do an extra execution
for a given condition “SP, — SP,".

Haban and Weigel’s algorithm[9] considers Disjunc-
tive and Conjunctive Predicates, not restricted to the
Linked Predicates. However, it is also impossible for
their algorithm to halt the processes just when the
predicate is satisfied. The probe effect problem also
exists.

Cooper and Marzullo[5] considered halting at “Cur-
rently P”, which means halting at the state when P
1s satisfied. Their algorithm blocks some processes, so
the probe effect is large. In addition, for some pred-

403

icate P, the algorithm cannot halt at the state when
the condition is satisfied. Consider the case the pred-
icate P 1s “zy = x2”. Process p; has the variable z;
whose initial value is 1. Process p, has the variable x5
whose initial value is 2. When the debugger lets p; ex-
ecute one step, it might happen that z; # 1 is always
true and z2 = 1 holds after some steps in p,. When it
lets ps execute one step, it might happen that z, # 2
1s always true and z; = 2 holds after some steps in
p1. Thus, it is impossible to halt at a state where
currently P is true.

Detection after execution first gathers traces of
event sequences for each process independently and
tests the execution afterwards[3][8]. The log storing
algorithm during execution is simple and any com-
plicated analysis can be done. However, it is neces-
sary to specify before execution which values should
be recorded during execution. Thus, the log tends to
be big and the probe effect problem exists. In addi-
tion, if some information (which was not specified be-
fore) proves to be necessary to detect the cause of the
bug, the successive execution to get the information
might be different and no error might occur.

Detection during replay is as follows. During
the first execution, the minimum information neces-
sary to replay is collected and after that, the execu-
tion is replayed using the stored information. The
global predicate satisfaction is detected by the sec-
ond execution[12]. If a distributed program contains
neither nondeterministic statements such as asyn-
chronous interrupts nor time dependent statements
such as reading a clock, its execution can be replayed
according to a small log kept during execution; thus,
the probe effect can be small. The replay technique
discussed in [1], [11], and [16] is based on the above
premise. They only consider the replay technique, and
detecting global conditions is not considered.

Detecting the global predicate based on this replay
method is considered in [12]. It can halt the processes
at the first state for a given Conjunctive Predicate
condition. However, the algorithm has the restriction
that no dynamic process fork and no dynamic commu-
nication channel creation is allowed in distributed pro-
grams. Dynamic process fork and channel open/close
are commonly used in client-server type distributed
programs. In this paper, an algorithm for detecting
global predicate satisfaction is shown for dynamically
process fork and open/close connection distributed
programs.

Section 2 presents the model of the distributed sys-
tem. Section 3 shows a replay method for dynamic
distributed programs. Section 4 gives a halting al-
gorithm for detecting a given Conjunctive Predicate.
Section 5 presents an implementation. Section 6 sum-
marizes the paper and discusses further study.

2 Model Definition
2.1 Distributed System Model

This paper assumes that values exchanged between
processes depend only on the initial values in each pro-

cess and the order in which processes communicate.
That is, processes are assumed to be deterministic.
Stated somewhat differently, there are no nondeter-
ministic statements, such as asynchronous interrupts,
and there are no time dependent statements, such as
reading a clock or time out.

The distributed system execution model, based on
message-passing communication, is the same as that
proposed by Lamport[10]. The system consists of pro-
cesses and channels. Channels are assumed to have
infinite buffers, to be error-free, and to be FIFO. The
delay experienced by a message in a channel is arbi-
trary but finite. Note that in some distributed sys-
tems, processes communicate via shared memory[11].
Such systems can be simulated by a message-passing
system(12]. This paper refers only to a message-
passing system, but the results are also applicable to
systems which communicate through shared memory.

Forking a child process, connecting a channel, ac-
cepting a connect request, closing a communication
channel, sending a message, and receiving a message
are considered to be special events and are called a
fork event, connect event, accept event, close event,
send event, and receive event, respectively. The other
events are called internal events. The initial state of
each process is also considered to be an internal event.
For a child process (that is, a process that did not ex-
ist at the beginning), the initial state is considered to
be the state before creation. We can then define the
“happened before” relation[10] for dynamic systems,
denoted by “<”, as follows. (In [10], — is used rather
than <.) The relation without conditions (3) and (4)
below is the original “happened before” relation.

Definition 1 The relation “<” on the sect of events
of a system is the minimum relation satisfying the fol-
lowing conditions: (1) If a and b are cvents in the
same process, and a comes before b, then a < b. (2
If a is the sending of a message by one process and
b is the receipt of the same message by another pro-
cess, then a < b. (3) If a is a connect event and b
is the corresponding accept event, a < b and b < a.
(4) If a is a fork event for a parent process and b is
the corresponding child event (that is. a child process
initiahzation event), a < b. (5) Ifa < b and b < c,
then a < c.
For two events a and b, a < b ifa< b ora = b.

Next, for the proof, Chandy-Lamport’s “meaning-
ful global state”[2] of the distributed system is for-
mally defined using the “happened before” relation.
Let N be the number of processes.

Definition 2 Let E; be the set of events in process i.
An N -tuple of events s = (e1,ea,...,en) (e € Ey) is
said to be a global state iff for all e; € E;r el > e
implies e; £ e; for any j(1 < j < N).

Let U be the set of all the global states.

Global state s = (e, eq, ..., en) 1s intuitively con-
sidered as a set of concurrently occurring events for
some timing occurrence, and we consider it as the state
when each process i has just finished the execution of

404

I process | process l process I
messages halt/execute,
between test the state
processes LD2

history:

GD

Y

user

Figure 2 Distributed program debugger.

e;. The “happened before” relation for global states
is defined as follows.

Definition 3 For two global
s={ej,ea,....en) and s’ = (el ey, .. eh),
s< s iffe; <€} for every i(1<i< N), and
s<s& iff s<s' and s #£ 5.

states

Lastly, the “first” global state for a predicate is defined
as follows.

Definition 4 For a predicate P,

G(P) = {s € U|P(s) = true}.

Inf(P) = {s|s € G(P) and ¢ ¢ G(P) for any s’ €
U such that s’ < s}.

2.2 Debugger Model

A replay-based debugger D consists of one main
debugger GD and local debuggers LD; corresponding
to the processes (Fig. 2). Every LD; is connected to
GD by a communication channel. ¢D sends commands
to LDy, receives its replies, and displays the results to
the user. D executes the programs iteratively. The
first execution is called the monitoring phase and the
others are called replay phases.

After the monitoring phase, debugger commands
such as “stop if P” are given to GD by the user.

In the replay phase, LD; controls process i with the
following operations offered by sequential program de-
buggers: (1) see the type of the event to be executed
next, (2) store a received message in a buffer, (3) ex-
ecute the next event, (4) examine the current state.

3 Replay Method for Dynamic Dis-
tributed Programs

This section presents a replay method for dis-
tributed programs which dynamically fork child pro-
cesses and open/close connections. Consider the com-
munication and process fork primitives in Fig. 3. Here,
mode is blocking or non-blocking. If mode is non-
blocking and no message is available, it returns an

error. If mode is blocking, the routine is blocked until
a message arrives.

C system call routines

e int fork() : create child process

e int socket() : create a socket

e int bind() : bind a name to a socket

e int listen() : listen for a connection

e int accept() : accept a connection request
e int connect() : initiate a connection

e int close() : close a socket

Message transmission Routines
e int snd(sockno, message)
: send a message to a channel
e int rcv(mode, sockno, message)
: receive a message from a channel
e int rcva(mode, message)
: receive from any channel
e int rcvs(mode, sockno_set, message)
: receive from any channel in a channel set

Figure 3. Communication/process fork routines.

In this algorithm, there is the restriction that ev-
ery channel must be a one-to-one connection. When
a child process fork occurs, one socket is connected
to two sockets (the parent’s and child’s sockets) and
it can receive from both of them. This case is not
considered for simplicity. (Note that if additional in-
formation is stored in the log, such communication can
also be replayed.) When a process fork occurs, each
socket must be closed by the child or parent process
Just after the fork statement.

In the monitoring mode, when these routines are
called, the event log is stored as follows. The log
is stored for each process as a file named ‘historyX’
(where X is the process id). The first line shows
whether the process is created by the user or by an-
other process. If the line begins with parent, it shows
it is a child process and the number is the parent pro-
cess number. If not, the line is the program name
and its arguments. For the other lines, if it begins
with a number, it is connect (connect follows), ac-
cept (accept follows), or receive (number only). The
first number is the process’s socket number. In the
cases of accept or connect, next number is its local
socket address and the others are the remote hostname
and its socket address. These values can be obtained
by calling getsockname() and getpeername() after
it is connected or accepted. In the case of receive, the
number shows the socket number from which the cur-
rent message is received. If the value is -1, it means
that no message is received by the receive command.

The line beginning with fork shows that a child
process fork is done and the child process number is
logged. The example in Fig. 4 is the log of the execu-
tion in Fig. 1(a). Note that socket, close, and snd
need not to be stored in the log.

After the monitor mode, the execution is replayed
according to the event log. When the processes are
created, the process number is different from the orig-
inal execution. Thus, each process has a replay process
number rpid and channel connection request and its
reply is handled using rpid. Since connect/accept and
message transmission are asynchronous, the arrival or-
der of connect request or message might be different

405

in the monitoring and replay phases. Thus, using the
event log, the execution is blocked until the proper
request or message arrives. The replay algorithm is
similar to the instant replay algorithm[11} and its de-
tail will be described in the final paper.

client_a arg_for_a
3 connect 4001 host2 3001
4 connect 4002 host3 5001
4
3

history10001(p1)

parent 20001

history20002(p4)

client_b arg_for_b
3 connect 4010 host2 3002
history10002(p2)

parent 20001
history20003(p5)

server_x arg_for_x

4 accept 3001 hosti 4001

fork 20002

4 accept 3002 hosttl 4010

fork 20003
history20001(p3)

server_y arg_for_y
4 accept 5001 host1l 4002

history30001(p6)

Figure 4. History of the behavior in Fig. 1(a).

4 Global Predicate Satisfaction Detec-
tion Algorithm

This section proposes an algorithm which stops the
processes al. Inf(P) when P 1s a cP.

For each process, we introduce “active” and
“passive” states. If the process is being executed, it
is called active. A passive process becomes active only
when another active process makes it active. System
halting means that all processes are passive.

For a given P, suppose processes without a simple
predicate have a special predicate which is always true.
Initially, processes whose simple predicate is false are
active and the other processes are passive. There are
three cases in which a process activates another pro-
cess.

e channel connection
e message transmission
e child process fork

First consider channel connection. Suppose an ac-
tive process p tries to connect a socket to process p'’s
socket. Process p sends a control message to p’ that
to ask p’ to execute the corresponding ‘accept’. If p’ is
passive, it becomes active upon receiving this control
message and executes until its simple predicate be-
comes true after the ‘accept’. The message transmis-
sion is the same as channel connection where ‘connect’
and ‘accept’ correspond to ‘receive’ and ‘send’.

The last case is child process fork. The previous
cases supposed that process p’ exists. There is a case
in which p’ does not exist since p’ is a child process
of a process p”, and p’ has not executed ‘fork p”’. In
that case, when LD,/ receives the control message sent

to p', it sends another control message ‘fork p'’ to p”’.
The parent process number p”’ can be ohtained from
the history of process p’. Process p” becomes active
upon receiving the control message and executes until
its simple predicate becomes true after the ‘fork’.

In other words, a process is active when its pred-
icate is false, or when it must connect or accept a
socket, send a message, or fork a child process.

We should be able to detect the state in which ev-
ery process is passive. This is one variation of the dis-
tributed termination detection problem[6’, and many
algorithms have been proposed for different assump-
tions regarding the system. The part that detects the
termination is called a termination detector. Status
changes are reported to the termination detector when
they occur. To simplify termination detection, we as-
sume that control messages go through the termina-
tion detector. The termination detector can be imple-
mented either in a distributed fashion (in LD;) or in a
centralized fashion (in GD). The distributed algorithm
shown in [4] can be used for this termination detector.
The halt algorithm is outlined in Fig. 5.

program HaltAtBreakpoint /* Program for LD;. */
function TermTest;
if s[i] > ms[i] for all i € sset and
SP = true and cpid = {}
then return(passive) else return(active) end;
function TryEzec; /* let e be the next event */
if e is create socket i then begin
Execute e; sset := sset| J{i}; return(Null) end:
if e is connect or accept for socket ¢ then begin
if ms[i] = 0 then Send ‘Connect Psockipid,:) to
Peer(pid,i);
Execute e; return(Null) end; /* make a connection
to socket Psock(pid, i) in process Peer(pid,). ¥/
if ¢ is fork then begin /* let pid be the child. */
Execute €; Send ‘Forked, sset, s.7,ms " to LDpig ;
For all ‘close(z)’ after fork sset := sset — {z} :
cpid 1= cpid — {pid}; return(Null) end;
if e is receive from i and there is no program message
from ¢ in the local quene then begin

Send control message “r[i] + 17 to i; return(:) end

else begin Execute e; return(Null) end
end;
begin /* MAIN */
for i := 0 to NumberOfSockets do begin
s[1] := 0; /* The number of messages sent to ¢ */

r{i] := 0; /* The number of messages received from i */

ms(i] := 0 /* i requested to send up to ms[i] */ end;
cpid := {}; /* process number to fork */
sset:={}; /* current socket set */
ezt ;= ThisPracessEzistsFromTheBegnzsnmg;
while(ezit=false) do begin
When ‘Connect 1’ is arrived: begin ms[i] = 1;
sset := sset| J{i}; Send ‘Fork I’ to LD parent(r)
end;
When ‘Fork pid’ is arrived: begin
S;nd ‘Fork I’ to LDpareny(1); cpid := cpid | J{pid}
end;
When ‘Forked rsset, rs, rr, rms’ is arrived:
begin exit :=true; sset := sset rsset;
For all i € rsset begin s[1] := rs[i]; r[1] = rrli);
ms{i] := rms[i] end;
For all ‘close(i)’ after fork sset := sset — {1}
end

state in Inf(P).

end; /* end of while loop */
cstat := TermTest; Send cstat to TermDetector;
if cstat =active then waitp := TryFEzec;

When execution of event e is finished: begin
if e = send/connect/accept to i then s[i] := s[i]+1;
if e = receive/connect/accept to ¢ then 7[i) := rli] + 15
cstat = TermTest;
if cstat =active then waitp := TryEzec
else Send cstat to TermDetector;
end;
When program message m is arrived from i: begin
Insert m to local queue;
if waitp = i then waitp := TryEzec
end;
When control message “k” is arrived from i : begin
ms[i] := k; bstat := cstat; cstat := TermTest;
if bstat =passive and cstat =active then begin
Send cstat to TermDetector; waitp := TryFzec end
end;
When *Connect i is arrived: begin ms[i] = 1;
sset = sset| J{1}; bstat := cstat; cstat = TermTest;
if bstat =passive and cstat =active then begin
Send cstat to TermDetector; waitp := TryEzec end
end,
When ‘Fork pid’ is arrived: begin
epid := epid | J{pid}; bstat = cstat; estat := TermTest,
if bstat =passive and cstat =active then begin
Send cstat to TermDetector; waitp := TryFErec end
end;
When Termination is detected: Halt;

end.

Figure 5. Halting algorithm for cp.

Now we show that the algorithm can halt the pro-
cesses at Inf(P).

Lemma 1 {12} If P 1s a cp, |[Inf(P)| < 1.

Theorem 1 The algorithm can hall the processes at
Inf(P) for a given CpP.

(Proof) Let inf = (t1,ta,...,1,) be the global
To show that the system halts at
inf, the following properties must be demonstrated.

e The processes do not terminate at any s € U such
that s < inf.
e Process i does not execute beyond ¢;.

Assume that the system halts at some s € UU. Every
SP;i is true at s. Thus s is contained in G(P). If
s < inf, the definition of In f(P) is contradicted.” The
former proposition is therefore true.

Next we show the latter proposition. Process 7 exe-
cutes the next event if and only if one of the following
conditions is satisfied.

e ¢ has an SP, and SP; = false.

e i received a control message requesting a child
process fork and has not yet forked the process.

e i received a control message requesting connect
or accept.

o ireceived a control message requesting a message
and has not yet sent the message.

406

Suppose that the system halts at s such that some
process ¢ executes beyond t;. Let s’ be a global state
during the replay such that s’ (s1,82,...,8n) <
inf, and for some process i which executes beyond t;
ins, s; =t in s’. Let Siny be the set of processes
which satisfy s; = t;. No process in Sin; executes the
next event by the first of above conditions, because
s; = t;. Thus, they do not execute the next events
unless some process j & Si, sends a control message
to a process k € Siny, before it executes t;, to ask
for a child process fork, connect, accept, or message
sending whose corresponding event k has not executed
at f;. Let the corresponding events at k and j be e,
and e;, respectively. Thus, ex > t; and e; < e; < t;
holds, which contradicts inf € U.

Therefore, no process executes beyond ;.]

Note that it is impossible to halt at Inf(P)if Pis a
DP [12]. It is also impossible for other predicates which
cannot be converted to a cp (for example, predicate
z; = z9, where z; is a variable n p;).

5 Prototype Implementation

We developed a prototype distributed debugger
ddbx-p on UNIX! 4.2 BSD. The ddbx-p commands
related to the global predicates are as follows.

e stop if [global predicate] :set a breakpoint
e trace [expression] if [global predicatel
:set a trace condition
e switch [commandno], [predicateno]
:change primary

[%lobal predicate]::=[conjunctive predicate] |
conjunctive predicate] or [global predicatel
[conjunctive predicate]::=[simple predicate] |

[simple predicate] and [conjunctive predicate]

Since it is impossible to halt at Inf(P) for a DP,
ddbx-p can halt at Inf(P) for only one cp. This
CP is called a primary predicate. Users can specify
one CP as the primary. The switch command changes
the primary. For the other predicates, ddbx-p reports
satisfaction after Inf(P) and halts.

Another command trace prints out the value of
some expression whenever the condition is satisfied
and continues execution. It is not necessary to stop at
Inf(P), if the values of the variables in the expression
are saved during replay. Thus, trace can print out the
expression value at Inf(P) even if P is a DP. The
algorithm is similar to that in [12].

The ddbx-p receive primitive takes about 153 pus
with monitoring and 196 ps without monitoring on
SUN4. Thus, the time for monitoring is about 43 us
per receive event. Therefore, if receive occurs less than
once within 5 ms, the overhead for monitoring is less
than 1%. (Generally, the other events are not called
as frequently as receive.) Therefore, the probe effect
might not be so great for some programs. The log size
is a few bytes per event. (Strings such as connect and
fork can be encoded to reduce the size.) Thus, the
size of the log is not too great for ordinary programs.

LUNIX is a registered trademark of AT&T.

407

6 Conclusion

We presented a global predicate satisfaction detec-
tion algorithm for distributed programs which dynam-
ically fork child process and open or close connections.
We developed a prototype debugger, ddbx-p, and on
the basis of experience using it in our group, we will
refine by adding other commands which are more use-
ful for debugging distributed programs.

Acknowledgments The authors would like to
thank Dr. Rikio Onai for his suggestions. They also
thank Dr. Makoto Imase and Dr. Naohisa Takahashi

for discussions about early versions of this work.

References

[1] Carver, R. H., and Tai. K. Reproducible Testing of Con-
current Programs Based on Shared Variable, 6th ICDCS
(May 1986), pp. 428-433.

Chandy. K. M., and Lamport, L. Distributed Snapshots:
Determining Global States of Distributed Systems, A CM
TOCS, 3, 1(Feb. 1985), pp. 63-75 .

Choi, J.-D., Miller, B. P., and Netzer, R. Techniques
for Debugging Parallel Programs with Flowback Analysis,
Tech. Report 786, Univ. of Wisconsin-Madison, Computer
Science Department (Aug. 1988).

Cohen, S., and Lehmann, D. Dynamic Systems and Their
Distributed Termination, 2nd PODC (1982), pp. 29-33.
Cooper. R. and Marzullo, K.: Consistent Detection of
Global Predicates, Workshop on Parallel and Distributed
Debugging (May 1991), pp.167-174.

Dijkstra, E. W., and Scholten, C. S. Termination Detec-
tion for Diffusing Computations, Inform. Process. Lett. 11
, 1(1980), pp. 1-4.

Fairley, R. E. Software Engineering Concepts, McGraw-
Hill, pp. 288-289.

Garcia-Molina, H., Germano, F. Jr., and Kohler, W.H.
Debugging a Distributed Computing System IEEE Trans.
Software Eng., Vol.SE-10, No.29(Mar. 1984), pp.210-219.
Haban, D. and Weigel, W. Global Events and Global
Breakpoints in Distributed Systems, 21st Hawait Int.
Conf. on System Sciences, (Jan. 1988), pp. 166-175.

Lamport, L. Time, Clocks, and the Ordering of Events in
a Distributed System, CACM, 21, 7(July 1978), pp. 558-
565.

LeBlanc, T. J., and Mellor-Crummey, J. M. Debugging
Parallel Programs with Instant Replay, JEEE Trans. Com-
put., C-36, 4(Apr. 1987), pp. 471-480.

Manabe, Y. and Imase, M. Global Conditions in Debug-
ging Distributed Programs, J. of Parallel and Distributed
Computing, Vol.15(May 1992), pp.62-69.

McDowell, C.E. and Helmbold, D.P. Debugging Concur-
rent Programs, A CM Computing Surveys, Vol.21, No.4,
(Dec. 1989) pp.593-622.

Miller, B. P, and Choi, J.-D. Breakpoints and Halting in
Distributed Programs, 8th ICDCS (1988), pp.316-323.
Pancake, C.M. and Utter, S. A Bibliography of Parallel
Debuggers, 1990 Edition, ACM SIGPLAN Notices, Vol.26,
No.1 (Jan. 1991) pp.21-37.

Takahashi. N. Partial Replay of Parallel Programs Based
on Shared Objects, IEICE Tech. Report COMP89-98
(Dec. 1989) (In Japanese).

(2)

(3

(]

{10]

(1]

(12]

(13]

(14]

(15]

(16]

