
A Distributed First and Last Consistent Global Checkpoint Algorithm

Yoshifumi Manabe
NTT Basic Research Laboratories

3-1 Morinosato-Wakamiya, Atsugi-shi, Kanagawa 243-01 Japan
manabe@theory.brl.ntt.co.jp

Abstract

Distributed coordinated checkpointing algorithms are
discussed. The first global checkpoint for a checkpoint ini-
tiation is a set containing the checkpoint for each process
in which any checkpoint before the element is not consistent
with the initiation. The last global checkpoint for a check-
point initiation is a set containing the checkpoint for each
process in which any checkpoint after the element is not con-
sistent with the initiation. This paper presents distributed
algorithms that make the first and last global checkpoints
consistent with a minimum number of checkpoints taken in
each process.

1 Introduction

Distributed coordinated checkpointing obtains a set of
states as a consistent global checkpoint [8], in which no
message is recorded as received in one process and as not yet
sent in another process. It can be used for process rollback1.
When a process initiates checkpointing, additional check-
points must be taken in other processes in order to obtain
a consistent global checkpoint that includes the initiation.
Different global checkpoints might be obtained depending
on the additional checkpoints taken by each process.

This paper considers two cases and defines two kinds of
global checkpoint. The first case is recovery from failure.
When process pi experiences a failure, all processes roll
back to each state in a consistent global checkpoint. The
additional rollback for processes other than pi must be as
small as possible in order to minimize the overhead of re-
execution. Thus, it is better for the other processes to roll
back to latter checkpoints. The second case is rollback in
debugging. Assume that pi rolls back to a state when an er-
ror is observed. The bug might be in process pj and a wrong

1In order to roll back, the messages which have been sent but not
received must be restored. The message restoration method is similar to
that in [9] and the details are given in [6]. This paper thus discusses
obtaining a consistent global checkpoint.

message from pj might have caused the error. Thus, the
debugger user wants to observe each process in a consistent
global state. If a latter checkpoint is used for pj’s rollback,
the bug might be hidden by further execution of pj ; for ex-
ample, exiting from a subroutine and deleting all variables
that decided the content of the wrong message [4]. Thus, it
is better for the other processes to roll back to former check-
points. This paper thus defines two global checkpoints: the
first and last global checkpoints [5]. The first (last) global
checkpoint for a checkpoint initiation is a set containing the
checkpoint for each process in which any checkpoint before
(after) the element is not consistent with the initiation. This
paper then gives two distributed algorithms that make the
first and last global checkpoint consistent with the minimum
number of additional checkpoints taken in each process.

Though independent checkpointing algorithms, such as
that in [9], do not need consistent global checkpoints, they
can be used only for systems in which all non-deterministic
events can be recorded during execution and replayed dur-
ing re-execution. For systems in which records of non-
deterministic events can be very large or replaying non-
deterministic events is difficult, a consistent global check-
point is necessary.

Chandy et al.’s distributed snapshot algorithm [2] obtains
a consistent global checkpoint (neither the first nor the last)
for concurrent initiations. The author [7] extended their al-
gorithm and the extended version minimizes the number of
additional checkpoints. Venkatesh et al.’s algorithm [10] ob-
tains a last global checkpoint that is consistent, and Baldoni
et al.’s algorithm [1] obtains a first global checkpoint that is
consistent, but they did not define the concept of first and
last global checkpoints. Their algorithms do not minimize
the number of additional checkpoints.

2 The first and last global checkpoint

The distributed system is modeled by a finite set of
processes fp1; p2; : : : ; png interconnected by point-to-point
channels. Channels are assumed to be error-free, non-FIFO,
and have infinite capacity. The communication is asyn-

chronous; that is, the delay experienced by a message is
unbounded but finite. pi’s execution is a sequence of pi’s
events which include checkpoint initiations. Checkpoint
initiations are done independently by each process. System
execution E is the set of each process’s executions. pi’s
execution with checkpointing algorithm A is pi’s execution
interleaved with the additional checkpoints taken byA in pi.
System execution with A, E(A), is the set of each process’s
execution with A.

The following assumptions are common for distributed
checkpointing algorithm A [1][10]. A has no prior knowl-
edge about execution E. All information for A is piggy-
backed on program messages between processes. When pi
receives a message m, A can get the information piggy-
backed on m and take an additional checkpoint before pi
executes the receive event.

The “happened before(!)” relation between the events
in E(A) is defined as follows [3].

Definition 1 e! e0 if and only if

(1) e and e0 are executed in the same process and e is not
executed after e0.

(2) e is the send event s(m) and e0 is the receive event
r(m) of the same message m.

(3) e! e00 and e00 ! e0 for event e00.

When e and e0 are executed in different processes
and e ! e0, there is a sequence of events
e; s(m1); r(m1); s(m2); : : : ; s(mk); r(mk); e

0 in which
e ! s(m1), r(mi) ! s(mi+1)(i = 1; : : : ; k � 1),
r(mk) ! e0, every pair of events is executed in the same
process, and every s(mi) is executed in a different process.
This sequence is called a causal sequence from e to e0. k is
the length of the causal sequence.

Two special events, ?i and >i, are defined for pi. ?i

is an imaginary event which is pi’s initial state. >i is pi’s
current event if pi is not terminated. If pi is terminated, >i

is an imaginary event which is pi’s terminal state. For any pi
event ei, ?i ! ei and ei ! >i hold. This paper considers
>i and?i as checkpoints in E.

For pi’s event ei in E(A), two events on pj , causal-past
event, cpeii (j), and causal-future event, cfeii (j), are defined
as follows.

Definition 2 � cpeii (i) = cfeii (i) = ei.

� cpeii (j) is last event ej in pj that satisfies ej ! ei. If
there is no event ej satisfying ej ! ei, cp

ei
i (j) = ?j .

� cfeii (j) is first event ej in pj that satisfies ei ! ej . If
there is no event ej satisfying ei ! ej , cf

ei
i (j) = >j .

Intuitively, cpeii (j) is pj’s last event which is known to
pi at ei. cf eii (j) is pj’s first event which knows ei. In

Fig. 1, cpc
1
2

2 (1) = s(m1), cp
c1

2
2 (2) = c1

2, cpc
1
2

2 (3) = s(m2),

cp
c1

2
2 (4) = ?4, cf c

1
2

2 (1) = >1, cf c
1
2

2 (2) = c1
2, cfc

1
2

2 (3) =

r(m5), and cf c
1
2

2 (4) = r(m6).

Definition 3 A pair of checkpoints (c; c0) is consistent if and
only if c 6! c0 and c0 6! c.

Definition 4 A global checkpoint (c1; c2; : : : ; cn) is n-tuple
of checkpoints where ci is pi’s checkpoint. A global check-
point is consistent if and only if all distinct pairs of check-
points are consistent.

Definition 5 The first global checkpoint for pk’s checkpoint
initiation ck in E(A), FGck

k (E(A)), is defined as follows.
i-th element, FGck

k (E(A); i), is the first checkpoint in pi
which is not before cpckk (i).

E(A) is omitted if it is obvious.

Definition 6 The last global checkpoint for pk’s checkpoint
initiation ck in E(A) LGck

k (E(A)), is defined as follows.
i-th element, LGck

k (E(A); i), is the last checkpoint in pi
which is not after cfckk (i).

FG
ck
k (E(A); i) (or LGck

k (E(A); i)) = >i means that pi
need not roll back at all when pk rolls back to ck.

Any checkpoint of pi before cpckk (i) or after cf ckk (i) is not
consistent with cckk . Thus, FGck

k (E(A)) and LGck
k (E(A))

are the best possible “former” and “latter” global check-

points for ck. In Fig. 1, FGc1
2

2 (E) = (c1
1; c

1
2; c

1
3;?4) and

LG
c1

2
2 (E) = (>1; c

1
2; c

1
3; c

2
4). FG

c1
2

2 (E) is not consistent

since c1
1 ! c1

3. LGc1
2

2 (E) is not consistent since c1
3 ! c2

4.
Though FG

ck
k (E) and LG

ck
k (E) might not be consis-

tent, FGck
k (E(A)) and LG

ck
k (E(A)) can be consistent by

the additional checkpoints taken by A. In Fig. 1, if A

takes an additional checkpoint at e1, FGc1
2

2 (E(A); 3) = e1

and FG
c1

2
2 (E(A)) is consistent. If A0 takes an additional

checkpoint at e2, LGc1
2

2 (E(A
0); 3) = e2 and LG

c1
2

2 (E(A
0))

is consistent. If algorithm A0 takes an additional check-
point just before every receive event, FGck

k (E(A0)) and
LGck

k (E(A0)) is consistent for any checkpoint initiation ck.
However, the overhead of A0 is very large. This paper
shows two distributed checkpointing algorithms, FA and
LA. Among algorithm A which makes every FGck

k (E(A))
(LGck

k
(E(A))) consistent, FA (LA) takes the minimum

number of additional checkpoints2.

2Our algorithms deal with checkpoint initiations and additional check-
points differently. If a user wants to deal with an additional checkpoint
as an initiation, this can be done by executing the checkpoint initiation
procedure for the additional checkpoint.

3 Algorithm FA for FGck

k

In the rest of the paper, a sequence number is assigned
for (both of initiation and additional) checkpoints in each
process in E(A). ?i is pi’s 0-th checkpoint. Let cxkk be
pk’s xk-th checkpoint. It is sometimes denoted as xk in
subscripts if it is not ambiguous.

pi maintains a variable cki(j). cki(j) = x if pi currently
knows pj’s checkpoint cxj . cki(j) = �1 if pi currently
knows no checkpoint in pj . If cki(j) = x(� 0) at event e,
cxj ! e and ckj(j) = x at cpei (j) is satisfied. cki(i) is pi’s
newest checkpoint number. Updating ck can be done by
sending its current value on every message. This is shown
in detail in Fig. 4.

For any algorithm A, FG
ck
k (E(A)) for pk’s check-

point initiation ck can be represented using ck as follows:
Let CK(i) be the value of ckk(i) at ck. FGck

k (i) =

c
CK(i)+1
i (i 6= k). If the (CK(i)+1)-th checkpoint does not

exist in pi, FG
ck
k (i) = >i. In order to make it consistent,

FA takes additional checkpoints.
Now consider the case when a messagem from pj arrives

at pi. Assume that pi has taken (xi � 1) checkpoints before
the arrival of m.

The first case when the xi-th checkpoint must be taken
before r(m) is shown in Fig. 2. pi knows pk’s checkpoint
initiation cxkk and cxi�1

i ! cxkk . Since pi knows the initia-
tion, cxkk ! r(m) is satisfied. If pi does not take the xi-th
checkpoint before r(m), cxkk ! r(m) ! cxii (= FGxk

k (i))
and FGxk

k is not consistent.
This condition is represented as follows. Consider a

variable inii(j). inii(j) = true if pi knows a checkpoint
initiation c that satisfies cxjj ! c for pj’s current checkpoint
c
xj
j . The following is pi’s rule for taking a checkpoint before
r(m).

(Rule F1) inii(i) = true.
The update rule of ini is shown in Fig. 4.
The second case is shown in Fig. 3. In this case pk might

initiate a checkpoint after ek = cp
r(m)
i (k). Though this

checkpoint is unnecessary if pk actually does not initiate
after ek, pi takes it since pi cannot predict pk’s execution
after ek at r(m).

This case is divided into two subcases. The first subcase
is when pk knows pi’s current (the (xi � 1)-th) checkpoint
at ek. pk initiates checkpoint cxkk just after ek. Assume
that there is a checkpoint cxh that satisfies cxh ! r(m) and
cxh 6! ek. Since cxh 6! ek,FGxk

k (h)! cxh from the decision
rule of FG. If pi does not take the xi-th checkpoint before
r(m), FGxk

k (h) ! cxh ! r(m) ! cxii (= FG
xk
k (i)) and

FG
xk
k is not consistent.

The second subcase is when pk does not know pi’s
(xi � 1)-th checkpoint at ek. In order for pk to initiate a
checkpoint that satisfiesFGxk

k (i) = xi, pk must first receive

a message that carries the information of cxi�1
i and then ini-

tiate. Assume that there is a message m0 sent to pk but
not received before ek, which carries the information about
cxi�1
i . Assume also that pk receives m0 just after ek and

then initiates a checkpoint cxkk . Further assume that there is
a checkpoint cxh that satisfies cxh ! r(m) and cxh 6! r(m0).
Since cxh 6! r(m0), FGxk

k (h) ! cxh. If pi does not take
the xi-th checkpoint before r(m), cxh ! r(m) ! cxii and
FGxk

k is not consistent.
This condition is represented as follows. Introduce

boolean variable cri(j; k) and adi(j; k; h). cri(j; k) = true

if pi knows that pj knows pk’s current (the cki(k)-th)
checkpoint. Note that cri(i; k) is always true for every k.
adi(j; k; h) = true if pi knows that pj will know ph’s cur-
rent (the cki(h)-th) checkpoint if pj receives any message
sent to pj that carries pk’s current (the cki(k)-th) check-
point. If pj already knows pk’s current checkpoint or such
a message does not exist, adi(j; k; h) = false.

(Rule F2) (cri(k; i) = true and cri(k; h) = false)
or (adi(k; i; i) = true and cri(k; h) = false and
adi(k; i; h) = false) for some pair of (k; h).

The algorithm FA, which includes the update rule of the
above variables, is shown in Fig. 4.

Theorem 1 Every additional checkpoint taken by FA is
necessary.

Theorem 1 is obvious from the above discussion.

Theorem 2 FGxk
k (E(FA)) is consistent for any check-

point initiation cxkk .

(Proof) Assume that FGxk
k is not consistent and cxhh (=

FGxk
k (h)) ! cxii (= FGxk

k (i)). From the FG decision

rule, cxj�1
j ! cxkk and cxjj 6! cxkk if j 6= k.

(Case 1: i = k) cxhh ! cxkk contradicts the above fact.
(Case 2: h = k) Let the last message on the causal

sequence from cxkk to cxii be m. Since cxi�1
i ! cxkk and

c
xk
k ! r(m), inii(i) = true at r(m). From Rule F1, pi

must have taken the xi-th checkpoint before r(m). This
contradicts the assertion that cxii is after r(m).

(Case 3: i 6= k and h 6= k) There is a causal sequence
CS from cxi�1

i to cxkk . Let the sequence of messages in CS
beM1;M2; : : : ;Ml. Let the process that executes r(Ma) be
pza (a = 1; : : : ; l). Without loss of generality, pza satisfies
ckza(i) < xi � 1 before r(Ma) (a = 1; : : : ; l). Note that
c
xh
h 6! e for any event e in CS. Otherwise, cxhh ! c

xk
k and

this contradicts the FG decision rule. Let the last event e
in CS that satisfies e ! cxii be e0j on pj . Such an event
always exists because s(M1) ! cxii . If s(M1) is after cxii ,
cxii ! cxkk and this contradicts the FG decision rule. Let
ej = cpxii (j), that is, let ej be pj’s last event known to pi at
cxii . From the definition, e0j ! ej .

(Case 3-1: e0j is receive event r(M)) From the assump-
tion, the next send event in CS is after ej . There is a causal

sequence from ej to cxii . Let r(m0) be the last receive
event in the causal sequence. Since ckj(i) = xi � 1 and
ckj(h) < xh at ej , cri(j; i) = true and cri(j; h) = false

at r(m0). Thus, pi must have taken the xi-th checkpoint
before r(m0) from Rule F2.

(Case 3-2: e0j is send event s(M)) Let the receiver of M
be pg and let eg = cpxii (g). From the assumption, r(M)
is after eg . adi(g; i; i) = true, cri(g; h) = false, and
adi(g; i; h) = false are satisfied at r(m0) since ckg(i) <
xi�1, ckg(h) < xh at eg and ckg(i) = xi�1, ckg(h) < xh
at r(M). Thus, pi must have taken the xi-th checkpoint
before r(m0) from Rule F2.

The information piggybacked on each message and kept
in each process is O(n) integer and O(n3) boolean values.

4 Algorithm LA for LGck

k

Consider the case when pi realizes pk’s initiation cxkk at
receive event cfxkk (i). Let the message be m and its sender
be pj . Checkpointing algorithm A sets LGxk

k (E(A); i) as
pi’s newest checkpoint or takes a new additional checkpoint
before r(m) and sets LGxk

k (E(A); i) as the new one. In
either case, LGxk

k (E(A); i) is the last checkpoint that is
not after cfxkk (i). LA must decide whether it takes a new
additional checkpoint before r(m) in order to make LGxk

k

consistent with the minimum number of additional check-
points. Assume that pi has taken (xi�1) checkpoints before
the arrival of m.

The cases when thexi-th checkpoint must be taken before
r(m) are shown in Fig. 5. The first case is when there is a
checkpoint cxhh such that cxi�1

i ! c
xh
h and cxhh ! r(m) are

satisfied. There is an initiation cxk
k

that satisfies LGxk
k
(h) =

cxhh . LGxk
k is not consistent if cxii is not taken before r(m)

because cxi�1
i ! cxhh . Thus, an additional checkpoint is

necessary.
This condition is represented as follows. Consider a

variable seei(j). seei(j) = true if pi knows a checkpoint
c that satisfies cxjj ! c for pj’s current checkpoint cxjj .

(Rule L1) seei(i) = true.
The second case is when pi sends a message m0 to pro-

cess ph after cxi�1
i and neither LGxk

k (i) nor LGxk
k (h) has

been decided. This additional checkpoint is necessary if
pi sends message m00 to ph after r(m) and ph executes
r(m0), takes a checkpoint cxhh , and then executes r(m00).
Now, since cf

xk
k (h) = r(m00), LGxk

k (h) is cxhh or an ad-
ditional checkpoint that is taken just before r(m00). In ei-
ther case, cxi�1

i ! LGxk
k (h) and LGxk

k is not consistent if
LG

xk
k (i) = xi � 1. Therefore, pi must take an additional

checkpoint before r(m).
This case is represented as follows. Variable numi(j) =

x if pi knows the newest initiation by pj is cxj . Variable
dci(j; k) = true if pi knows that pk has decided the element
of LGx

j (k), where x = numi(j). Variable sti(j) = true

if pi has sent a message to pj after pi’s latest (the cki(i)-th)
checkpoint.

(Rule L2) dci(k; i) = false, dci(k; h) = false, and
sti(h) = true for some pair of (k; h).

AlgorithmLA, which includes the rule for updating these
variables, is shown in Fig. 6. LGxk

k (i) is stored in variable
lgi. lgi(k; xk) = y if LGxk

k (i) = c
y
i . Note that lgi(k; xk)

might be undefined for two reasons. First, pi does not know
initiation cxk , that is, cfxkk (i) = >i at a given state. In such
a case, LGxk

k (i) = >i. The second case is when cfxkk (i) =

cf
x0

k

k (i), that is, the information for two different initiations
by pk arrives at pi at the same time. The information about

old initiations is discarded because LG
xk
k (i) = LG

x0

k

k (i).
Thus, if lgi(k; x) is undefined for every x(x0 < x < xk)
and lgi(k; xk) is defined, lgi(k; x) = lgi(k; xk) for any
initiation cxk(x0 < x < xk).

Theorem 3 Every additional checkpoint taken by LA is
necessary.

Theorem 3 is obvious from the above discussion.

Lemma 1 [7] If a global checkpoint (c1; c2; : : : ; cn) is not
consistent, there is a pair (ci; cj) such that there is a causal
sequence from ci to cj whose length is 1.

Theorem 4 LGxk
k (E(LA)) is consistent for any checkpoint

initiation cxkk .

(Proof) Assume that LGxk
k is not consistent. From Lemma

1, assume that cxhh (= LGxk
k (h)) ! cxii (= LGxk

k (i)) and
let the message in the causal sequence be m.

Let exkj be the event when pj decides LGxk
k (j). Note

that LGxk
k (j) might be decided by deciding LG

x0

k

k (j) for

x0k > xk as described above. In such a case, exkj = e
x0

k

j .
e
xk
j is an initiation, a receive event, or >j (in this case,
LGxk

k (j) = >j). If exkj is a receive event, LGxk
k (j) is

before e
xk
h . In the other cases, exkj = LG

xk
k (j). Thus,

LG
xk
k (j) ! e

xk
j is satisfied. Note that LGxk

k (j) is pj’s
newest checkpoint at exkj . numj(k) < xk is satisfied before
e
xk
j and numj(k) � xk is satisfied after exkj .
cxhh 6= >h since there is an event s(m) after cxhh .
(Case 1: exki ! exkh) Since cxhh is ph’s newest checkpoint

at exkh and cxkh ! cxii ! e
xk
i ! e

xk
h , seei(i) = true at exkh .

Thus, cxhh must be the newly taken checkpoint just before
e
xk
h from Rule L1. This contradicts the notion that there is

an event s(m) between cxhh and exkh .
(Case 2: exkh is before s(m)) numi(k) � xk must be

satisfied at r(m). Thus, exki must be equal to or before
r(m). This contradicts the notion that cxii is after r(m).

(Case 3: exki 6! exkh and exkh is after s(m)) Since exki 6!
e
xk
h , dch(k; i) = false at exkh . Since there is an event s(m)

between cxhh and exkh , exkh is a receive event. Let X =
numh(k) at exkh . X � xk is satisfied. Since sth(i) = true

and dch(k; i) = false at exkh , cxhh must be the newly taken
checkpoint just before exkh from Rule L2. This contradicts
the notion that there is an event s(m) between cxhh and exkh .

The information piggybacked on each message and kept
in each process (other than the output) is O(n) integer and
O(n2) boolean values.

Here, the rule for removing old checkpoints is shown.
The amount of stable storage usage becomes large if old
checkpoints are not removed. Assume that pk rolls back to
the newest initiation by pk. pi might be forced to roll back
to lgi(k; num(k)). Thus, pi does not need the checkpoints
before minklgi(k; num(k)) and these checkpoints can be
removed.

5 Conclusion

This paper showed two distributed algorithms that make
the first and last global checkpoint consistent with a mini-
mum number of additional checkpoints taken in each pro-
cess. Remaining problems include reducing the amount of
information used by the algorithms.

Acknowledgments The author would like to thank Dr.
Hirofumi Katsuno of NTT for his encouragement and sug-
gestions.

References

[1] Baldoni, R., Helary, J.M., Mostefaoui, A., and Raynal, M.:
“Consistent Checkpointing in Message Passing Distributed
Systems,” INRIA Technical Report No. 2564 (June 1995).

[2] Chandy, K.M. and Lamport, L.: “Distributed Snapshots:
Determining Global States of Distributed Systems,” ACM
Transaction on Computer Systems, Vol. 3, No. 1, pp. 63–75
(Feb. 1985).

[3] Lamport, L.: “Time, Clocks, and the Ordering of Events in a
Distributed System,” Communications of ACM, Vol. 21, No.
7, pp. 558–565 (July 1978).

[4] Manabe, Y. and Imase, M.: “Global Conditions in Debugging
Distributed Programs, ” Journal of Parallel and Distributed
Computing, Vol. 15, No. 1, pp. 62–69 (May 1992).

[5] Manabe, Y.: “A Distributed First and Last Consistent Global
Checkpoint Algorithm,” IPSJ SIG Notes, AL96-54-3 (Oct.
1996).

[6] Manabe, Y.: “A Distributed Consistent Global Checkpoint
Algorithm with a Minimum Number of Checkpoints,” Tech-
nical Report of IEICE, COMP97-6 (Apr. 1997).

[7] Manabe, Y.: “A Distributed Consistent Global Checkpoint
Algorithm with a Minimum Number of Checkpoints,” Proc.
of 12th Int. Conf. on Information Networking (Jan. 1998).

[8] Netzer, R.H. and Xu, J.: “Necessary and Sufficient Con-
ditions for Consistent Global Snapshots,” IEEE Trans. on

Parallel and Distributed Systems, Vol. 6, No. 2, pp. 165–169
(Feb. 1995).

[9] Strom, R.E. and Yemini, S.: “Optimistic Recovery in Dis-
tributed Systems,” ACM Trans. on Computer Systems, Vol.3,
No.3, pp.204–226 (Aug. 1985).

[10] Venkatesh, K., Radhakrishnan, T., and Li, H.F.: “Optimal
Checkpointing and Local Recording for Domino-Free Roll-
back Recovery,” Information Processing Letters, Vol. 25, No.
5, pp. 295–303 (July 1987).

p
1

p
2

p
3

c
1
1

c
1
2

c
1
3 time

: message

process
p

4
¢Ý

1

e
1

m
1 m

2

m
3

c
1
2

m
4

c
1
4

c
4
2e

2m
5

m
6

¢Ý
1

¢Ý
2

¢Ý
3

¢Ý
4

: checkpoint

2
¢Ý ¢Ý

3
¢Ý

4

: initiation

Figure 1. System execution E.

c
k
x k

m r(m)

c
x i
i

c
x i
i

−1

p
k

p
i

:additional checkpoint
:initiation

:initiation or
 additional checkpoint

Figure 2. Rule F1.

c
k
x k

m r(m)
i
r(m)cp

c
x i
i

c
x i
i

−1

p p p
k h i

c
x
hi

r(m)cp (k)

c
k
x k

m r(m)
i
r(m)cp

c
x i
i

c
x i
i

−1

p
k

p
h

p
i

c
x
h

m’

i
r(m)cp (k)

Figure 3. Rule F2.

program FA; /* program for pi. */
const n = :::; /* number of processes */
var ck(n): integer;
ini(n), cr(n;n), ad(n; n; n): boolean;

procedure checkpoint begin
take a checkpoint;
ck(i) := ck(i) + 1;
ini(i) :=false;
for each k(6= i) do cr(k; i) :=false;
for each k(6= i); h do ad(k; i; h) :=false;
for each k(6= i); h do ad(k; h; i) :=false;

end; /* end of subroutine */
/* main */
initialization begin

for each k(6= i) do ck(k) := �1;
ck(i) := 0;
for each k do ini(k) :=false;
for each k(6= i); h do cr(k; h) :=false;
for each k do cr(i; k) := true;
for each k; h; l do ad(k; h; l) :=false;

end /* end of initialization */
when pi initiates a checkpoint begin

checkpoint;
for each k 6= i do ini(k) :=true;

end /* end of checkpoint initiation */
when pi sends m to pj begin

send(m, ck, ini, cr, ad) to pj ;
for each k do

if not(cr(j; k)) and not(ad(j; k; k)) then
for each h do ad(j; k; h) :=true;

end /* end of message sending */
when message (m, mck, mini, mcr, mad) arrives from pj
begin

for each k do begin
if ck(k) < mck(k) then begin
ini(k) := mini(k);
for each h(6= i) do cr(h; k) := mcr(h; k);
for each h(6= i); l do

if mck(l) � ck(l) then ad(h; k; l) := mad(h; k; l)
else ad(h; k; l) :=false;

end /* end of case ck(k) < mck(k) */
else if ck(k) = mck(k) then begin
ini(k) := ini(k) _mini(k);
for each h(6= i) do cr(h; k) := cr(h; k) _mcr(h; k);
for each h(6= i); l do

if mck(l) > ck(l) then
if ad(h; k; k) then ad(h; k; l) :=false

else ad(h; k; l) := mad(h; k; l)
else if mck(l) = ck(l) then

if (cr(h; l) or mcr(h,l) or
(ad(h; k; k) and not(ad(h; k; l))) or
(mad(h; k; k) and not(mad(h; k; l)))

then ad(h; k; l) :=false
else ad(h; k; l) := ad(h; k; l) _mad(h; k; l)

else /* mck(l) < ck(l) */
if mad(h; k; k) then ad(h; k; l) :=false;

end /* end of case ck(k) = mck(k) */
else /* ck(k) > mck(k) */

for each h(6= i); l do
if mck(l) > ck(l) then ad(h; k; l) :=false

end; /* end of if statement */
end; /* end of loop by k. */
for each k(6= i) do ck(k) := max(ck(k);mck(k));
if ini(i) or
9(k; h), ((cr(k; i) and not(cr(k; h))) or
(ad(k; i; i) and not(cr(k; h)) and not(ad(k; i; h))))

then checkpoint;
execute r(m);

end /* end of message arrival */

Figure 4. Algorithm FA.

c
x

m r(m)

c
x i
i

c
x i
i

−1

pp p
i

c
x

LG
x

hk

k
k

k
k

h
h

c
k
x k

m r(m)

c
x i
i

c
x i
i

−1
p

k
p

h
p

i

c
x h
h

LGk
x k

m"

m’

Figure 5. Rule L1 and L2.

program LA; /* program for pi. */
const n = :::; /* number of processes */
var ck(n), num(n), lg(n; �): integer;
dc(n; n), see(n), st(n): boolean;

procedure checkpoint begin
take a checkpoint;
ck(i) := ck(i) + 1;
for each k do st(k) :=false;
for each k(6= i) do see(k) :=true;
see(i) :=false

end; /* end of subroutine */
/* main */
initialization begin

for each k 6= i do ck(k) := �1;
ck(i) := 0;
for each k do num(k) := 0;
for each k; h do dc(k; h) :=true;
for each k do see(k) :=false;
for each k do st(k) :=false;

end /* end of initialization */
when pi initiates a checkpoint begin

checkpoint;
num(i) := ck(i);
for each k(6= i) do dc(i; k) :=false;

end /* end of checkpoint initiation */
when pi sends m to pj begin

send(m, ck, num, see, dc) to pj ;
st(j) :=true;

end /* end of message sending */
when message (m, mck, mnum, msee, mdc)
arrives from pj begin

for each k do begin
if num(k) < mnum(k) then

for each h do dc(k; h) := mdc(k; h);
else if num(k) = mnum(k) then

for each h do dc(k; h) := dc(k; h) _mdc(k; h);
end /* end of loop by k */
for each k do num(k) := max(num(k);mnum(k));
for each k do

if ck(k) < mck(k) then see(k) := msee(k)
else if ck(k) = mck(k)

then see(k) := see(k) _msee(k);
for each k do ck(k) := max(ck(k);mck(k));
if see(i) or
9(k; h), (not(dc(k; i)) and not(dc(k; h)) and st(h))

then checkpoint;
for each k do

if not(dc(k; i)) then begin
dc(k; i) :=true;
lg(k; num(k)) := ck(i);

end;
execute r(m);

end /* end of message arrival */

Figure 6. Algorithm LA.

