A Distributed First and Last Consistent Global Checkpoint Algorithm

Yoshifumi Manabe
NTT Basic Research Laboratories
3-1 Morinosato-Wakamiya, Atsugi-shi, Kanagawa 243-01 Japan
manabe@theory.brl.ntt.co.jp

Abstract

Distributed coordinated checkpointing algorithms are
discussed. The first global checkpoint for a checkpoint ini-
tiation is a set containing the checkpoint for each process
in which any checkpoint before the element is not consistent
with the initiation. The last global checkpoint for a check-
point initiation is a set containing the checkpoint for each
processin which any checkpoint after the element isnot con-
sistent with the initiation. This paper presents distributed
algorithms that make the first and last global checkpoints
consistent with a minimum number of checkpoints taken in
each process.

1 Introduction

Distributed coordinated checkpointing obtains a set of
states as a consistent global checkpoint [8], in which no
messageisrecorded asreceived in one processand as not yet
sent in another process. It can be used for processrollback®.
When a process initiates checkpointing, additional check-
points must be taken in other processes in order to obtain
a consistent global checkpoint that includes the initiation.
Different global checkpoints might be obtained depending
on the additional checkpoints taken by each process.

This paper considers two cases and defines two kinds of
global checkpoint. The first case is recovery from failure.
When process p; experiences a failure, all processes roll
back to each state in a consistent global checkpoint. The
additional rollback for processes other than p; must be as
small as possible in order to minimize the overhead of re-
execution. Thus, it is better for the other processes to roll
back to latter checkpoints. The second case is rollback in
debugging. Assumethat p; rolls back to a state when an er-
ror isobserved. The bug might bein process p; and awrong

In order to roll back, the messages which have been sent but not
received must be restored. The message restoration method is similar to
that in [9] and the details are given in [6]. This paper thus discusses
obtaining a consistent global checkpoint.

message from p; might have caused the error. Thus, the
debugger user wantsto observe each process in a consistent
global state. If alatter checkpoint is used for p;'s rollback,
the bug might be hidden by further execution of p;; for ex-
ample, exiting from a subroutine and deleting all variables
that decided the content of the wrong message [4]. Thus, it
is better for the other processesto roll back to former check-
points. This paper thus defines two global checkpoints: the
first and last global checkpoints [5]. The first (last) global
checkpoint for acheckpoint initiation is a set containing the
checkpoint for each process in which any checkpoint before
(after) the element is not consistent with theinitiation. This
paper then gives two distributed algorithms that make the
first and last global checkpoint consistent with the minimum
number of additional checkpoints taken in each process.

Though independent checkpointing algorithms, such as
that in [9], do not need consistent global checkpoints, they
can be used only for systemsin which all non-deterministic
events can be recorded during execution and replayed dur-
ing re-execution. For systems in which records of non-
deterministic events can be very large or replaying non-
deterministic events is difficult, a consistent global check-
point is necessary.

Chandy et al.’sdistributed snapshot algorithm [2] obtains
aconsistent global checkpoint (neither the first nor the last)
for concurrent initiations. The author [7] extended their al-
gorithm and the extended version minimizes the number of
additional checkpoints. Venkatesh et a.’salgorithm [10] ob-
tainsalast global checkpoint that is consistent, and Baldoni
et a.'salgorithm [1] obtains afirst global checkpoint that is
consistent, but they did not define the concept of first and
last global checkpoints. Their algorithms do not minimize
the number of additional checkpoints.

2 Thefirst and last global checkpoint

The distributed system is modeled by a finite set of
processes {p1, p2, - - . , P } iNterconnected by point-to-point
channels. Channels are assumed to be error-free, non-FIFO,
and have infinite capacity. The communication is asyn-

chronous; that is, the delay experienced by a message is
unbounded but finite. p;’s execution is a sequence of p;’s
events which include checkpoint initiations. Checkpoint
initiations are done independently by each process. System
execution E is the set of each process's executions. p;’'s
execution with checkpointing algorithm A is p;’s execution
interleaved with the additional checkpointstakenby A inp;.
System execution with A, E(A), isthe set of each process's
execution with A.

The following assumptions are common for distributed
checkpointing algorithm A [1][10]. A has no prior knowl-
edge about execution E. All information for A is piggy-
backed on program messages between processes. When p;
receives a message m, A can get the information piggy-
backed on m and take an additional checkpoint before p;
executes the receive event.

The “happened before(—)” relation between the events
in E(A) isdefined asfollows[3].

Definition 1 e — €’ if and only if

(1) e and ¢’ are executed in the same process and e is not
executed after e’.

(2) e isthe send event s(m) and ¢’ is the receive event
r(m) of the same message m.

(3) e » e"ande” — € for evente”. []

When e and ¢ are executed in different processes
and e — ¢, there is a sequence of events
e,s(m1),r(my), s(mz),...,s(mk),r(my), e in which
e — s(my), r(m;) — s(myy1)(i = 1,...k — 1),
r(myg) — €', every pair of events is executed in the same
process, and every s(m;) is executed in a different process.
This sequenceis caled a causal sequencefrometoe'’. kis
the length of the causal sequence.

Two special events, L; and T, are defined for p;. L;
is an imaginary event which is p;’sinitial state. T, isp;’s
current event if p; isnot terminated. If p; isterminated, T;
isanimaginary event whichisp;’sterminal state. For any p;
evente;, 1; — e; ande; — T, hold. This paper considers
T, and L ; as checkpointsin E.

For p;'sevent e; in E(A), two events on p;, causal-past
event, cp;’ (j), and causal-future event, ¢ f7* (), are defined
asfollows.
Definition2 e ¢pii (i) = cf{ (i) = e,.

e cp;'(j) islast event e; in p; that satisfiese; — e;. If

thereisno event e; satisfying e; — e;, cpi’ (j) = L.

o cffi(j) isfirstevente; inp; that satisfiese;, — ;. If
thereisno event e; satisfyinge; — e, ¢f{'(j) = T;.
|

Intuitively, ¢pi(j) is p;’s last event which is known to
p; & e;. cf{(j) is p;’s first event which knows e;. In

: o " o
Flgl. 1 epr*(1) = sl(ml), cp,2(2) :1 c%, cp(3) = 1s(mz),
cp;2(4) = J_4,1c 262(1) = T4, ¢ 262(2) = c%, c 282(3) =
r(ms), and cfzcz(4) = r(me).

Definition 3 Apair of checkpoints(c, ¢') isconsistent if and
onlyifc A ¢ andc 4 c. [|

Definition 4 Aglobal checkpoint (c1, ¢z, . . ., ¢y) iSn-tuple
of checkpoints where ¢; is p;’s checkpoint. A global check-
point is consistent if and only if all distinct pairs of check-
points are consistent. |

Definition 5 Thefirst global checkpoint for p;.'s checkpoint
initiation ¢ in E(A), FG7*(E(A)), is defined as follows.
i-th element, FG*(E(A), i), is the first checkpoint in p;
which is not before cp* ().]

E(A) isomitted if it is obvious.

Definition 6 Thelast global checkpoint for p;’ s checkpoint
initiation ¢, in E(A) LG}*(E(A)), is defined as follows.
i-th element, LG * (E(A), 1), is the last checkpoint in p;
whichis not after cf.* (4). [|

FG(E(A),q) (or LG{*(E(A),i)) = T, meansthat p,
need not roll back at all when p;, rolls back to ¢;,.

Any checkpoint of p; beforecp;* (i) or after ¢ f.* (i) isnot
consistent with ¢;*. Thus, FG}*(E(A)) and LG} (E(A))
are the best possible “former” and “latter” global check-
points for c;. In Fig. 1, FGZ(E) = (c},c3,c3, 14) and
LGF(E) = (Ty,c3,ck,c3). FGZ(E) is not consistent
sincect — c3. LG5 (E) isnot consistent since ¢ — 2.

Though FG*(E) and LG}*(E) might not be consis-
tent, FG*(E(A)) and LG}* (E(A)) can be consistent by
the additional checkpoints taken by A. In Fig. 1, if A

1

takes an additional checkpoint at e1, FG(E(A),3) = e1
and FG2(E(A)) is consistent. If A’ takes an additional
checkpoint at ep, LG (E(A"),3) = e; and LG (E(A"))
is consistent. If algorithm A takes an additional check-
point just before every receive event, F'G}*(E(Ap)) and
LGSF(E(Ay)) isconsistent for any checkpoint initiation cy,.
However, the overhead of Ag is very large. This paper
shows two distributed checkpointing algorithms, F'A and
LA. Among algorithm A which makesevery FG*(E(A))
(LG¥(E(A))) consistent, FA (LA) takes the minimum
number of additional checkpoints?.

2Qur algorithms deal with checkpoint initiations and additional check-
points differently. If a user wants to deal with an additional checkpoint
as an initiation, this can be done by executing the checkpoint initiation
procedure for the additional checkpoint.

3 Algorithm FA for FG*

In the rest of the paper, a sequence number is assigned
for (both of initiation and additional) checkpoints in each
process in E(A). L, is p;’s 0-th checkpoint. Let ¢.* be
pi'S z-th checkpoint. It is sometimes denoted as z;, in
subscriptsif it is not ambiguous.

p; maintainsavariable ck;(j). ck;(j) = x if p; currently
knows p;’s checkpoint 7. ck;(j) = —1if p; currently
knows no checkpoint in p;. If ck;(j) = (> 0) at event e,
ci — eand ck;(j) = x a cpf(j) issatisfied. ck;(7) isp;’s
newest checkpoint number. Updating ck can be done by
sending its current value on every message. Thisis shown
indetail in Fig. 4.

For any agorithm A, FG}*(E(A)) for p's check-
point initiation ¢; can be represented using ck as follows:
Let CK (i) be the value of cki(i) a cx. FGi (i) =
EROFL G £ k). If the (CK (1) +1)-th checkpoint does not
existin p;, FGY* (i) = T;. In order to make it consistent,
F A takes additional checkpoints.

Now consider the case when amessagem from p; arrives
at p;. Assumethat p; hastaken (z; — 1) checkpoints before
the arrival of m.

The first case when the x;-th checkpoint must be taken
before r(m) is shown in Fig. 2. p; knows p;.’s checkpoint
initiation ¢* and ¢¥~* — ¢f*. Since p; knows the initia-
tion, ¢;* — r(m) is satisfied. If p; does not take the z;-th
checkpoint before r(m), ¢;* — r(m) — ¢;' (= FG* (1))
and F'G* isnot consistent.

This condition is represented as follows. Consider a
variable ini; (7). ini;(5) = true if p; knows a checkpoint
initiation ¢ that satisfies;’ — ¢ for p;’s current checkpoint
cf.f . Thefollowingisp;’srulefor taking acheckpoint before
r(m).

(RuleF1) ini,; (i) = true.

The update rule of in: isshownin Fig. 4.

The second caseisshownin Fig. 3. Inthiscase p,, might
initiate a checkpoint after e, = cp/™ (k). Though this
checkpoint is unnecessary if p; actually does not initiate
after ey, p; takes it since p; cannot predict p,’s execution
after ey, at r(m).

This caseisdivided into two subcases. Thefirst subcase
iswhen p;, knows p;’s current (the (z; — 1)-th) checkpoint
a ey. py initiates checkpoint ¢;* just after e,. Assume
that there is a checkpoint ¢; that satisfies ¢; — r(m) and
¢ # ex. Sincecy, /A e, FG*(h) — ¢} fromthedecision
ruleof FG. If p; does not take the z;-th checkpoint before
r(m), FG*(h) — ¢ — r(m) — ¢ (= FG}*(1)) and
FG;* isnot consistent.

The second subcase is when p, does not know p;’s
(z; — 1)-th checkpoint at e;. In order for p, to initiate a
checkpoint that satisfies FG* (¢) = x;, pr, must first receive

amessage that carriestheinformation of ¢**~* and then ini-
tiate. Assume that there is a message m’ sent to p; but
not received before e;,, which carries the information about
¢t Assume also that pj, receives m' just after e, and
then initiates a checkpoint ¢, *. Further assume that thereis
acheckpoint ¢} that satisfiesc¢; — r(m) and ¢ /4 r(m’).
Since ¢i 4 r(m'), FG;*(h) — ci. If p; does not take
the z;-th checkpoint before r(m), ¢; — r(m) — ¢* and
FG* isnot consistent.

This condition is represented as follows. Introduce
booleanvariablecr;(j, k) andad;(j, k, h). cri(j, k) = true
if p; knows that p; knows p;’s current (the ck;(k)-th)
checkpoint. Note that cr; (i, k) is aways true for every k.
ad;(j, k, h) = true if p; knowsthat p; will know p;’s cur-
rent (the ck;(h)-th) checkpoint if p; receives any message
sent to p; that carries p;'s current (the ck;(k)-th) check-
point. If p; aready knows p;’s current checkpoint or such
amessage does not exist, ad;(j, k, h) = false.

(Rule F2) (cri(k,i) = true and cr;(k,h) = false)
or (ad;(k,i,7) = true and cr;(k,h) = false and
ad;(k,i,h) = false) for some pair of (k, h).

The algorithm F' A, which includes the update rule of the
above variables, is shownin Fig. 4.

Theorem 1 Every additional checkpoint taken by F'A is
necessary. |

Theorem 1 is obvious from the above discussion.

Theorem 2 FG};*(E(FA)) is consistent for any check-
point initiation ¢, *. |

(Proof) Assume that F'G}* is not consistent and ¢ (=
FGi*(h)) — ¢f'(= FG;*(4)). From the FG decision
rule, c‘;jfl — c;F and c?j Aty #k.

(Casel: i = k) c," — c,* contradicts the above fact.

(Case 22 h = k) Let the last message on the causal
sequence from ¢i* to ¢/ be m. Since ¢’™' — ¢* and
cif — r(m), ini;(i) = true a r(m). From Rule F1, p;
must have taken the z;-th checkpoint before »(m). This
contradicts the assertion that ¢ is after »(m).

(Case3: i # kand h # k) Thereisacausal sequence
CS fromeri~tto ey, Let the sequence of messagesin C'S
be My, M>, ..., M. Letthe processthat executesr (M,) be
Dz, (@ =1,...,1). Without loss of generality, p., satisfies
ck,, (i) < z; — L before r(M,) (e = 1,...,1). Note that
c," # eforany evente in CS. Otherwise, ¢;" — ¢;* and
this contradicts the F'G decision rule. Let the last event e
in C'S that satisfiese — ¢;* be e, on p;. Such an event
always exists because s(M;) — c;*. If s(My) is after 7,
¢;’ — ¢;* and this contradicts the F'G decision rule. Let
ej = cpi(j), thatis, let e; bep;’slast event known to p; at
c;'. From the definition, e}, — e;.

(Case 3-1: ¢’ isreceive event r(1M)) From the assump-
tion, the next send event in C'S is after e;. Thereisacausal

sequence from e; to ¢i*. Let r(m') be the last receive
event in the causal sequence. Since ck;(i) = x; — 1 and
ckj(h) < zj, @ ej, cri(g,1) = true and cr;(j, h) = false
at r(m'). Thus, p; must have taken the x;-th checkpoint
before r(m’) from Rule F2.

(Case3-2: ¢, issend event s(M)) Let thereceiver of M
be p, and let e, = cp;*(g). From the assumption, (/)
is after e;. ad;(g,4,i) = true, criy(g,h) = false, and
ad;(g,1,h) = false are satisfied at r(m') since ck,(i) <
z;—1,cky(h) < zp ate,andcky (i) = z;,—1,cky(h) < zp
a r(M). Thus, p; must have taken the z;-th checkpoint
before r(m’) from Rule F2. [|

The information piggybacked on each message and kept
in each processis O(n) integer and O(n?) boolean values.

4 Algorithm LA for LG}

Consider the case when p; realizes p;,’sinitiation ¢, * at
receive event cf* (¢). Let the message be m and its sender
be p;. Checkpointing algorithm A sets LG *(E(A), 1) as
p;'shewest checkpoint or takes anew additional checkpoint
before r(m) and sets LG}*(E(A),4) as the new one. In
either case, LG*(E(A),i) is the last checkpoint that is
not after ¢f;*(¢). LA must decide whether it takes a new
additional checkpoint before r(m) in order to make LG *
consistent with the minimum number of additional check-
points. Assumethat p; hastaken (z; — 1) checkpointsbefore
thearrival of m.

The caseswhen thez;-th checkpoint must betaken before
r(m) are shown in Fig. 5. Thefirst case iswhen thereisa
checkpoint ¢f* suchthat ¢/ ~* — ¢7* and ¢/ — r(m) are
satisfied. Thereisaninitiation c;* that satisfies LG * (h) =
¢, LGY* isnot consistent if ¢ is not taken before r(m.)
because ¢t Thus, an additional checkpoint is
necessary.

This condition is represented as follows. Consider a
variable see; (7). see;(j) = true if p; knows a checkpoint
c that satisfies ¢’ — ¢ for p;'s current checkpoint ¢

(RuleL1) see;(i) = true.

The second case is when p; sends a message m/ to pro-
cess py, after ¢f~* and neither LG7* (i) nor LG* (h) has
been decided. This additional checkpoint is necessary if
p; sends message m”' to p, after r(m) and p, executes
r(m'), takes a checkpoint ¢;", and then executes r(m").
Now, since cf.*(h) = r(m"), LG}*(h) is¢;" or an ad-
ditiona checkpoint that is taken just before »(m'"). In ei-
ther case, 7™t — LG7* (h) and LGT* is not consistent if
LG}*(i) = z; — 1. Therefore, p; must take an additional
checkpoint before r(m).

Thiscaseisrepresented asfollows. Variablenum, () =
x if p; knows the newest initiation by p; is cj. Variable
de;(7,k) = trueif p, knowsthat p;, hasdecided the element
of LG5 (k), where z = num;(j). Variable st;(j) = true

— CZh .

if p; has sent amessage to p; after p;’s latest (the ck;(¢)-th)
checkpoint.

(Rule L2) de;(k,i) = false, de;(k,h) = false, and
st;i(h) = true for some pair of (k, h).

Algorithm L A, whichincludestherulefor updating these
variables, isshownin Fig. 6. LG}*(¢) is stored in variable
lgi. lgi(k,z),) =y if LG}*(i) = ¢!. Notethat lg;(k,zy)
might be undefined for two reasons. First, p; does not know
initiation ¢, that is, cf.* (i) = T, at agiven state. In such
acase, LG, * (1) = T,;. Thesecond caseiswhen cf* (i) =
cf;”i‘ (7), that is, theinformation for two different initiations
by p, arrivesat p; at the same time. The information about
old initiations is discarded because LGT* (i) = LG *(i).
Thus, if 1g;(k, z) is undefined for every z(zo < = < zy)
and lg;(k,) is defined, lg;(k,z) = lg;(k,x) for any
initiation ¢} (zo < = < xg).

Theorem 3 Every additional checkpoint taken by LA is
necessary. [|

Theorem 3 is obvious from the above discussion.

Lemmal [7] Ifaglobal checkpoint (¢, cy,...,c,) isnot
consistent, thereisa pair (c;, c;) such that thereis a causal
sequence from; to ¢; whose length is 1. [|

Theorem 4 LG}*(E(LA))isconsistent for any checkpoint
initiation ¢;*. |

(Proof) Assume that LG " is not consistent. From Lemma
1, assume that ¢;" (= LG (h)) — ¢]'(= LG{*(4)) and
let the message in the causal sequence be m.

Let e* be the event when p; decides LG *(j). Note

that LG*(j) might be decided by deciding LG‘EQ" (y) for

aj, > x), as described above. In such acase, e3* = e}*.
e;* is an initiation, a receive event, or T; (in this case,
LG*(5) = Tj). If ef* is areceive event, LG*(j) is
before e;*. In the other cases, i = LGy*(j). Thus,
LG (j) — ;" is stisfied. Note that LG *(5) is p;’s
newest checkpointat e;*. num;(k) < z; issatisfied before
e;* and num;(k) > z, is satisfied after e3*.

c;" # T, sincethereisan event s(m) after ¢;”.

(Casel: ej* — e;")Sincec;" isp,’snewest checkpoint
ate;” and eyt — ¢ — efF — ep*, seei(i) = true at e,
Thus, ¢;” must be the newly taken checkpoint just before
e;* from Rule L1. This contradicts the notion that there is
an event s(m) between ¢ and e} *.

(Case 2: e;* is before s(m)) num;(k) > x; must be
satisfied at r(m). Thus, e;* must be equal to or before
r(m). This contradicts the notion that ¢ is after »(m).

(Case3: " 4 e;* and ey * isafter s(m)) Sincee;™ £
ey, dey(k,1) = false at e;*. Sincethereisan event s(m)
between ¢;" and e}*, e;* is areceive event. Let X =
nump(k) ae;*. X > x;, issatisfied. Since sty (:) = true

and dcy, (k,i) = false at e}, ¢;" must be the newly taken
checkpoint just before e;* from Rule L2. This contradicts
the notion that there is an event s(m) between ¢;” and e} *.

|

The information piggybacked on each message and kept
in each process (other than the output) is O(n) integer and
O(n?) boolean values.

Here, the rule for removing old checkpoints is shown.
The amount of stable storage usage becomes large if old
checkpoints are not removed. Assumethat p;. rolls back to
the newest initiation by p,. p; might be forced to roll back
tolg;(k,num(k)). Thus, p; does not need the checkpoints
before minlg;(k, num(k)) and these checkpoints can be
removed.

5 Conclusion

This paper showed two distributed algorithms that make
the first and last global checkpoint consistent with a mini-
mum number of additional checkpoints taken in each pro-
cess. Remaining problems include reducing the amount of
information used by the algorithms.

Acknowledgments The author would like to thank Dr.
Hirofumi Katsuno of NTT for his encouragement and sug-
gestions.

References

[1] Badoni, R., Helary, JM., Mostefaoui, A., and Raynal, M.:
“Consistent Checkpointing in Message Passing Distributed
Systems,” INRIA Technical Report No. 2564 (June 1995).

[2] Chandy, K.M. and Lamport, L.: “Distributed Snapshots:
Determining Global States of Distributed Systems,” ACM
Transaction on Computer Systems, Vol. 3, No. 1, pp. 63-75
(Feb. 1985).

[3] Lamport, L.: “Time, Clocks, and the Ordering of Eventsina
Distributed System,” Communications of ACM, Voal. 21, No.
7, pp. 558-565 (July 1978).

[4] Manabe, Y.andImase, M.: “Global Conditionsin Debugging
Distributed Programs, " Journal of Parallel and Distributed
Computing, Vol. 15, No. 1, pp. 6269 (May 1992).

[5] Manabe, Y.: “A Distributed First and Last Consistent Global
Checkpoint Algorithm,” 1PSJ SIG Notes, AL96-54-3 (Oct.
1996).

[6] Manabe, Y.: “A Distributed Consistent Global Checkpoint
Algorithm with a Minimum Number of Checkpoints,” Tech-
nical Report of |EICE, COMP97-6 (Apr. 1997).

[7] Manabe, Y.: “A Distributed Consistent Global Checkpoint
Algorithm with a Minimum Number of Checkpoints,” Proc.
of 12th Int. Conf. on Information Networking (Jan. 1998).

[8] Netzer, RH. and Xu, J.: “Necessary and Sufficient Con-
ditions for Consistent Global Snapshots,” IEEE Trans. on

Parallel and Distributed Systems, Vol. 6, No. 2, pp. 165-169
(Feb. 1995).

[9] Strom, R.E. and Yemini, S.: “Optimistic Recovery in Dis-
tributed Systems,” ACM Trans. on Computer Systems, Vol .3,
No.3, pp.204—226 (Aug. 1985).

[10] Venkatesh, K., Radhakrishnan, T., and Li, H.F.: “Optimal
Checkpointing and Local Recording for Domino-Free Roll-

back Recovery,” Information Processing Letters, Vol. 25, No.
5, pp. 295-303 (July 1987).

process
Py P P3Py
A A A

1
c1 C1
4
02 Cz time
1 4

O
¢4 Ch Oy Ch
— » ! Message
O : checkpoint
© : initiation

Figure 1. System execution E.

xI -1

G O :initiation or

. additional checkpoint
¢ I o initiation

r(m) . :additional checkpoint

Figure 2. Rule F1.

Py Pp P,
m

p
Xi~ -1 é> xi—l
g i
cp(M (k) cpl (™ (k) qf "
%" T SN
cp:'(rr) r(m) cp:’(rr) m¥ r(m)

Figure 3. Rule F2.

program FA; /* program for p;. */
const n = ...; /* humber of processes*/
var ck(n): mteger

ini(n), cr(n,n), ad(n,n,n): boolean;
procedurecheckpm nt egm

take a checkpoint;

ck(i) := ck(i) + 1;

ini(1) :=false;

for each k(# i) do cr(k, 1) :=false;

for each k(# 1), h doad(k, i, h) :=falsg
for each k(#£ i), h do ad(k, h, i) :=fase;
end; /* end of subroutine *
[* main*/

initialization b
for each k(# i) do ck(k) := —1;
ck(i) :=0;
for each k do ini(k) :=fase;
for each k(# i), h do cr(k, h) :=false;
for each k do cr (i, k) := true;
for each k, h,l do ad(k, h,[) :=false;
end /* end of initialization */
when p; initiates a checkpoint begin
chec pomt
for each k # i doini(k) :=true;
end /* end of checkpoint initiation */
when p; sends m to p; begin
sen (m ck, ini, er, ad) to p;;
for each k do
if not(cr (g, k)) and not(ad(y, k, k)) then
for each h do ad(j, k, h) :=true;
end /* end of message sendmg */
when message (m, mck, mini, mer, mad) arrivesfrom p;

begin
for each k do begin
if ck(k) < mck(k) then begin
ini(k) 1= mini(k),
for each h(#) do cr(h, k) := mcr(h, k);
for each h(# 7),l do
if mck(l) > ck(l) then ad(h, k,l) :== mad(h,k,1)
esead(h, k,l) :=fase
end /* end of case ck(k) < mck(k) */
elseif ck(k) = mck(k) then begin

ini(k) 1= znz(k) V mani(k);

for each h(# z) do cr(h, k) := cr(h, k) V mer(h, k);

for each h(;é i),l do
if mck(l) ck(l) then
if ad(h, k, k) then ad(h, k, 1) :=false
elsead(h,k:,l) = mad(h k, 1)
) = ck(l) then
if (cr(h,l) or mcr(hl) or
(ad(h, k, k) and not(ad(h, k, 1))) or
(mad(h, k, k) and nOt(mad(kD))
then ad(h, k, 1) :=fase
esead(h, k,l) = ad(h, k,l) V mad(h,k,1)
else/* mck(l) < ck(l) */
if mad(h, k, k) then ad(h, k, 1) :=false;
end /* end of case ck(k) = mck(k) */
ese/* ck(k) > mck(k) */
for each h(# 1), do
if mek(l) > ck(l) then ad(h, k,1) :=false
end; /* end of if statement */
end; /* end of loop by k. */
for each k(# i) do ck(k) := maz(ck(k), mck(k));
if ini(z) or
3(k, h), ((cr(k, i) and not(cr(k, h))) or
(ad(k,1,1) and not(cr(k, h)) and not(ad(k, i, h))))
then chec kpoint;
execute r(m
end /* end of message arrival */

Figure 4. Algorithm FA.

Figure 5. Rule L1 and L2.

program LA; /* program for p;. */
const n = ...; /* number of processes*/
var ck(n) num(), lg(n, *): integer;
de(n,n), see(n), st(n): boolean;
procedurechec point begin
take a checkpoint;
ck(z) := ck(z) + 1,
for each k£ do st(k) =false;
for each k(+# 7) do see(k) :=true;
see(i) =false
end; /* end of subroutine*/
/* main*/
initialization begin
for eech k # i dock(k) := —1;
ck(z) :=0;
for each k do num(k) :=0;
for each k, h do dc(k, h) :=true;
for each k do see(k) :=fasg;
for each k do st(k) :=fase;
end /* end of initialization */
when p; initiates a checkpoint begin
check 0i Nt;
num(i) := ck(i);
for each kg# 1) dodc(z, k) :=false;
end /* end o checkpomt initiation */
when p; sends m to p; begin
send(m ck, num, see, dc) t0 pj;
:=true;
/’]* end of message sending */
when message (m, mck, mnum, msee, mdc)
arrivesfrom p; begin
for each k d70 begin
if num(k) < mnum(k) then
for each h do dc(k, k) := mdc(k, h);
eseif num(k) = mnum(k) then
for each h do dc(k, h/) = dc(k, h) V mdc(k, h);
end /* end of loop by & *
for each £ do num(k) := maz(num(k), mnum(k));
for each k£ do
if ck(k) < mck(k) then see(k) := msee(k)
dseif ck(k) = mck(k)
then see(k) := see(k) V msee(k);
for each k do ck(k) := maz(ck(k), mck(k));
if see(i) or
3(k, k), (not(dc(k, 7)) and not(dc(k, b)) and st(h))
then checkpoint;
for each k£ do
if not(dc(k, 7)) then begin
dc(k, 1) :=true;
lg(k' ,num(k)) 1= ck(7);

executer(m);
end /* end of message arrival */

Figure 6. Algorithm LA.

