
A Consistent Global Checkpoint Algorithm for Distributed Systems
with a Forbidden Process

Yoshifumi Manabe
NTT Basic Research Laboratories

3-1 Morinosato-Wakamiya, Atsugi-shi, Kanagawa 243-0198 Japan
manabe@theory.brl.ntt.co.jp

Abstract

A distributed coordinated checkpointing algorithm
for distributed systems with a special process, called
a forbidden process, is discussed. A consistent global
checkpoint is a set of states in which no message is
recorded as received in one process and as not yet sent
in another process. It is used for rollback when a
process failure occurs. The number of checkpoints in
the forbidden process must be minimized because of its
heavy load or its low stable storage capacity. A dis-
tributed checkpointing algorithm which takes the min-
imum number of checkpoints in the forbidden process
is presented.

1 Introduction

Distributed coordinated checkpointing is a funda-
mental method to recover distributed systems after
failure [3]. It obtains a set of states as a consistent
global checkpoint [8], in which no message is recorded
as received in one process and as not yet sent in an-
other process. When there is process failure, execution
can be continued from the set of rolled-back states
if every process rolls back to each state in a consis-
tent global checkpoint and the messages that have
been sent and not received are restored. The message
restoration method is similar to Strom and Yemini’s
[10] and the details are discussed in [7]. This paper
discusses how to obtain a consistent global checkpoint.

When a process initiates checkpointing, it takes its
checkpoint and notifies the other processes about the
initiation. When each of the other processes receives
this information, it might have to take its checkpoint
to obtain a consistent global checkpoint which contains
the initiation. Throughout this paper, the checkpoint
taken by the initiator is called an initiation. The other
checkpoints are called additional checkpoints.

All former checkpoint algorithms considered the
system to be symmetric, i.e., that the disadvantage
of taking an additional checkpoint in every process
would be the same. This paper considers a case where
the distributed system contains a special process in
which the number of additional checkpoints must be

minimized. We call such a process a forbidden pro-
cess. For example, consider a system which consists
of a huge server and many small size clients. If the
server has a very large database and offers important
services, the services it offers might stop for a long time
when the server takes a checkpoint. The clients’ check-
pointing might finish quickly and its influence might
be relatively small. Thus, taking fewer checkpoints in
the server and more checkpoints in the clients would
be better than the usual checkpointing. Such a server
can be the forbidden process. Another example is a
system with a mobile process. Since the stable storage
capacity is very low in the mobile process, many check-
points cannot be taken in the mobile process. Here,
the mobile process can be the forbidden process. This
paper describes a checkpointing algorithm in which
the number of additional checkpoints in the forbidden
process is minimized.

2 Consistent global checkpoint

A distributed system is modeled by a finite set of
processes {p1, p2, . . . , pn} interconnected by point-to-
point channels. p1 is the forbidden process and pj(j ̸=
1) are the other processes called normal processes.

Channels are assumed to be error-free and to have
infinite capacity. The communication is asynchronous;
that is, the delay experienced by a message is un-
bounded but finite. Channels might not be FIFO
(First-In, First-Out).

pi’s execution is a sequence of pi’s events which in-
clude checkpoint initiations. System execution E is
the set of each process’s execution. pi’s execution
with checkpointing algorithm A is pi’s execution in-
terleaved with the additional checkpoints taken by A
in pi. System execution with A, E(A), is the set of
each process’s execution with A.

The “happened before(→)” relation between the
events in E(A) is defined as follows [4].

Definition 1 e → e′ if and only if

(1) e and e′ are executed in the same process and e is
not executed after e′.

Figure 1: System execution.

(2) e is the send event s(m) and e′ is the receive event
r(m) of the same message m.

(3) e → e′′ and e′′ → e′ for event e′′.

Two special events, ⊥i and ⊤i, are defined for pi.
⊥i is an imaginary event which is pi’s initial state.
⊤i is pi’s current event if pi is not terminated. If pi

is terminated, ⊤i is an imaginary event which is pi’s
terminal state. For any pi event ei, ⊥i → ei and ei →
⊤i. This paper considers ⊥i and ⊤i as checkpoints in
E.

Definition 2 A pair of checkpoints (c, c′) is consis-
tent if and only if c ̸→ c′ and c′ ̸→ c.

A global checkpoint (c1, c2, . . . , cn) is an n-tuple of
checkpoints where ci is pi’s checkpoint. A global check-
point is consistent if and only if all distinct pairs of
checkpoints are consistent.

In Fig. 1, (c2
1, c

1
2, c

1
3) is consistent, but (c1

1, c
1
2, c

1
3) is

not consistent because of message m3.
A consistent global checkpoint for pk’s checkpoint

initiation ck in E(A) is denoted as gc(ck, E(A)).
pi’s checkpoint in gc(ck, E(A)) is denoted as
gc(ck, E(A), i). E(A) is omitted if it is obvious.

Checkpointing algorithm can be classified into two
groups. The former uses special messages called mark-
ers [1]. The latter is communication-induced algo-
rithm [2][5][6][9], in which all information for check-
pointing is piggybacked on massages in E. This paper
discusses the latter algorithm, since markers are not
effective in non-FIFO channels [6].

Figure 2: An additional checkpoint in the forbidden
process.

3 The checkpointing algorithm

In the rest of the paper, a sequence number is as-
signed for the (both initiation and additional) check-
points in each process. ⊥i is pi’s 0-th checkpoint. Let
cxk

k be pk’s xk-th checkpoint.
Let the newest checkpoint for the forbidden process

p1 be cx1
1 . p1 must take an additional checkpoint be-

fore r(m) if the following condition is satisfied: there
is an initiation c which satisfies cx1

1 → c and c → r(m)
(Fig. 2). Suppose that p1 does not take an additional
checkpoint just before r(m). If gc(c, E(A), 1) is cx1

1 or
before cx1

1 , gc(c, E(A), 1) → c and gc(c, E(A)) is not
consistent. If gc(c, E(A), 1) is a checkpoint after r(m),
c → gc(c, E(A), 1) and gc(c, E(A)) is not consistent.

Theorem 1 Any algorithm A must take an additional
checkpoint just before r(m) in p1 if there is an initia-
tion c such that cx1

1 → c and c → r(m), where cx1
1 is

p1’s newest checkpoint.

If this rule is the only one rule that forces p1 to
take an additional checkpoint, the number of p1’s ad-
ditional checkpoints is minimized.

The algorithm in [2][6] for systems without for-
bidden processes assigns a global checkpoint number
(GCN) to each initiation. GCN update rule is similar
to the one of Lamport’s logical clock [4]. If the algo-
rithm in [6] is applied to the execution in Fig. 1, GCN
for c1

1, c2
1, c1

2, c1
3, and c2

3 are 1, 2, 1, 2, and 3, respec-
tively. Initiations with the same GCN are consistent
and one consistent global checkpoint is obtained for
each GCN.

This paper uses the above rule for normal processes.
Note that the condition “obtain one consistent global
checkpoint for one GCN” in [2][6] does not minimize
the number of additional checkpoints. I [6] modified
the rule to reduce the number of additional check-
points. However, the modified rule is complicated and
the optimality of the modified rule is an open question.
This paper thus uses the above basic rule to simplify

the algorithm. Therefore, the number of additional
checkpoints in normal processes is not minimized by
this algorithm.

New numbering for systems with a forbidden pro-
cess, the modified global checkpoint number MGCN,
consists of two integers (xgcn, ygcn). xgcn shows the
number of checkpoints in p1. ygcn is just the same as
the GCN among {p2, . . . , pn}. ygcn is reset to 0 when
a new xgcn arrives. Formally, MGCN setting rule is
as follows. MGCN for p1’s checkpoint cx1

1 is (x1, 0).
MGCN for ⊥i(i ̸= 1) is (−1, 1). MGCN for pi(i ̸= 1)’s
initiation cxi

i is (x0, y0), where x0 = maxx{cx
1 | cx

1 →
cxi
i } and y0 = 1+maxy{ MGCN (x0, y) for checkpoint

c | c → cxi
i }. If c0

1 ̸→ cxi
i , x0 = −1. In Fig. 1, MGCN

for c1
1, c2

1, c1
2, c1

3, and c2
3 are (1, 0), (2, 0), (0, 1), (1, 1),

and (1, 2), respectively.
For two MGCNs (x, y) and (x′, y′), (x, y) > (x′, y′)

if (x > x′) or (x = x′ and y > y′). (x, y) ≥ (x′, y′) if
(x, y) > (x′, y′) or (x, y) = (x′, y′).

pi(i ̸= 1) assigns one checkpoint for each MGCN
(x, y). Let CAi(x, y) be the checkpoint assigned to
MGCN (x, y) by pi. The same checkpoint might be
assigned to multiple MGCNs. Suppose that pi’ current
MGCN is (x0, y0) and pi receives a message m from
pj which informs MGCN (x1, y1) such that (x1, y1) >
(x0, y0). If x1 > x0, CAi(x0, y)(y > y0) will no longer
be obtained. Let mxyi(x) be the value of y in MGCN
(x, y) when new MGCN information such that x′ > x
arrives at pi. If there is no initiation (x, y)(y > 0) in
pi, mxyi(x) = 0. mxy1(x) = 0 for any x. In Fig. 1,
mxy2(−1) = 1, mxy3(−1) = 1, and mxy3(0) = 0.

For p1’s initiation cx
1 whose MGCN is (x, 0), the

global checkpoint which contains cx
1 , CGCx(x), is as

follows: pi’s element in CGCx(x), CGCx(x, i), is se-
lected as CGCx(x, i) = CAi(x, 0).

For pi(i ̸= 1)’s initiation ci whose MGCN is
(x, y)(y > 0), the global checkpoint which contains ci,
CGCy(x, y), is as follows: pi’s element in CGCy(x, y),
CGCy(x, y, i), is selected as

CGCy(x, y, i) =
{

CAi(x, y) if y ≤ mxyi(x)
CAi(x + 1, 0) if y > mxyi(x)

In Fig. 1, CGCy(0, 1, 1) = CA1(1, 0) and
CGCy(0, 1, 3) = CA3(1, 0).

The algorithm which assigns a checkpoint for each
MGCN uses the following variables. pi’s variable
cki(j) has the number of checkpoints. cki(j) = x(≥ 0)
if cx

j → ei is satisfied, where ei is pi’s current event.
cki(j) = −1 if ⊥j ̸→ ei. cki(i) is pi’s newest check-
point number. In Fig. 1, ck3(1) = 1, ck3(2) = 1, and
ck3(3) = 2 at c2

3 in p3.
The boolean variable seei(j) has information about

the new checkpoint. seei(j) = true if pi knows that
there is a checkpoint c satisfying cx

j → c where cx
j is

pj ’s newest (the cki(j)-th) checkpoint. If there is no
such checkpoint c, seei(j) = false. If seei(i) = true
at pi’s event e, the following condition is satisfied. For
pi’s newest checkpoint cx

i , there is a checkpoint c which

satisfies cx
i → c and c → e.

Variable xgcni(j) and ygcni(j) has information
about MGCN. (xgcni(j), ygcni(j)) = (x, y) if pi is
aware that pj currently knows that maximum MGCN
is (x, y), that is, (xgcnj(j), ygcnj(j)) = (x, y) at pj ’s
event currently known to pi. (xgcni(i), ygcni(i)) is pi’s
current knowledge about maximum MGCN.

Variable sti(j) has information about message
sending. sti(j) = true if pi sends a message to pj

after pi’s newest (the cki(i)-th) checkpoint.
Variable cai(x, y) has CAi(x, y). Note that infor-

mation about multiple MGCNs arrives at pi at the
same time. Suppose that current (xgcni(i), ygcni(i))
= (x0, y0) and new information about MGCN (x1, y1)
arrives at r(m). This algorithm selects the same check-
point cxi

i for every CAi(x, y) such that (x0, y0) <
(x, y) ≤ (x1, y1). In this case, the algorithm just
sets cai(x1, y1) = xi. For a tuple (x, y), CAi(x, y)
is obtained from cai as follows. Find the small-
est pair (x′, y′) which satisfies (x′, y′) ≥ (x, y) and
cai(x′, y′) is defined. If cai(x′, y′) = xi, CAi(x, y) =
cxi
i . Such a pair (x′, y′) is unique because the tuple

(xgcni(i), ygcni(i)) never decreases in pi. Such a pair
(x′, y′) cannot be found only if (xgcni(i), ygcni(i)) <
(x, y), that is, the initiation c

xj

j whose MGCN is
(x, y) is unknown in pi’s current state. In this case,
CAi(x, y) is considered to be ⊤i in the state.

The values of ck, see, xgcn, and ygcn are updated
by sending the current value on every message. It is
shown in Fig. 5.

Now consider the case when pi receives a mes-
sage m from pj and xgcni(k), ygcni(k)(k ̸= i),
and seei(k) are updated by the values on m. Let
(x0, y0) = (xgcni(i), ygcni(i)) and (x1, y1) be the value
of (xgcn, ygcn) arrived on message m and (x1, y1) >
(x0, y0). pi must assign a checkpoint for this new
MGCN.

First consider the case when pi is the forbidden pro-
cess p1. Since no process other than p1 increments
xgcn, x1 = x0 is satisfied. There is an initiation c
whose MGCN is (x0, y1), where y1 > 0. c satisfies
cx0
1 → c because of its xgcn. Thus, c satisfies the con-

dition in Theorem 1 because c → r(m). Therefore, p1

needs to take a checkpoint whenever (x1, y1) > (x0, y0)
is satisfied.

Next consider the case when pi is a normal pro-
cess. A consistent global checkpoint which includes
c whose MGCN is (x1, y1) must be obtained. Since
any pi checkpoint after r(m) is not consistent with c,
gc(c, i) must be before r(m). Thus, pi must do one of
the following: (1) take an additional checkpoint just
before r(m) and set cai(x1, y1) as the new checkpoint,
or (2) set cai(x1, y1) as an old checkpoint. In the sec-
ond case, cai(x1, y1) is set to pi’s newest checkpoint
because of simplicity.

Let the newest checkpoint in pi be cxi
i . There are

two cases to take an additional checkpoint before r(m).
The first case is when there is a checkpoint c which

Figure 3: (a) Rule 1. (b) Rule 2.

satisfies cxi
i → c and c → r(m) (Fig. 3 (a)). There can

be an initiation c′ which satisfies gc(c′, k) = c. gc(c′, i)
must not before cxi

i because cxi
i → c = gc(c′, k). Thus,

without taking an additional checkpoint, gc(c′) cannot
be consistent. This rule can be written as follows.

(Rule 1) seei(i) = true.
The second case is when pi sends a message m′ after

current checkpoint cxi
i to process ph which satisfies

(xgcni(h), ygcni(h)) < (x1, y1) (Fig. 3 (b)). Assume
that pi does not take an additional checkpoint just
before r(m). Here, CAi(x1, y1) = cxi

i .
First consider the case when ph is a normal process.

The execution after current event might be as follows.
ph executes r(m′). Note that (xgcnh(h), ygcnh(h)) <
(x1, y1) at r(m′). ph then receives information about
MGCN (x1, y)(y < y1) from another process if
xgcnh(h) < x1. ph then initiates several times.
Then, there might be an initiation ch whose MGCN is
(x1, y1). Then, CGCy(x1, y1) is not consistent since
CAi(x1, y1) → ch.

Next consider the case when ph is the forbidden
process p1. Since cx1

1 is the newest checkpoint in p1,
xgcni(1) = x1 is satisfied. Thus, ygcni(1) < y1 holds.
CGCy(x1, y1, 1) = cx1+1

1 . The execution after cur-
rent event might be as follows. p1 executes r(m′).
There can be cases when xgcn1(1) = x1 at r(m′).
p1 then initiate a checkpoint cx1+1

1 whose MGCN is

(x1+1, 0). Then, CGCy(x1, y1) is not consistent since
CAi(x1, y1) → cx1+1

1 .
This rule can be written as follows.
(Rule 2) ∃h, (x1, y1) > (xgcni(h), ygcni(h)) and

sti(h) = true.
The algorithm MCGC which includes variable up-

dating is in Fig. 5.
The correctness of the algorithm is proved below.

Theorem 2 The global checkpoints obtained by algo-
rithm MCGC are consistent.

(Proof) First assume that CGCx(x) is not consistent
and there is an orphan message m sent after cxi

i (=
CGCx(x, i)) and received before cxk

k (= CGCx(x, k)).
Let ex

h be the event when ph decides CGCx(x, h),
that is, cah(x′, y′) is set to cxh

h for (x′, y′) where x′ ≥ x.
ex
h is an initiation, a receive event, or ⊤h (in this case,

CGCx(x, h) = ⊤h). If ex
h is a receive event, cxh

h is
before ex

h. Otherwise, ex
h = cxh

h . Thus, cxh

h is ph’s
newest checkpoint at ex

h and cxh

h → ex
h is satisfied.

xgcnh(h) < x is satisfied before ex
h and xgcnh(h) ≥ x

is satisfied at ex
h. Note that for the forbidden process

p1, ex
1 = cx

1 .
(Case 1: ex

i is before s(m)) Since xgcni(i) ≥ x at
ex
i , xgcnk(k) ≥ x must be satisfied at r(m). Thus, ex

k

must be equal or be before r(m). This contradicts the
notion that cxk

k is after r(m).
(Case 2: ex

i is after s(m)) Since ex
1 = cx

1 , pi is not
the forbidden process.

(Case 2-1: ex
k → ex

i) Since cxi
i is pi’s newest check-

point at ex
i and cxi

i → cxk

k → ex
k → ex

i , seei(i) = true
at ex

i . Thus, cxi
i must be the newly taken checkpoint

just before ex
i from Rule 1. This contradicts the fact

that there is an event s(m) between cxi
i and ex

i .
(Case 2-2: ex

k ̸→ ex
i) Since ex

k ̸→ ex
i , xgcni(k) < x

at ex
i . Since there is event s(m) between cxi

i and ex
i , ex

i

is a receive event from process pj . Let x′ = xgcn(j)
at ex

i . x′ ≥ x is satisfied. Since sti(k) = true and
xgcni(k) < x′ at ex

i , cxi
i must be the newly taken

checkpoint just before ex
i from Rule 2. This contra-

dicts the notion that there is an event s(m) between
cxi
i and ex

i . Therefore, CGCx(x) is consistent.
Next assume that CGCy(x, y)(y > 0) is not con-

sistent and there is an orphan message m sent af-
ter cxi

i (= CGCy(x, y, i)) and received before cxk

k (=
CGCy(x, y, k)).

Let ex,y
h be the event when ph decides

CGCy(x, y, h). For the forbidden process p1, ex,y
1 is

cx+1
1 . For a normal process, ex,y

h is the event when
cah(x′, y′) is set to cxh

h for (x′, y′) where (x′, y′) ≥
(x, y). cxh

h is ph’s newest checkpoint at ex,y
h and

cxh

h → ex,y
h is satisfied. (xgcnh(h), ygcnh(h)) < (x, y)

is satisfied before ex,y
h . (xgcnh(h), ygcnh(h)) ≥ (x, y)

is satisfied at ex,y
h .

(Case 1: ex,y
i is before s(m)) First assume that pk

is a normal process. Since (xgcni(i), ygcni(i)) ≥ (x, y)
at ex,y

i , (xgcnk(k), ygcnk(k)) ≥ (x, y) must be satisfied

at r(m). Thus, ex,y
k must be equal or be before r(m).

This contradicts the notion that cxk

k is after r(m).
Next assume that pk is the forbidden process p1.

Since cx+1
1 (= CGCy(x, y, 1)) ̸→ ex,y

i , xgcni(i) = x
at ex,y

i . Thus x′ = x and (xgcn1(i), ygcn1(i)) =
(x, y′)(y′ > 0) at r(m). Therefore, p1 must take addi-
tional checkpoint cx+1

1 before r(m). This contradicts
the notion that cx+1

1 is after r(m).
(Case 2: ex,y

i is after s(m)) Since ex,y
1 = cx+1

1 , pi

is not the forbidden process.
(Case 2-1: ex,y

k → ex,y
i) Since cxi

i is pi’s newest
checkpoint at ex,y

i and cxi
i → cxk

k → ex,y
k → ex,y

i ,
seei(i) = true at ex,y

i . Thus, cxi
i must be the newly

taken checkpoint just before ex,y
i from Rule 1. This

contradicts the fact that there is an event s(m) be-
tween cxi

i and ex,y
i .

(Case 2-2: ex,y
k ̸→ ex,y

i) Since there is event s(m)
between cxi

i and ex,y
i , ex,y

i is a receive event from a
process pj . Let (x′, y′) = (xgcni(j), ygcni(j)) at ex,y

i .
(x′, y′) ≥ (x, y) is satisfied.

First assume that pk is a normal process. Since
ex,y
k ̸→ ex,y

i , (xgcni(k), ygcni(k)) < (x, y) at ex,y
i .

Thus, (xgcni(k), ygcni(k)) < (x′, y′) and sti(k) =
true at ex,y

i . From Rule 2, cxi
i must be the newly taken

checkpoint just before ex,y
i . This contradicts the no-

tion that there is an event s(m) between cxi
i and ex,y

i .
Next assume that pk is the forbidden process p1.

Since cx+1
1 ̸→ cx,y

i , x′ = x. (xgcni(1), ygxni(1)) =
(x, 0) at ex,y

i . Since y > 0, (x′, y′) > (x, 0) is satis-
fied. In addition, sti(1) = true at ex,y

i . From Rule
2, cxi

i must be the newly taken checkpoint just before
ex,y
i . This contradicts the notion that there is an event

s(m) between cxi
i and ex,y

i . Therefore, CGCy(x, y) is
consistent.

4 Multiple forbidden processes

When there are multiple forbidden processes, it is
impossible for the forbidden processes to take an ad-
ditional checkpoint only if the condition of Theorem 1
is satisfied.

Consider the execution in Fig. 4, where p1 and p2

are forbidden processes. p2 does not need to take an
additional checkpoint at r(m2) since the condition of
Theorem 1 is not satisfied at r(m2). p1 does not need
to take an additional checkpoint at r(m) by the same
reason. Thus, gc(c, 1) = ⊥1. Consider the following
execution after current event. p3 sends message m′

to p2 and p2 executes r(m′). The condition of Theo-
rem 1 is satisfied at r(m′) and p2 takes an additional
checkpoint c1

2 just before r(m′). p2 sets gc(c, 2) = c1
2.

However, ⊥1 → c1
2 and gc(c) is not consistent.

In this execution, p1 needs to take an additional
checkpoint just before r(m). The minimum condition
for forbidden processes in the system with multiple
forbidden processes to take an additional checkpoint
is an open question. In order to attain the minimum

Figure 4: Multiple forbidden processes.

condition, the problem of taking the minimum number
of additional checkpoints when there are no forbidden
processes must be solved, because a system without
forbidden processes is the same as one in which all
processes are forbidden processes.

5 Concluding remarks

This paper discussed a coordinated checkpointing
algorithm for distributed systems with a forbidden
process. It described a checkpointing algorithm which
minimizes the number of additional checkpoints in
the forbidden process. However, the number of ad-
ditional checkpoints in normal processes is not mini-
mized. Minimizing it remains unsolved. Another un-
solved problem is minimizing the number of additional
checkpoints in the forbidden processes when there are
multiple forbidden processes.

Acknowledgment

I would like to thank Dr. Hirofumi Katsuno of
NTT Basic Research Laboratories for his encourage-
ment and suggestions.

References

[1] Chandy, K.M. and Lamport, L.: “Distributed
Snapshots: Determining Global States of Dis-
tributed Systems,” ACM Transaction on Com-
puter Systems, Vol. 3, No. 1, pp. 63–75 (Feb.
1985).

[2] Helary, J.-M., Mostefaoui, A., Raynal, M., and
Netzer, R.H.B.: “Preventing Useless Check-
points in Distributed Computations,” Proc. of
16th Symposium on Reliable Distributed Systems
(Oct. 1997).

[3] Kshemkalyani, A.D., Raynal, M. and Singhal, M.:
“An Introduction to Snapshot Algorithms in Dis-
tributed Computing,” Distributed Systems Eng.
J. Vol. 2, No. 4, pp. 224-233 (Dec. 1995).

[4] Lamport, L.: “Time, Clocks, and the Ordering
of Events in a Distributed System,” Communica-
tions of ACM, Vol. 21, No. 7, pp. 558–565 (July
1978).

[5] Manabe, Y.: “A Distributed First and Last
Consistent Global Checkpoint Algorithm,” Proc.
of 12th Int. Conf. on Information Networking,
pp.475-480 (Jan. 1998).

[6] Manabe, Y.: “A Distributed Consistent Global
Checkpoint Algorithm with a Minimum Number
of Checkpoints,” Proc. of 12th Int. Conf. on In-
formation Networking, pp.549-554 (Jan. 1998).

[7] Manabe, Y.: “A Distributed Consistent Global
Checkpoint Algorithm with a Minimum Num-
ber of Checkpoints,” Technical Report of IEICE,
COMP97-6 (Apr. 1997).

[8] Netzer, R.H. and Xu, J.: “Necessary and Suf-
ficient Conditions for Consistent Global Snap-
shots,” IEEE Trans. on Parallel and Distributed
Systems, Vol. 6, No. 2, pp. 165–169 (Feb. 1995).

[9] Prakash, R. and Singhal, M.: “Low-Cost Check-
pointing and Failure Recovery in Mobile Comput-
ing Systems,” IEEE Trans. on Parallel and Dis-
tributed Systems, Vol. 7, No. 10, pp. 1035–1048
(Oct. 1996).

[10] Strom, R.E. and Yemini, S.: “Optimistic Re-
covery in Distributed Systems,” ACM Trans. on
Computer Systems, Vol. 3, No. 3, pp. 204–226
(Aug. 1985).

program MCGC; /* program for pi. */
const n = ...; /* number of processes */;
/* p1 : forbidden process, p2, . . . , pn: normal processes */
var xgcn(n), ygcn(n), ck(n), ca(∗, ∗): integer;

see(n), st(n): boolean;
procedure checkpoint
begin

take a checkpoint;
ck(i) := ck(i) + 1;
for each k(̸= i) do see(k) :=true;
see(i) :=false;
for each k do st(k) :=false;

end; /* end of subroutine */

/* main */
initialization begin

for each k(̸= i) do ck(k) := −1;
ck(i) := 0;
for each k(̸= 1) do xgcn(k) := −1;
if i = 1 then xgcn(1) := 0 else xgcn(1) := −1;
for each k(̸= 1) do ygcn(k) := 1;
ygcn(1) := 0;
for each k do see(k) :=false;
for each k do st(k) :=false;

end; /* end of initialization */

when pi initiates a checkpoint begin
checkpoint;
if i = 1 /* forbidden process */

then xgcn(i) := xgcn(i) + 1
else ygcn(i) := ygcn(i) + 1;

ca(xgcn(i), ygcn(i)) := ck(i);
end; /* end of checkpoint initiation */

when pi sends m to pj begin
send(m, xgcn, ygcn, ck, see) to pj ;
st(j) :=true;

end; /* end of message sending */

when pi receives (m, mxgcn, mygcn, mck, msee) from pj

begin
for each k do

if ck(k) = mck(k) then see(k) := see(k) ∨ msee(k)
else if ck(k) < mck(k) then see(k) := msee(k);

for each k do
(xgcn(k), ygcn(k)) :=

max((mxgcn(k), mygcn(k)), (xgcn(k), ygcn(k)));
for each k do ck(k) := max(ck(k), mck(k));
if (mxgcn(j), mygcn(j)) > (xgcn(i), ygcn(i)) then
begin /* information about new initiation */

if i = 1 /* forbidden process */ then begin
checkpoint;
xgcn(i) := xgcn(i) + 1;

end else begin /* normal process */
if (see(i)=true or

(∃h, st(h) =true and
(mxgcn(j), mygcn(j)) > (xgcn(h), ygcn(h))))

then checkpoint;
(xgcn(i), ygcn(i)) := (mxgcn(j), mygcn(j));

end; /* end of normal process case */
ca(xgcn(i), ygcn(i)) := ck(i);

end; /* end of case new information arrives */
execute r(m);

end; /* end of message receiving */

Figure 5: Algorithm MCGC.

