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SUMMARY The problem of constructing a reliable and

efficient routing o in a communications network G is considered.
The forwarding index &(G, p), which is defined as the maximum
number of routes which pass through each node, is a criterion of
network efficiency. The diameter of the surviving route graph
D(R(G, p)/F), which is defined as the maximum number of
surviving routes needed for communication between each pair of
nodes if node and edge faults F' occur, is a criterion of network
reliability. Routings which minimize &(G, p) and D(R(G, p)/F)
are needed. In this paper the following are shown: (1) A
sufficient condition for A-connected digraphs (k%2 4) to have a
routing e such that D{R(G, p)/F)<6 for |F|<k. (2) A method
of constructing a digraph G and rounting e such that £(G, p2)<
2l logewl for any number of nodes # and maximum degree d. (3)
A method of constructing a digraph G and routing oz such that
&(G, p2)<3logan and D(R(G, 03)/F)<3 for |F|<d—1 if n>d*
and d=3.

1. Introduction

In the design of communications networks and
multiprocessor networks, reliability and efficiency are
two major factors. These networks are modeled by
undirected graphs or directed graphs (digraphs), where
nodes correspond to switching elements or processors,
and edges correspond to communication links. The
reliability and efficiency of networks are related to their
topological properties (for example, connectivity and
diameter) and a lot of graph-theoretical studies have
been done, for example, Refs. (6), (8), (13) and
Footnote*.

In the design of reliable and efficient networks,
network control methods such as network routings must
also be considered. Recently, two criteria for graphs and
their routings have been proposed independently : the
forwarding index for measuring efficiency®, and the
diameter of the surviving route graph for measuring
reliability®.

A routing p assigns a fixed path between any pair of
nodes, which is called a route. The forwarding index
&(G, p) is the maximum number of routes which pass
through each node. No node can use its transmission
capacity only for communications originating or ter-
minating at it because it is also required to forward
transmissions between other node pairs. If there is equal
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traffic between all pairs of node, the forwarding index
shows the decrease in node capacity caused by forward-
ing. Thus, the forwarding index is a criterion of network
efficiency.

The surviving route graph R(G, o)/ F is defined for
a graph G=(V, E), a routing p and a faulty component
set F. Its nodes are V—F and there is an edge from
node « to node v in R(G, p)/F wherever the route from
u to v avoids F in G. The routing table is assumed to
be computed only once for a given communications
network configuration, and thus all messages must be
sent by these routes. When a node or an edge fails,
routes passing through it become unusable. However,
communication is still possible through a sequence of
surviving routes. The time required to send a message
along a route is often dominated by the message process-
ing time at the two terminal nodes of the route. Under
this assumption, the diameter of the surviving route
graph D(R(G, p)/F) is a criterion of network reliabil-
ity.

Towards attaining a good routing which minimizes
both the forwarding index and the diameter of the
surviving route graph, the following two problems have
been considered™®.

(1) Construction of a good routing for the above
criteria on general graphs.

(2) Construction of a good graph and routing pair for
these criteria.

For problem (1) concerning the surviving route
graph, it has been shown that if the routing is a minimal
routing, such that the route from « to v is a minimal
length path from « to v, the diameter of the surviving
route graph depends on the number of faults”). Previous
papers have shown sufficient conditions that %2-connected
undirected graphs have a nonminimal routing e such
that D(R(G, p)/F) is a small constant independent of
the number of faults®™®

For problem (2) concerning the forwarding index,
a method of constructing an undirected graph G and its
routing o such that £(G, p) has the same order as the
lower bound is shown®.

* T. Soneoka, H. Nakada and M. Imase: “A design of
d-connected digraph with minimum number of edges and
quasiminimal diameter 1”7, submitted for Discrete
Applied Mathematics.
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In this paper, these problems are considered for the
digraph case. For problem (1), Sect. 3 proposes a
sufficient condition for %k-connected digraphs (£=2, 4) to
have a routing p such that D(R(G, p)/F)<6 for |F|<k.

For problem (2), Sect. 4 shows two methods of
constructing an »-node digraph G with the maximum
degree d, and a routing p:(i=1,2) whose forwarding
index is small: p; such that £(G, p1) is asymptotically
optimal if » and d are relatively prime, and p. such that
&(G, p2) is about twice that of the lower bound for any
»n and d.

Previous work has considered either the forwarding
index or the diameter of the surviving route graph.
Section 5 shows two methods of constructing an #z-node
digraph G with the maximum degree d and routing such
that both the forwarding index and the diameter of the
surviving route graph are quasi-optimal. If » and & are
relatively prime, »>d* and d=3, there is an #-node
digraph G with the maximum degree d and routing o1
such that &(G, pi) is at most twice that of the lower
bound and D(R(G, p1)/F)<3 for |F|<d—1. If n>d*
and d =3, there is an #-node digraph G with the maxi-
mum degree d and routing o5 such that &(G, p5) is at
most 3 times that of the lower bound and D(R(G, 0%)/F)
<3 for |F|<d—1.

2. Preliminary
2.1 Definitions

This section presents definitions and terminology.
Let ged (%, d) be the greatest common divisor for # and
d. We define f(n)=0(1) to mean lnifgf(n)zo. Let G=

(V, E) be a directed graph where V is a set of nodes and
E is a set of directed edges. Hereafter, we refer to
directed graphs as digraphs. The outdegree or indegree
of node v is the number of edges which are incident out
of or into v. The maximum degree 4(G) of a graph G is
the largest value among the indegrees and outdegrees of
all v in V(G). For a node set UC V, the subgraph
induced by U is the maximal subgraph of G with node
set U.

If (#, v)EE, then u is a predecessor of v ; similar-
ly, v is a successor of #. A walk from node » to node vs
in G is an alternating sequence of nodes and edges, say
Vo, €1, 1h, **, Vioa, @i, Us, ***, €, Un, Where e;=(vi_1, ) EE.
A walk whose nodes are distinct is called a path. The
distance from node « to node v, denoted by dis (x, v), is
the length, or the number of edges, of the shortest walk
from u to v. The diameter of G, D(G), is the maximum
distance between any pair of nodes.

Digraph G is said to be strongly connected if there
exists a walk between every pair of distinct nodes.
Digraph G is said to be £-connected if G remains strong-
ly connected when any k£—1 nodes are removed. The
connectivity x(G) of digraph G is defined as the mini-
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mum number of nodes whose removal results in a trivial
or not strongly connected digraph. For digraph G with
AG)=d, x(G)<d.

For a node €V and a node set UC V—{v}, v-U

fan is a set of |U| disjoint paths from v to all nodes of
U. U-v fan is a set of |U| disjoint paths from all nodes
of U to v. The following property holds for £-connected
digraphs.
[Property 1] Let G=(V,E) be a k-connected
digraph, U be any node subset of V such that |U|<k,
and v be any node in V — U. There are a v-U fan and a
U-v fan. U

We refer the reader to Ref. (5) for the other graph
terminology.

2.2 Forwarding Index and Diameter of Surviving
Route Graph

For a network G=(V, E), a routing p is a function
that assigns a fixed path to an ordered pair (x, ) in V'
X V. The path specified by o(zx, y) is called a route from
x to y.

For node v in G and routing o, let £&(G, o) be the
number of routes of p that pass through node ». The
forwarding index, £(G, o) is defined as

&G, p)=ggggg)&(G, 0).

For the graph shown in Fig. 1 (a), an example of
routing p is defined as follows.

u, (u,v),v if (u, v)EE

O) <O7 1)) 1) (ly 2): 2 u=0, v=2
o(u, v)=

2,(2,3),3,(3,0,0,(0,1),1 u=2,0v=1

3) (3v O)) 01 (Oy 1): 1 u=3, v=1

(1)

For the routing o on G, &(G, p)=2, &=(G, p)=1,
&(G, p)=0, &(G, p)=1, and &(G, p)=2- For analyzing
the minimum achievable forwarding index, we define the
following terminology.

> 73

F={3,(1,0)}
"

I @
(V) (2 Y

G R(G, p)/F
(a) (b)

Fig. 1 An example of G and R(G, p)/F.
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§(G)=mgnE(G, 0)

A lower bound on £(G) can be obtained by an argument
similar to that for undirected graph G®.

[Property 2]  For any digraph G(», d) with | V(G)|=
zn and 4(G)=d,

E(G(n, d)=(1+ o(1))n logan. ]

It is easily shown that digraphs which can achieve
this lower bound must have a diameter of O(logan).

Let FCVUE be a faulty component set, which
consists of the faulty node set, F,, and the faulty edge
set, Fe. The surviving route graph, R(G, o)/ F=(V’, E’),
is a digraph defined as follows.

V=V —E,,
E'={(z, )| V(p(x, Y)) N Fo=¢
and E(p(x, ¥))N Fe= ¢},

where V(o(z, y)) and E(o(x, y)) are respectively the set
of nodes and edges contained in route oz, y). The
diameter of the surviving route graph is denoted by
D(R(G, p)/F). For the graph G in Fig. 1(a), its routing
o defined by Eq. (1) and F={3, (1, 0)}, the surviving
route graph R(G, p)/F is shown in Fig. 1(b), and its
diameter D(R(G, p)/F)=2. The lower bound of the
diameter of the surviving route graph is given as fol-
lows.
[Property 3]
it,

For any digraph G and any routing o on

|FIE%?%)D<R(G’ 0)/F)=2. []

If |F|2 »#(G), G/ F might be disconnected and
max D(R(G, p)/F) is infinity. Therefore, digraphs
which can have an optimal diameter of the surviving
route graph must be maximally connected.

3. Construction of a Reliable Routing on General
Networks

This section gives in Theorem 1 a sufficient condi-
tion for %-connected digraphs (22, 4) to have a routing
o such that the diameter of the surviving route graph is
a small constant. First, we define a condition DC.(m).
This condition is similar to that defined in Refs. (11),
(9) for undirected graphs. For vE V, let Pu(v)(Sx(v)) be
a set of v and £—1 predecessors (successors) of ». An
example of Px(v) and S.(v) is shown in Fig. 2. Define
I'.(v) to be Pu(v)U Sk(0).

[Definition 1]  Condition DCx(m): G=(V, E) has m
nodes w, v1, '+, un such that there exists some pairs
Pu(v:) and Su(v:)(i=1, -, m) which satisfies .(v:)N
I(v;)=¢ for any i=+j. []
[Theorem 1] If a k-connected (£=2,4) digraph G
satisfies the condition DCx(k), there is a routing p on G
such that

Fig. 2 Pu(v), Si(v) and I(v)(E=5).

’l?ﬁ’i‘D(R(G’ 0)/F)<6. L]

By a similar argument to that in Ref. (11), a class

of digraphs satisfying DCk«(%) is derived.
[Property 4] For every 0< e<47' there exists an #o
>0 such that every k-connected digraph G with #n=#,
nodes and 4(G)< e+ n*”?® satisfies DCx(k). []
Consequently, all graphs with such density have the
routings described above.

' Now define the routing p. Let v:(7=0,1, -+, £—1) be
the set of nodes in V(&) which attains the condition
DCr(k). Define I’ZOSLiJ(th(vi). Let G(I'x(v)) be the sub-

graph induced by I.(v).

From |P(v:)|=% (|S:(v:)|=Fk) and Property 1, there
is a u— Pu(v:) fan (a S«(v:)—u fan) for any
Pr(v:)(Su(v:)) and & Pu(v:)(u€E Su(vs)), where i=0, 1,
-,k—1. The path from u€EP(v;) to vEP.(v:)
contained in the «— Px(v;) fan is denoted by @ran(u, v ;
Pi(v:)). The path from » € Sk(v:) to veE Sk(v:) contained
in the Se(v:)—v fan in denoted by Tian(2; Sk(vy), v).
For any u <€ Px(v:) and vE Sk(v;), there is a path from «
to v in G(I'x(v:)). This path is denoted by .(w, v’
Fk(?)i)).

Let u: and u; respectively be nodes in Si(v:) and
Pi(v,)(i%7). If the paths of a u;— Px(v;) fan are assigned
to the routes from u; to Px(v;), it may be impossible to
choose paths of a Sk(v:)—wu; fan as the routes from
Sw(v:) to u; because the path from u: to u; in the u;
— Pu(v;) fan may not be the same as that in the Si(v:)
—u; fan. In order to determine which of the u.— Pu(v;)
or Sk(v:)—u; fans should be chosen as routes, we con-
sider a digraph 7'(k)=(Vr, Er), where a node 7 in V(s
=0,1, -+, k—1) corresponds each I.(v.), and if (4, &)E
ET, then (iz, Z1)GEET

Let # and v be arbitrary nodes in V. According to
T(k), a routing o can now be defined as follows :

olu, v)=
w}an(u, v, Pk(vi))

Pranue 5 Se(vy), v)
Pran(we, v 5 Pu(vy))

if u€V—T and vEPu(v) (2)
if ueSu(v:) and vEV~T" (3)
if uel(v:) and vEPu(v;)

such that (7, ))€Er (4)
if u=Sx(v;) and vE L(v;)

such that (7, ))€Er (5)

w}an(” 5 Sk(vj)y ‘U)
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Uran2e ; Se(vs),v)  if uE Sk(v:) and

UEFk(Ui)“Sk(Ui) (6)

Wc(u, v, Fk(Uz‘)) if uEPk(Ui) and Z)ESk(U.‘) (7)

don’t care otherwise

It is easily checked that p is well defined, that is, at
most one route is defined for each pair of nodes. The
routing o satisfies the following property :

[Property 5] For any faulty set F with |F|<#,

D(R(G, p)/ F)<2D(T(k))+2. ]

(Proof) Since |F|<# and the number of node sets
I'i(v:) is k, there exists a node set, I(v;) such that
G(I'x(v1)) contains no faulty component. Let « and v be
arbitrary non-faulty distinct nodes in V—F and let
disz(u, v) be the distance from % to v in R(G, p)/F.

To prove disg(u, v)<2D(T(k))+2, the following
lemmas are used.

[Lemma 1] For any nodes «< Pi(v;) and v &€ Sk(vy),
dise(u, v)<1.
[Lemma 2] For any node & V —1TI, there is a node v

€ Pu(v;) such that disz(u, v)=1.
[Lemma 3] For any node « € (v:)(i=1), there is a
node v& Pi(v;) such that disg(u, v)< D(T(k)).
[Lemma 4] For any node #< Sx(v;), there is a node v
& Py(v;) such that disg(u, v)<D(T(k))+1.
[Lemma 5] For any node v& V —1I, there is a node «
£ Sx(v;) such that dise(%, v)=1.
[Lemma 6] For any node v& (v: )(z#:[) there is a
node & Sx(v;) such that disz(u, v)<D(T(&)).
[Lemma 7] For any node v& P.(vr), there is a node #«
&€ Sk(v;) such that disg(%, v)<1.

Using these Lemmas, dise(u, v)<2D(T(k))+2 for
any u, v is proved as follows :
[Case 1] Suppose #E Pi(v;) and v< Sk(vr). This case
is proved in Lemma 1.
[Case 2] Suppose uePu(vr) and v<Sw(v;). From
Lemma 2, 3 and 4, there is a node «’& Px(v;) such that
disg(ee, ) £D(T(E))+1. From Lemma 1, disz(z’, v)<
1. Thus, disz(ux, v)<D(T(£))+2.
[Case 3] Suppose uEPi(v:) and v&ESk(v;). From
Lemma 5, 6 and 7, there is a node »"€Sx(»;) such that
dise(v', v)<D(T(k)). From Lemma 1, disg(z, v")<1.
Thus, disz(u, v)<D(T(k))-+1.
[Case 4] Suppose u&P(v;) and veE Si(v;). From
Lemma 2, 3 and 4, there is a node '€ Px(v;) such that
dise(u, w)=D(T(k))+1. From Lemma 5, 6 and 7, there
is a node v'ESk(vr) such that dise(v’, )< D(T(E)).
From Lemma 1, dis z(x’, v")<1. Thus, dis#(%, v)=<
2D(T(B))+2.

Therefore, for any % and v, disz(2, v)<2D(T(k))
+2. Now let us prove Lemma 1-7.
(Proof of Lemma 1) Since G(%(v;)) contains no
faulty component, it is trivial from Eq. (7).
(Proof of Lemma 2) From Eq. (2), there are % dis-
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joint routes from u to Px(v;). Since |F|<k, at least one
of these is surviving, that is, there is a node v€ Pi(v;)
such that disz(%, v)=1.
(Proof of Lemma 3) Let #(=1), d, g2, ***, a1, ta(=1)
be the node sequence of a path from 7 to 7 in 7(%) such
that d < D(T(k)). At least one of the % routes from % to
Pu(vy,) is surviving in G—F from Eq. (4 ). Lét u., be the
terminal node in Px(v:) of this route, thus disg(, u;)=
1. By iterating this discussion, it can be shown that there
is a node u,,< Pi(vy,.,) such that disg(wu:, ui,.,)=1 for j
=0, 1, -, d—1. Consequently, there is a node v=u:,E
Pi(v1)(I=14) such that dis(u, v)<d<D(T(k)).
(Proof of Lemma 4) In 7(k), there is a walk from 7 to
I with a distance not greater than D(7(%))+1, because
there is a node < V7 such that (7, /) Er and there is a
path from 7 to / with a distance not greater than
D(T(k)). In the same way as in the proof of Lemma 3,
there is a node v & Pi(v;) such that disg(u, v)<D(T(k))
+1.
(Proof of Lemma 5) Similar to the proof of Lemma 2,
by replacing Eq. (2) with Eq. (3).
(Proof of Lemma 6) There is a path from / to 7 in
T(k) with a distance not graeter than D(T(k)). Thus, it
is clear by a similar argument to that in Lemma 3.
(Proof of Lemma 7) If v€Su(vr)NPulvr), let u=v
and disz(u, v)=0. If v& Pu(v;)—S(vr), from Eq. (6),
there is a node »& Sk«(v;) such that disg(z, v)=1. [ ]

It has been shown in Ref. ( 7) that the diameters of
the following digraphs 7i(#) and Tx(k) are not larger
than 2. Let m be | £/2].

When £ is odd, Ti(k)=(Vr, Er,) is defined by

VTI {0 1 Zm} ET1 Ua lET1 a.
Where Er.a {(Z, Dlj=i+e (mod 2m+1)}.

When k£ is even and k=2, 4, Tu(k)=Vr,(Ern) is

defined by

Ve={0,1,,2m~1}, En=UZ1En.q
where Er, o=

{G Di=ita
{(z, Hli is odd and j=i+2

(mod 2m)} if a=1, 3,4, -, m—1
(mod 2m)}

U{(7, /)I7 is even and j=i—2 (mod 2m)}
if =2

{(7, HNlo<i<m and j=i+m (mod 2m)}

if a=m

From D(T:(k))<2(i=1, 2) and Property 5, it is deduced
that Theorem 1 is valid.

4. Construction of a Digraph with an Efficient
Routing

This section gives a construction method of a
digraph G and its routing o which has a quasi-optimal
forwarding index. As shown is Sect. 2, digraphs which
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Edge label:

p of
v=3utp (mod 10)

Fig. 3 Gs(10, 3).

can have an optimal routing in terms of the forwarding
index must have a diameter of O(logs#). The general-
ized de Bruijn digraph® Gs(#n, d) has a O(log.») diame-
ter. Go(n, d)=(V, E) is defined as follows.

V={0,1, -, n—1}
E={(u, v)lv=d-u+p (mod =), p=0,1, -, d—1}

Gx(10, 3) is shown in Fig. 3. It has been shown that
MGe(n, d))=d, x(Gs(n, d))=d—1 and D(Gs(n, d))=
ogan1®. Let D(Gs(n, d)) be D. Thus, d°'<n=d".

For preparation, we give a method of representing
walks on Gs(#, d). There is an m-length walk from node
% to node v if and only if there are integers pi, pz, ***, Dm
satisfying 0= p:<d (i=1, 2, ---, m) and

vEu-d’”+p1-d”‘_1+p2-d"“z+-'-+pm41'd+pm

(mod #). This walk can be represented by « and the
d-ary m digits (#1, b2, -, p=). For example, since 1=0+3*
+1:324+0.3+2 (mod 10), there is a 3-length walk from
0tolin Gs(10,3): 0,(0,1),1, (1, 3), 3, (3, 1), 1. This walk
is represented by 0 and (1, 0, 2).

Therefore, if there exists an integer x(0=<x<d™)
satisfying

v=u+d™+x {mod n), (8)
there is an m-length walk from # to v, which is represe-
nted by « and d-ary m digit representation of x. Gener-
ally, this method gives walks rather than paths. How-
ever, paths are derived by shortening there walks when
the same node appears more than once. Thus, we need
only consider walks. From the definition of diameter,
there doesn’t always exist a walk of length <D from
u to v. Let minimum nonnegetive integer x satisfying
Eq. (8) be Pu(u,v). If Pu(u,v)<d™ let the walk

derived from Pnr(u, v) be Wa(u, v), and the set of routes
Wa(u, v) for all v be Wu(z). There might be plural
D-length walks because Pp(#%, v)+ j» might be less than
d? for some j>0. Let Wy {u, v) be the route derived
from Pp(u, v)+ jn and the set of routes Wp,(u, v) for all
v be Wpi(u). Note that Wpo(u, v)= Wo(u, v). Now a
routing o1 on Gg(#n, d) is defined as follows.

[Definition 2]

o1(u, v)=Wpolu, v). ]

If gcd(n, d)=1, o1 attains an asymptotically opti-
mal forwarding index if #— oo,
[Theorem 2]

E(Ge(n, d), p1)<nlogan if gcd(n, d)=1. []

To prove Theorem 2, the following property is used.
[Property 5]"® The number of solution z of the con-

gruence equation,
prx=q (mod n)

is gcd(p, n), if and only if ¢ is a multiple of gcd(p, »n).

(Proof of Theorem 2)

D
tation of z be (1, 72, **+, #p), that is nZerj-a”"j and an
£

Let the d-ary D-digit represen-

arbitrary node be v. Let us count the number of routes
which pass through ». For any other node #, the routes
from u to any node in V defined by o: is represented by
d-ary D-digits less that #, that is, (0,0, ---, 0), (0,0, ---,
1), -+, (r, 72, +*+, ¥o—1). Consider the equation

(mod n). (9)

If 0=y<d’ and d-ary i-digit representation of y is (v,
¥z, **, ¥:), there is a walk from « to v represented by (i,
¥, **+, ¥:), and there are d”~* D-length walks from « to
some nodes in V via v, which are represented by (1, vz,
L ¥i g, @2, 0, qo-1)(0=g:<d). Thus, the number of
walks from « to V defined by o1 whose i-th intermedi-
ate node is v is:

v=d'~u+ty

dr- if 0<y< _zzlrj-a"'ﬂ‘
F=
D ) i .
2 Vj'dD_} if yZer-d“]
J=i+l j=1
0 otherwise

From Property 5, Eq. (9) has one solution % for
each integer y(0=<y<n), because gcd(#n, d)=1. Thus,
the number of routes which have v as the /-th intermedi-
ate node is

3 .. D s
dP D red T+ 2 viedP =m0
J=1 J=i+1

Since 7 is 1, 2, -+-, D—1, the number of routes which pass
through v is (D—1)xn. Therefore,

EAGa(n, d), o)) £(D—1)n<nlogun
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and
E(Go(n, d), p1)<nlogan. N

Next, let us consider general cases containing the
case of gcd(n, d)=+1. Let t= [d?/n]. Thus, tn=<d?<(¢
+1)n and 1=¢<d. Now another routing p: is defined.
[Definition 3]

ou, v)=Wp,(u, v),

where j=Ppo(u, v)

[Theorem 3]

E(Gs(n, d), p2)<2n [logan]. []
(Proof) Let the d-ary D-digit representation of # be
(9, 7z, =+, o) and an arbitrary node be ». Let us count
the number of routes which pass through v. For another
node %, of the d” D-length walks from « to V, n walks
represented by (0,0, -+, 0), (0,0, ---, 1), -, (51, #z, ***, #p
—1) are walks of Woo(w), (r, 72, -+, 75), (11, 72, =, 7
+1), -, (d-ary D-digit representation of 2x—1) are
walks of Wp,.(%), and so on. From the definition of ps, if
a walk in Wp, (u) is used as the route from % to a node
w, walks in Wp,(u) are not used as routes from « to w
+1, w+2, -+, w+¢—1 and used again from « to w+¢ if
Wo.s(u, w-+1t) is defined. Thus, every #¢-th walk in
Wo.:(u) is used as pz. Consider Eq. (9).If 0<y<d* and
the d-ary i-digit representation of y is (v, vs, =, ¥2),
there are d”~* D-length walks from « to V via v, which
are represented by (v, vz, =", ¥, @1, @, ***, @p-:)(0=g:<
d). Let jo be the smallest integer j such that there is at
least one walk of Wy («) in these d”~* walks. For 7/ >
Jo+1, there can not be a walk of Wy (%) in these d?¢
walks because |Wp,{u)|=n>d” . Let @ of these d?*
walks be in W () and d°~*—a be in Wp,j+1(x). Thus,
at most

]

walks are used as routes from . From Property 5, the
number of solution « for Eq. (9) is gcd(d’, n), if v—y
is a multiple of gcd(d?, #). The sum of the numbers of
solution u for these d’ equations for different y(0<y<
d’) is equal to d°, because every gcd(d?, #)-th equation
of these d* equations has gcd(d’, ») solutions. Thus,

Ev( GB(?Z d) pz)

=ga([ e[

(mod ). ]

2 ar 2(t—1)

é? < 7 7 >

_(D=1a”  At—1)(d’—d)

- ¢ (d—1)t

<Y p-1) +#n<2nD
because

Setrez
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1=¢<d and d°<(¢+1)%. Therefore,
£(Gs(n, d), p2)<2nllogan]
and
E(Gx(n, d), p2)<2nllogan. M

Theorem 3 can derive a method of constructing an
undirected graph and routing which attains a quasi-
optimal forwarding index. Let Gi(#, d) be the undi-
rected graph modifying directed edges of Gs(#, d) into
undirected ones. Note that 4(Gi(n, d))=2d. Therefore,
for any #z and d, an z-node undirected graph with 4=d,
Gu«(n, d) can be obtained from Gix, |d/2!) by adding
some edges if d is odd. If p. is used as a routing,

E(Gun, d), 02)=E(Gs(n, [ d/2]), p2)<2nllogramnl.

A previous paper® has shown a construction method in
which

E(G(n, d), p)<3n logiys .

Since 2nllogyznl<3#n logsn if n=1d/2[+1d/3], the
forwarding index of this construction method is smaller
than that of the previously proposed one when n=1d/2

1-1d/31.

5. Construction of a Digraph wiih a Reliable and
Efficient Routing

This section considers a construction method for a
digraph and routing which have both a quasi-minimal
forwarding index and a quassi-minimal surviving route
graph diameter. As mentioned in Sect. 4, the generalized
de Bruijn digraph Gz(#, d) has quasi-maximal con-
nectivity. In the case of gcd(#, d)=1, a routing i on
Gs(n, d) is derived by modifying the routing o; defined
in Definition 2.

[Definition 4]

WD—l(u, Z})
WD,()(u, Z))

if Pp-i(u, v)<d®?
oi(u, v)= _
otherwise
[Theorem 4]
E(Gs(n, d), 01)<2nlogan
maxlD(R(GB(n d), p1)/F)<3

IFi<d
if ged(n, d)=1 and n>d* ]

(Proof)

(Forwarding index) For any node v, let us count the
number of routes in Wp—; which pass through v. For a
node pair # and w such that Ppi(w, w)<d”™', the
routes from u to w defined by Wr-i(x) are represented
by d-ary (D—1)-digits (a1, g2, =, @p-1)(0=¢:<d). As in
the proof of Theorem 2, let us consider Eq. (9). The
number of routes of Wpr_i{«) in which v appears as the
i-th intermediate node is:
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dD~z‘—1
}

Since ged(#, d)=1, the number of solution % of Eq. (9)
is 1 for any integer y. Thus, the number of routes of
Wp-1 which have v as the 7-th intermediate node is
dP e di=d"", Since 7 is 1, 2, -+, D—2, the number of
routes of Wps-1 which pass through v is at most (D—2)+
dar .

Therefore,

E(Gsln, d), p)=(Ga(n, d), p)+(D—2)-d"
=(D—1)+d’+(D—2)+d”*'<2nlogan

if 0=y<d?

otherwise

and
E(Gs(n, d), 61)<2n logan.

(Diameter of surviving route graph) Assume two dis-
tinct nodes in V—F, « and v. Let #: of the # routes
from « to V be surviving, #» of the # routes from V to
v be surviving, and f; of #® routes from V to V be
non-surviving. If #:>0, #2>0 and #ui°#n:> f3, there are
two nodes #” and »” such that the routes from # to #’,
from %’ to v’, and from v’ to » are all surviving. Thus,
D(R(Gs(n, d), o1)/F)<3.

From now on, only node faults are considered. If an
edge fault occurs, it is considered as a node fault adja-
cent to the edge. '

First consider routes from « to V. Let us count the
number of surviving routes of d”~! routes of Wp_i(u).
Let f be a faulty node. Similar to the proof of Theorem
2, if # and f satisfy the following equation for some
(1=/=D-1),

f=u+d+y (mod n) 0=y<d’, (10)

d” ' walks pass through or terminate at f, that is,
these walks are not surviving. Let x; be the number of
faulty nodes in F* which satisfy Eq. (10) for :(1<:<D
—1). Thus, the number of surviving routes from # to V'
is
D-1
n=dP — izlﬂi.dD_i_l'

Next let us consider #,. Similar to the above discussion,
if # and fEF satisfy

v=f+d’+y (mod n) 0<y<d’, (11)

then d” "' walks pass through or initiate at /, that is,

these walks are not surviving. Let v; be the number of
faulty nodes in F' which satisfies Eq. (11) for i (1=7<D
—1). Thus, the number of surviving routes from % to V
is

D-1 )
ne=d” ' — 21 vied?
=

Now let us prove if 4+a<D—1, pa+v,<|F|+1
Assume p;,+ v, >|F|+1. Then, there are two distinct

nodes fi, L€ F satisfy Eq. (10) for /=17 and Eq. (11) for
1=1,, that is,

fi=ud®+y. (mod n), v=rd®+y
0Ly <d™ 0 yr<d?® (kB=1,2).

From there equation, there is an integer j(=0) which
satisfies

(n—ya)d*+(yi—y2)=Jn.
On the other hand, if 41 +5&<D-—1,
|(y1“yz)di2+(y{fyé)|éa’”“-—l< 7,

because 0=y, <d", 0=y <d?® Thus, if Ht+i=D-—1, it
is deduced fi=f, that is, g+ va<|F|+1.
Since i, vi<|F|£d—2 for =3, -, D—1,

me 1z §<d""—ﬂ1d”‘z— ﬂzd”‘a—g(d—z)d"‘“>

(mod #)

e N S R ]

(12)

Since #n>d* that is, D=5, psy+v,=d—1 for 41+5=4.
From these inequalities and 0= u;, v.<d —2(i=1, 2), the
right side of inequality (12) is minimized when 1=1, 1
=d—2, =1 and v.=d—2 (or u=d—2, n=1, u=d
—2 and v,=1). Therefore,
nyen2>(d —2)(d +1)(d*P 75+ d*P75).
Next, consider fs. Let f be a faulty node. For any
node w, consider the equation
f=w+di+y (mod xn), 0=<y<d’ (13)

The sum of the number of solutions w for all y is d* as
in the proof of Theorem 2. For each w, the number of
walks which pass through f is at most 4 ‘+d° ",
where d?7' is for Wo(w) and 4% "' is for Wo-i(w).
Therefore, '

fim(d =2+ da>+ S d"a> )
=(d—2)*(D—1)+d”+(D+2)-d"™),
and if D=5 and d =3,
e m2— fi > (d —2)(d +1)(d**~°+ d*"~°)
—(d—2)((D—1)+d°+(D—2)+d* ) >0
and
maxlD(R(GB(n, d), 01)/F)<3. ]

|Fl<d—

For the case of gcd(n, d)=1, modify the routing e
as follows.
[Definition 5]

Wo-u, v)
Wo,f(u; U)

lf PD_l(M, 7)>< dD71
ou, v)=

otherwise
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(mod ?). L]

where j=Pp(u, v)

[Theorem 5]
E(Gs(n, d), 02)<3nlogan
max D(R(Gs(n, d), p3)/F<3

[Fl<d-1

if n>d*and d=3. ]

(Proof)

(Forwarding index) Let us consider the number of
routes is Wp-, which pass through a node ». As in the
proof of Theorem 3, since Eq. (9) has ged(d’, #) solu-
tions if v —y is a multiple of ged(d?, #), the sum of the
number of solutions is d’. Thus, as in the proof of
Theorem 4, the number of routes in Wy-, which pass
through v is at most (D—2)-d?"!. Therefore,

&G, d), 09)<E(Gu(n, d), p2)+(D—2)+d""

<{D-Dd” | xd GHE=L 4 (D —g)qo
(D—=D(+1 20t+Dn—2d
< : iy 71

(D—=2)(t+1)
R A

<3n(D—1)<3nlogan

because d=3,1<t<d, d’<(¢t+1)n and n>d* that is,
D=5,

The proof of the surviving route graph is the same
at that of Theorem 4. ]

6. Conclusion

This paper presents (1) a sufficient condition for
k-connected digraphs to have a routing whose surviving
route graph diameter is a small constant, (2) a con-
struction of a digraph and routing with quasi-minimal
forwarding index for any number of nodes #» and maxi-
mum degree &, (3) a construction of a digraph and
routing with quasi-minimal forwarding index and a
quasiminimal surviving route graph diameter for any
number of nodes » and maximum degree d.

The following problems remain for further study :
(1) a sufficient condition for k-connected digraphs to
have a routing such that the diameter of surviving route
graph is 2, (2) construction of a digraph and routing
whose forwarding index is equal to the lower bound for
any number of nodes # and maximum degree &. (3)
construction of a maximally connected digraph and
routing with quasi-minimal forwarding index and quasi-
minimal surviving route graph diameter for any number
of nodes » and maximum degree 4. Routings on max-
imally connected quasi-minimal diameter digraphs for
any number of nodes #» and maximum degree & such as
shown in Footnote (see p. 1212) should be considered.
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