
Free-XOR in Card-based Garbled Circuits

No Author Given

No Institute Given

Abstract. This paper shows a free-XOR technique in card-based gar-
bled circuits. Card-based cryptographic protocols were proposed as a
secure multiparty computation using physical cards instead of comput-
ers. They can be used when users cannot trust software on computers.
Shinagawa and Nuida proposed card-based garbled circuits that com-
pute any Boolean functions using a single shuffle. Their protocol uses
24g + 2n cards, where g is the number of gates and n is the number of
inputs. Tozawa et al. reduced the number of cards to 8g+2n. This paper
introduces the free-XOR technique for standard garbled circuits to card-
based garbled circuits. It is unnecessary to prepare a garbled table for
XOR gates. The number of cards is reduced to 8g1+2g2+2n, where g1 is
the number of gates other than XOR and g2 is the number of XOR gates
whose output is used as a final output. The card-based garbled circuits
proposed by Shinagawa and Nuida have one restriction the final outputs
cannot be used for inputs to the other gates. This paper eliminates the
restriction with two different techniques.

Keywords: Card-based cryptographic protocols · secure multiparty com-
putation · garbled circuits · exclusive or · free-XOR

1 Introduction

Card-based cryptographic protocols [14,30,31] were proposed in which physical
cards are used instead of computers to securely compute values. They can be
used when computers cannot be used or users cannot trust the software on the
computer. Also, the protocols are easy to understand, thus the protocols can be
used to teach the basics of cryptography [5,26]. den Boer [4] first showed a five-
card protocol to securely compute the logical AND of two inputs. Since then,
many protocols have been proposed to realize primitives to compute any Boolean
functions [13, 16, 21, 32, 37, 43, 44, 51, 52] and specific computations such as a
specific class of Boolean functions [2,3,7,12,18–20,22,27,29,38,41,46,47,50,56],
universal computation such as Turing machines [6, 15], millionaires’ problem
[23, 34, 42], voting [1, 28, 35, 36, 39, 55, 59], random permutation [8, 10, 11, 33],
grouping [9], ranking [54], lottery [53], and so on.

Shinagawa and Nuida [52] proposed a protocol to compute any Boolean func-
tions using the garbled circuit technique [60]. The number of shuffles used in the
protocol is one. Their protocol uses 24g + 2n cards, where g is the number of
gates and n is the number of inputs. Tozawa et al. [57] reduced the number of
cards to 8g + 2n.

2 No Author Given

To reduce the size of standard garbled tables, free-XOR technique [17] was
shown, in which no garbled table is necessary for XOR gates. This paper intro-
duces the technique to card-based garbled circuits. We show that garbled tables
are also unnecessary for XOR gates in card-based garbled circuits. Thus no cards
are necessary for internal XOR gates, where, the output of an XOR gate is not
a final output. When the output of an XOR gate is a final output, two cards are
necessary. The number of cards is thus reduced to 8g1 + 2g2 + 2n, where g1 is
the number of gates other than XOR and g2 is the number of XOR gates whose
output is a final output. The number of shuffles is kept to one.

The card-based garbled circuits proposed by Shinagawa and Nuida [52] have
one restriction the final outputs cannot be used for inputs to the other gates.
Though each input value in the garbled tables is randomized to hide the value,
the output data must not be randomized. That is the reason for the restriction.
This paper considers eliminating the restriction with two different techniques.
The first technique is preparing a copy of garbled table entries that is used
for final outputs. The second technique is remembering the random value and
undoing the randomization. Though the former technique needs more cards, the
total number of shuffles is kept to one. The latter technique needs one additional
shuffle.

Section 2 shows basic notations and definitions of card-based cryptographic
protocols. Section 3 shows Shinagawa-Nuida card-based garbled circuit whose
size is reduced by [45]. Section 4 shows the new free-XOR technique for card-
based garbled circuits. Section 5 discusses eliminating the output restriction
in [52]. Section 6 concludes the paper.

2 Preliminaries

This section gives the notations and basic definitions of card-based cryptographic
protocols. Most of the results are based on a two-color card model. In the two-
color card model, there are two kinds of marks, ♣ and ♡ . Cards of the same
marks cannot be distinguished. In addition, the back of both types of cards is
? . It is impossible to determine the mark on the back of a given card of ? .

One-bit data is represented by two cards as follows: ♣ ♡ = 0 and ♡ ♣ = 1.
One pair of cards that represents one bit x ∈ {0, 1}, whose face is down, is

called a commitment of x, and denoted as commit(x). It is written as ? ?︸ ︷︷ ︸
x

.

Note that when these two cards are swapped, commit(x̄) can be obtained. Thus,
logical negation can be easily computed.

A set of cards placed in a row is called a sequence of cards. A sequence of
cards S whose length is n is denoted as S = s1, s2, . . . , sn, where si is i-th card
of the sequence. S = ?︸︷︷︸

s1

?︸︷︷︸
s2

?︸︷︷︸
s3

. . . , ?︸︷︷︸
sn

.

All protocols are executed by two players, Alice and Bob. The players are
semi-honest, that is, they obey the rule of the protocol, but they try to obtain
secret values.

Free-XOR in Card-based Garbled Circuits 3

Next, we discuss the inputs and outputs of the protocols. Most protocols have
committed inputs, that is, the inputs are given to the players in a committed
manner. The players do not know the input values and they might try to ob-
tain the input values during the protocol execution. The other type of protocol
considers the case when each player inputs his/her input value that must be
hidden from the other player. They are called non-committed input protocols.
Note that committed-input protocols can be used when the players input their
own values. Each player makes a commitment to his/her input in advance and
they are used as inputs. Thus, committed-input protocols are desirable. On the
other hand, non-committed input protocols can be simple and might reduce the
number of cards used in the protocol.

Most protocols output the result in a committed manner. They are called
committed-output protocols. On the other hand, several protocols terminate by
opening some cards and obtaining the result from the sequence of the opened
cards. Such protocols are called non-committed output protocols. Committed-
output protocols are desirable since the committed output can be used as input
for further secure computations.

Next, we show operations on the cards. Opening a card is turning a face-down
card into a face-up, thus the players can see the mark on the card. Face-down a
card is turning a face-up card to face-down. Rearrangement is a permutation of
a sequence of cards, that is, the position of a given sequence of cards is changed.

A shuffle is executed on a sequence of cards S. Its parameter is (Π,F), where
Π is a set of permutations on S and F is a probability distribution on Π. For a
given sequence S, each permutation π ∈ Π is selected by the probability distri-
bution F and π is applied to S. If π is applied on S = s1, s2, . . . , sn, the result
is sπ−1(1), sπ−1(2), . . . , sπ−1(n). Since π is selected from Π, the result is not de-
terministic. Non-deterministic execution is necessary for card-based protocols. If
all operations are deterministic, the relation between the committed input value
and the committed output value is known to the players. When the commit-
ted output cards are opened to see the final output, the private input data is
known to the players using the relation between the input and the output. Thus
non-deterministic execution is necessary to hide the private input values.

We show examples of shuffles used in the protocols shown below. A random
shuffle is randomly changing the positions of the cards for the given sequence
of cards. When S = s1, s2, s3, the result of a random shuffle is S1 = s1, s2, s3,
S2 = s1, s3, s2, S3 = s2, s1, s3, S4 = s2, s3, s1, S5 = s3, s1, s2, or S6 = s3, s2, s1.
The probability of obtaining each result is 1/|S|!.

A shuffle is uniform if F is a uniform distribution, that is, π ∈ Π is selected
uniformly at random. A shuffle is closed if multiple executions of a shuffle are also
the same shuffle. Non-uniform shuffles are not desirable since they are difficult
to execute by human hands. Using some additional cards or tools, protocols to
execute any kinds of shuffles were shown [25,40,48,49,58].

Closed shuffles are desirable since each one of Alice and Bob can execute one
instance of the shuffle to obtain one shuffle result. Even if Alice and Bob are not
honest and each player knows the result of his/her shuffle, the final result of the

4 No Author Given

two shuffles is unknown to the players if there is no collusion between Alice and
Bob. The random shuffle shown above is uniform and closed.

Next, we introduce piles of cards. A pile of cards is a sequence of cards whose
order cannot be changed using some additional tools such as clips or envelopes.
For example, consider a case when cards si,j(i = 1, 2, . . . , n, j = 1, 2, . . .m)
are given. The players make piles of cards such that Pi = si,1, si,2, . . . , si,m(i =
1, 2, . . . , n) using clips or envelopes. The players treat each pile Pi just like a
single card during shuffle operations. The order of cards in a pile cannot be
changed because of the clip or envelope. Consider the case shuffle π is executed
on the above piles Pi(i = 1, 2, . . . , n). The result is Pπ−1(1), Pπ−1(2), . . . , Pπ−1(n),
where Pπ−1(i) = sπ−1(i),1, sπ−1(i),2, . . . , sπ−1(i),m. Random shuffles on piles are
called pile-scramble shuffles.

Last, the efficiency of the protocol is evaluated by the number of cards used
by the protocol. It corresponds to the space complexity of programs.

The number of shuffles is used to evaluate the time complexity of the proto-
cols since the other operations are simple [24].

3 Card-based garbled circuits

Garbled circuits [60] are a fundamental technique to securely compute any func-
tion by two semi-honest players. The original garbled circuits consider the case
when Alice has input value x and Bob has input y. They want to compute f(x, y)
together without revealing each player’s input value to the other player.

Shinagawa and Nuida [52] proposed a card-based cryptographic protocol to
compute any Boolean functions using a single shuffle by using the garbled cir-
cuit technique. The problem definition differs from the above one. Alice and
Bob have functions fi(x1, x2, . . . , xn)(i = 1, 2, . . . ,m) to compute from input
x1, x2, . . . , xn. The inputs are given by cards in a committed manner. The out-
puts must be given in a committed manner.

Tozawa et al. [57] reduced the number of cards. Their protocol uses eight
cards for each gate.

First, we show the outline of the computation with no security and the secure
protocol shown in [57].

For each two-input logic gate, Alice and Bob prepare a table that represents
the relation between the inputs and the output as in Fig. 1, which shows the case
of g1 = x1⊕x2. The first(second) row has the values when x1 = 0(1), respectively.
The first(second) column has the values when x2 = 0(1), respectively.

All the cards are then set to face-down to hide the values of the table. Con-
sider the simple case when x1, x2 are private inputs given to the players and
g1 = x1⊕x2 is a final output. The input value x1 and x2 are given by face-down
cards. The players open the cards and search for the entry that corresponds to
the input values. For example, if x1 = 1 (♡ ♣) and x2 = 0 (♣ ♡), the entry
at the second row and the first column has the result. If the cards are opened,
the value is ♡ ♣ , which is the correct result of x1 ⊕ x2. The result is obtained

Free-XOR in Card-based Garbled Circuits 5

Garbled tableによる計算(1)

• Tableのカードはすべて裏向き(committed)

12

𝑔1

? ? ? ?

? ? ? ?

𝑥1
𝑥2 0 1

0

1

𝑔1
𝑥1

𝑥2

Fig. 1. Table to compute g1 = x1 ⊕ x2

in a committed manner. Further computation of the other gates can be similarly
executed. The final output can be obtained in a committed manner.

Since the players open the input values, the security of inputs is not realized.
To solve the problem, Alice and Bob randomize the inputs of the tables and
input values together. For each garbled table, make two piles P1 and P2. P1(P2)
consists of the first(second) row of the table and the left(right) card of input
x1, respectively. P1 and P2 consist of five cards. Alice and Bob execute a pile-
scramble shuffle on P1 and P2 as in Fig. 2. With probability 1/2, P1 and P2 are
swapped. With probability 1/2, they are unchanged. After the shuffle, the cards
are set back to each position. The result can be represented by a random value
r1 ∈ {0, 1} as follows: the cards that have the input x1 is changed to x1⊕ r1 and
the first row of the garbled table has the values when the input is r1.

Garbled tableによる計算(2)

•入力ランダム化：
入力と対応する
Tableの行（または
列）を同時にランダ
ム化

•入力𝑥1→ 𝑥1 ⊕ 𝑟1
for some 𝑟1 ∈ {0,1}

13𝑥1を入力とするゲートが他にもある場合はそのTableも同時にランダム化

? ? ? ?

? ? ? ?

? ? ? ?

𝑥1 𝑥2

𝑃1 𝑃2

𝑃1

𝑃2

𝑔1
𝑥1

𝑥2

Fig. 2. Randomization for input x1

Garbled tableによる計算(2)

•入力ランダム化：
入力と対応する
Tableの行（または
列）を同時にランダ
ム化

•入力𝑥2→ 𝑥2 ⊕ 𝑟2
for some 𝑟2 ∈ {0,1}

14𝑥2を入力とするゲートが他にもある場合はそのTableも同時にランダム化

? ? ? ?

? ? ? ?

? ? ? ?

𝑥1 𝑥2

𝑃1 𝑃2

𝑃1 𝑃2𝑔1
𝑥1

𝑥2

Fig. 3. Randomization for input x2

Another pile-scramble shuffle is similarly executed for the input x2 and the
two columns of the table, as shown in Fig. 3. The result can be similarly repre-
sented by another random value r2 ∈ {0, 1}. The cards that have the input x2

is changed to x2 ⊕ r2 and the first column of the garbled table has the values
when the input is r2.

6 No Author Given

When we execute the computation after the pile-scramble shuffles, the play-
ers can obtain the correct result of the computation of the gate. For example,
consider the case when x1 = 1, x2 = 0, r1 = 1, and r2 = 0. The players see
0 = x1 ⊕ r1 and 0 = x2 ⊕ r2 when the input cards are opened. Thus the players
select the element in the first row and the first column in the table. The result
is correct since the entry was initially at the second row and the first column
before the shuffles.

Since the players open x1 ⊕ r1 and x2 ⊕ r2, the security of the input values
is achieved because r1 and r2 are random values unknown to Alice and Bob.

Note that input x1 might also be an input of another gate g2, g3, . . . , gk. In
this case, when the players make piles P1 and P2, the entries of the table for
g2, g3, . . . , gk must also be added.

When the output of g1 is the final output, the computation is finished and
the players obtain the committed result. When the output of g1 is an input of
another gate, the further computation is necessary. Let g′1, g

′
2, . . . , g

′
i be the gates

that input g1’s output. In this case, since the output cards of g1 must be opened
to select entries of gj ’s garbled table, g1’s output value must also be randomized
in advance to hide the output value. The randomization of the output must be
executed together with the tables of g′1, g

′
2, . . . , g

′
i.

For example, Fig. 4 shows the case when the output of g1 is used as the row
input x3 of gate g2. Similar to the above case, the players make two piles P1

and P2. P1 (P2) consist of the left (right) card of each entry of table g1 and the
first (second) row of the table g2, respectively. Execute a pile-scramble shuffle
on P1 and P2 and the cards are set back to each position. Using a random value
r ∈ {0, 1}, the output of g1 is changed as g1 ⊕ r. When the players open the
output card of g1, the players obtain no information about the output since the
value is randomized by r. In addition, the computation of g2 is still correct since
the entries of the tables are randomized using the same random value r.

Garbled tableによる計算(3)

•計算結果が他のゲートの入力となる→結果と入力
（複数ある場合はそのすべて）の組をランダム化

• (例)𝑔2 = 𝑔1 𝑥1, 𝑥2 ∧ 𝑥4

15

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

𝑔1 𝑔2

𝑃1

𝑃2

𝑃1 𝑃2 𝑃1 𝑃2

𝑥3
𝑥4

𝑥1
𝑥2

𝑔1の結果が出力結果の場合→ランダム化してはいけない

Fig. 4. Randomization when g2’s input x3 is the output of g1.

Note that all shuffles of the inputs and table entries are executed in advance
to compute.

In summary, the protocol is executed as follows.

1. Prepare one table for each gate that is used to compute fi(i = 1, 2, . . . ,m).

Free-XOR in Card-based Garbled Circuits 7

2. When a value x (an input value or the output of a garbled table) is used for
the row input of gate g1, g2, . . . , gk and the column input of gate g′1, g

′
2, . . . , g

′
k′ ,

make two piles P1 (P2) with the left (right) card(s) of x, the first (second) row
of the garbled table of gate g1, g2, . . . , gk, and the first (second) column of
the garbled table of gate g′1, g

′
2, . . . , g

′
k′ , respectively. Execute a pile-scramble

shuffle to P1 and P2. Set back the cards to the initial positions. Execute the
above procedure for every value x that will be opened during computation.

3. For each gate, open (randomized) input cards and select the row and column
entry that matches the opened value and obtain the committed output of
the gate.

4. The final output cards are not opened and they are used as the result.

Though in this example the cards are set as a 2 × 2 table, they can also be set
as one sequence of cards, for example, the output cards for input (0,0), (0,1)
(1,0), and (1,1) can be placed in this order as in [57]. Since the players know
each position, they can make two piles to be shuffled using the positions.

Note that any kind and any number of shuffles can be combined into one
shuffle [52], thus the total number of shuffles is one. Since the final output must
not be randomized, the output must not be used as an input of another gate.

4 Free-XOR in card-based garbled circuits

Free-XOR [17] is a technique for garbled circuits. It is unnecessary to prepare a
garbled table for each XOR gate. This section shows that a garbled table is also
unnecessary for XOR gates in the above card-based garbled circuits. Two cards
are necessary when the output of an XOR gate is a final output. No cards are
necessary when the output of an XOR gate is input to the other gates.

Before showing the protocol, we need to simplify the discussion. We need to
eliminate the case when the output of an XOR gate is an input of another XOR
gate. The output of an XOR gate g1 = x1 ⊕ x2 might be used as an input of
another XOR gate such as g2 = g1 ⊕ x3. g2 can be written as g2 = x1 ⊕ x2 ⊕ x3

to eliminate the case when the output of an XOR gate is an input of another
XOR gate. A similar transformation can be executed when g2 is also an input
of another XOR gate. Thus, the cases to be considered are: the output of an
XOR gate is (1) a final output value or (2) an input of a non-XOR gate, where
the number of inputs of the XOR gate is arbitrary (> 1) and the inputs of the
XOR gate are not an output of another XOR gate, that is, they are initially-
given inputs or outputs of a non-XOR gate. In the above example of g1 and g2,
when g2 is the final output and g1 is an input of a non-XOR gate g3, we need to
compute (1) the output of g1 = x1⊕x2⊕x3 is a final output and (2) the output
of g2 = x1 ⊕ x2 is an input of non-XOR gate g3.

Note that the negation of an XOR might be needed. For example, consider
the case when the players compute g4 = x1 ⊕ x2. We note that we do not need
to consider negation of the XOR gates1. As shown above, g4 is a final output or

1 By a similar argument, we can see that negation of gates is unnecessary for any gates

8 No Author Given

an input of another non-XOR gate, for example, g5 = g4∧x3. In the former case,
swap the pair of the cards that have the output x1 ⊕ x2 and we can compute
g4. In the latter case, we can prepare a garbled table for g5 in which the input
of the first element is negated, just as x̄ ∧ x3. Thus, we do not need to consider
the negation of XOR gates.

First, consider the case when the output of XOR gate g is a final output
value. Let x1, x2, . . . , xk be inputs to compute g =

⊕k
i=1 xi. xi(1 ≤ i ≤ k) are

initially-given inputs or outputs of non-XOR garbled tables.
The protocol for XOR gate g is the following steps.

– For the computation of g, prepare one pair of cards, denoted as G. Initially,
G is ♣ ♡ and it is turned into a committed value.

– In Step 2 of the above protocol, when the left card and the right card for
value xi are included in a pile P1 and P2, the left card of G is also set into
P1 and the right card of G is also set into P2 then a pile-scramble shuffle is
executed. For each input xi(1 ≤ i ≤ k), the above procedure is executed. Fig.
5 shows the randomization of g = x1⊕x2, where x1 and x2 are input values.
Make P1 (P2) be the left (right) cards of G and x1, respectively. Execute a
Pile-scramble shuffle to P1 and P2. Then, make P ′

1 (P ′
2) be the left (right)

cards of G and x2, respectively. Execute a Pile-scramble shuffle to P ′
1 and

P ′
2.

Note that when xi is an output of a garbled table, P1 (P2) consists of the
left (right) cards of the garbled table.(1) が出力の場合

• ２＊２の表でなく２枚のカード
（初期値０ : ♣♥） を用意

•入力（あるいはゲートの出力結
果） をランダム化→ も同時
にランダム化

•入力（あるいはゲートの出力結
果） をランダム化→ も同時
にランダム化

• を求めるため を
表にする→ のとき
の左右入れ替え

20

? ?

? ? ? ?

Fig. 5. Randomization of g = x1 ⊕ x2’s input x1 and x2.

– When the players compute the gate g =
⊕k

i=1 xi, the appropriate cards
that have xi are opened. Note that the value opened, x′

i, might not be xi

because of the randomization. Swap the two cards of G if the opened values
x′
i satisfy

⊕k
i=1 x

′
i = 1. The final committed pair G is used as the result of

g =
⊕k

i=1 xi.

Theorem 1. The above protocol correctly computes g =
⊕k

i=1 xi.

Free-XOR in Card-based Garbled Circuits 9

Proof. Initially, G has value 0. By the pile-scramble shuffle of input xi, the
value is randomized as xi ⊕ ri for some ri ∈ {0, 1}. At the same time, G is also

randomized using ri thus the value is changed from 0 to 0⊕(
⊕k

i=1 ri) =
⊕k

i=1 ri.
When the gate g is computed, cards of the inputs are opened. The opened values
are xi⊕ri. The two cards of G are swapped if

⊕k
i=1(xi⊕ri) = 1. Thus the value

of G is changed from
⊕k

i=1 ri to
⊕k

i=1 ri⊕ (
⊕k

i=1(xi⊕ ri)) =
⊕k

i=1 xi. Thus the
result is correct. ⊓⊔

Next, consider the case when the output of g =
⊕k

i=1 xi is used as an input
of another gate g′. The following protocol shows the case when g is the row input
of g′. The case when g is the column input of g′ can be similarly shown.

The protocol for XOR gate g is the following steps.

– For the computation of g =
⊕k

i=1 xi, no cards are prepared. Instead, the
cards for the input of g′ are used. Suppose that g is the row input of g′.

– In Step 2 of the above protocol, when the left (right) card(s) of value xi are
included in a pile P1 (P2), respectively, the first (second) row of the table
of g′ is also set into P1 (P2), respectively. Then a pile-scramble shuffle is
executed. For each input xi(1 ≤ i ≤ k), the above procedure is executed.
Fig. 6 shows the randomization of g = x1 ⊕ x2, where x1 and x2 are input
values and g is the row input of g′. Make pile P1 (P2) by the left (right) card
of x1 and first (second) row of g′, respectively. Execute pile-scramble shuffle
to P1 and P2. Next. make pile P ′

1 (P ′
2) by the left (right) card of x2 and first

(second) row of g′, respectively. Execute pile-scramble shuffle to P ′
1 and P ′

2.
Note that when xi is an output of a garbled table, P1 (P2) consists of the
left (right) cards of the garbled table.(2) 𝑔1 = 𝑥1 ⊕𝑥2が出力でない
（他ゲートの入力）場合
• （例）𝑔2 = 𝑔1 ∧ 𝑥4
• カード不要

• 入力（あるいはゲートの出
力結果）𝑥1をランダム化
→𝑔2の表も同時にランダ
ム化

• 入力（あるいはゲートの出
力結果）𝑥2をランダム化
→𝑔2の表も同時にランダ
ム化

• 𝑥1, 𝑥2を表にする→表の
𝑥1 ⊕𝑥2のエントリーを見る

22

? ? ? ?

? ? ? ?

𝑔'
𝑥3

𝑥4

? ?

𝑃1

𝑃2

𝑃1 𝑃2
? ?
𝑃1
′ 𝑃2

′

𝑃1
′

𝑃2
′

𝑥1 𝑥2

Fig. 6. Randomization of g = x1 ⊕ x2’s input x1 and x2 when g is the row input of g′

– When the players compute the gate g′, The appropriate cards that have
xi are opened. Note that the value opened, x′

i, might not be xi because

of the randomization. The first row is used to compute g′ if
⊕k

i=1 x
′
i = 0.

Otherwise, the second row is used.

10 No Author Given

The output g might be inputs of multiple gates g1, g2, . . . , gm. In this case, all
appropriate rows or columns of the tables for gate g1, g2, . . . , gm are included to
pile P1 and P2 to shuffle each input xi.

Theorem 2. The above protocol correctly computes the input value g =
⊕k

i=1 xi

of gate g′.

Proof. This proof assumes that g is the row input of gate g′. The case when g
is the column input can be similarly proved. Initially, the first (second) row of
g′’s garbled table has the values when the input is 0 (1), respectively.

By the pile-scramble shuffle of input xi, the value is randomized as xi ⊕ ri
for some ri ∈ {0, 1}. At the same time, the rows of g′ are also randomized using

ri thus the first row has the values when the input 0⊕ (
⊕k

i=1 ri) =
⊕k

i=1 ri is 0.
When the gate g′ is computed, cards of g’s inputs are opened. The opened values
are xi⊕ri. The players use the first row if

⊕k
i=1(xi⊕ri) = 0, otherwise, they use

the second row to compute g′.
⊕k

i=1(xi⊕ri) = 0 implies that
⊕k

i=1 xi =
⊕k

i=1 ri.
Thus, when the players select the first row, the first row has the values when the
input

⊕k
i=1 ri is 0, that is,

⊕k
i=1 xi is 0. Therefore, the selection is correct. ⊓⊔

Note that the combined single shuffle becomes complicated since a pair of
cards is included in both of x1 and x2’s shuffles. However, anyway, the shuffles
can be executed by a single shuffle since any combination of shuffles can be
executed by a single shuffle. The combined single shuffle is uniform and closed
since each shuffle is swapping two elements by the probability of 1/2.

The number of cards used by the protocol is 8g1 + 2g2 + 2n, where g1 is the
number of non-XOR gates and g2 is the number of XOR gates whose output is
a final output.

5 Eliminating restriction for outputs

As shown above, the Shinagawa-Nuida protocol has a restriction that the output
values cannot be used for inputs to the other circuits. This section discusses
eliminating the restriction.

This section discusses the functions in the following form:

fi(x1, x2, . . . , xn, f1, f2, . . . , fi−1)(i = 1, 2, . . . ,m)

The definition considers the outputs f1, f2, . . . , fi−1 can be used as inputs of
fi. It is unnecessary to use the outputs of some functions as inputs of another
function, but it might reduce the number of logic gates. For example, consider
the case when we need to compute f1 = x1 ∨x2 and f2 = (x1 ∨x2)∧x3. We can
compute f2 by f2 = f1 ∧ x3.

Note that fj(j > i) cannot be used in fi to avoid circular definition such as
f2 = f1 ∧ x1 and f1 = f2 ∧ x2.

In the garbled circuits, each input of a gate must be randomized because
the input cards are opened and the value is known to the players. On the other

Free-XOR in Card-based Garbled Circuits 11

hand, the output value must not be randomized. Thus, Shinagawa and Nuida
added the restriction that output cannot be used as an input of another gate.
There are two ways to eliminate this restriction. The first technique is preparing
cards for a non-randomized value and the second one is undoing randomization.

Before showing the technique, let us consider the case when the output of an
XOR gate g is the final output. As shown in the previous section, no additional
cards are necessary to input the output of g to a non-XOR gate or another XOR
gate. Thus, we discuss the case when the output of a non-XOR gate is a final
output.

The first technique is simple. If the output of a gate is a final output and
input of another gate, prepare two pairs of each output value in the garbled
table as in Fig. 7, where gi,O are cards for the output and gi,I are cards for
the input of gate g′1, g

′
2, . . . , g

′
k. When g′1, g

′
2, . . . , g

′
k’s inputs are simultaneously

randomized, gi,I are included in the randomization, but gi,O are not included.
Note that gi,O are included in the shuffles of the rows or columns of the table
of gi. The values in gi,O are used as the final output, and the values in gi,I are
used for the garbled table lookup. Since the value gi,O are not randomized, gi,O
can be used as the output. Since the values in gi,I are randomized, gi,I can be
opened for the garbled table lookup.

出力制限の緩和(1)

•値を２セット用
意：出力用と他
ゲート入力用

27

𝑔𝑖

𝑥1
𝑥2 0 1

0

1

𝑔𝑖,𝑂 𝑔𝑖,𝐼 𝑔𝑖,𝑂 𝑔𝑖,𝐼

𝑔𝑖,𝑂 𝑔𝑖,𝐼
XORの場合

Fig. 7. Output of gate gi

The second technique is undoing randomization. If an output of a gate gi is
a final output and an input of another gate, prepare one pair of cards Oi whose
initial value is ♣ ♡ . The cards are set face-down. The change of the protocol is
as follows.

– In Step 2 of the above protocol, when the left (right) card of the output of
gate gi are included in a pile P1 (P2), respectively, the left (right) card of Oi

is also set into P1 (P2), respectively. Then a pile-scramble shuffle is executed.
For example, Oi for gate gi and their randomization is shown in Fig. 8.

– During the computation of gate gi, one pair of cards, Gi, is selected as the
output and opened because the value is used as an input of another gate.
After the computation is finished, the cards for Gi are turned face-down.

– Make pile Pi,1 (Pi,2) that consists of the left (right) cards of Oi and Gi,
respectively. Execute a pile-scramble shuffle on Pi,1 and Pi,2, as in Fig. 9,

12 No Author Given出力制限の緩和(2)

• カードを２枚用
意𝑂𝑖：ランダム
化を記憶

•初期値は０ :
♣♥

•出力値のラン
ダム化実施時
に𝑂𝑖もランダム
化
• 出力𝑔𝑖 ⊕𝑟𝑖
• 𝑂𝑖は𝑟𝑖

33

? ? ? ?
XORの場合

? ? ? ?

? ? ? ?

𝑔𝑖
𝑥1

𝑥2

? ? 𝑂𝑖

他ゲート入力値のランダム化

𝑂𝑖 𝑔𝑖
Fig. 8. Oi for output of gate gi and randomization.

which shows the case when the output is the second row and the second
column.
出力制限の緩和(2)

•作成時
• 出力
• は

• 出力のため
裏向けて とと
もにランダム化

35

? ? ? ?XORの場合

? ? ? ?

? ?? ?

出力時

? ?

Fig. 9. randomization of Gi and Oi.

Open Oi and swap two cards of Gi if Oi has value 1, as shown in Fig. 10.
Gi is used as a final output.

Theorem 3. The above protocol is secure and correctly outputs gi.

Proof. During the randomization of the output value of gi, Oi is also randomized.
The value that the output card Gi has is gi⊕ri for some unknown random value
ri. At the same time, the cards Oi have ri since 0⊕ ri = ri. After Gi is turned
face-down again, Gi and Oi are randomized using a random value r′i ∈ {0, 1}. Gi

has gi ⊕ ri ⊕ r′i and Oi has ri ⊕ r′i. Then the players open Oi and swap the two
cards of Gi if Oi = 1. The output is correct since Gi has gi⊕ri⊕r′i⊕(ri⊕r′i) = gi.

The protocol is secure since the players see gi ⊕ ri and ri ⊕ r′i. The value gi
cannot be known from these values. ⊓⊔

Since the randomization of output Gi must be executed after the garbled
table lookup, two shuffles are necessary for the total. Note that the shuffles for
each Oi are combined into one shuffle.

The first technique needs eight cards for each output. The number of shuffles
is one. The second technique needs two cards for each output, though the number
of shuffles becomes two.

Free-XOR in Card-based Garbled Circuits 13出力制限の緩和(2)

•出力値のラン
ダム化実施時
に もランダム
化

• 出力
• は

• 出力のため
裏向けて とと
もにランダム化

• を表にして１
なら の左右
入れ替え

36

? ?XORの場合

? ? ? ?

? ?

出力時

? ?

Fig. 10. computation of the output using Gi and Oi.

6 Conclusion

This paper showed the free-XOR technique in card-based garbled circuits. The
number of cards is reduced though the shuffle becomes complicated. This paper
then showed techniques to eliminate the restriction that an output value cannot
be used as an input of another gate. These methods improve the efficiency of
card-based garbled circuits.

References

1. Abe, Y., Nakai, T., Kuroki, Y., Suzuki, S., Koga, Y., Watanabe, Y., Iwamoto, M.,
Ohta, K.: Efficient card-based majority voting protocols. New Generation Com-
puting 40(1), 173–198 (2022)

2. Abe, Y., Hayashi, Y.i., Mizuki, T., Sone, H.: Five-card and computations in com-
mitted format using only uniform cyclic shuffles. New Generation Computing
39(1), 97–114 (2021)

3. Abe, Y., Mizuki, T., Sone, H.: Committed-format and protocol using only random
cuts. Natural Computing pp. 1–7 (2021)

4. den Boer, B.: More efficient match-making and satisfiability the five card trick. In:
Proc. of EUROCRYPT ’89, LNCS Vol. 434. pp. 208–217 (1990)

5. Cheung, E., Hawthorne, C., Lee, P.: Cs 758 project: Secure computation with
playing cards (2013), http://cdchawthorne.com/writings/secure playing cards.pdf

6. Dvořák, P., Kouckỳ, M.: Barrington plays cards: The complexity of card-based
protocols. arXiv preprint arXiv:2010.08445 (2020)

7. Francis, D., Aljunid, S.R., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Necessary
and sufficient numbers of cards for securely computing two-bit output functions.
In: Proc. of Second International Conference on Cryptology and Malicious Secu-
rity(Mycrypt 2016), LNCS Vol. 10311. pp. 193–211 (2017)

8. Hashimoto, Y., Nuida, K., Shinagawa, K., Inamura, M., Hanaoka, G.: Toward
finite-runtime card-based protocol for generating hidden random permutation
without fixed points. IEICE Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences 101-A(9), 1503–1511 (2018)

9. Hashimoto, Y., Shinagawa, K., Nuida, K., Inamura, M., Hanaoka, G.: Secure group-
ing protocol using a deck of cards. IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences 101(9), 1512–1524 (2018)

14 No Author Given

10. Ibaraki, T., Manabe, Y.: A more efficient card-based protocol for generating a ran-
dom permutation without fixed points. In: Proc. of 3rd Int. Conf. on Mathematics
and Computers in Sciences and in Industry (MCSI 2016). pp. 252–257 (2016)

11. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a
hidden random permutation without fixed points. In: Proc. of 14th International
Conference on Unconventional Computation and Natural Computation(UCNC
2015), LNCS Vol. 9252. pp. 215–226 (2015)

12. Isuzugawa, R., Toyoda, K., Sasaki, Y., Miyahara, D., Mizuki, T.: A card-minimal
three-input and protocol using two shuffles. In: Proc. of 27th International Com-
puting and Combinatorics Conference (COCOON 2021), LNCS Vol. 13025. pp.
668–679. Springer (2021)

13. Kastner, J., Koch, A., Walzer, S., Miyahara, D., Hayashi, Y., Mizuki, T., Sone,
H.: The minimum number of cards in practical card-based protocols. In: Proc. of
Asiacrypt 2017, Part III, LNCS Vol. 10626. pp. 126–155 (2017)

14. Koch, A.: The landscape of optimal card-based protocols. Mathematical Cryptol-
ogy 1(2), 115–131 (2021)

15. Koch, A., Walzer, S.: Private function evaluation with cards. New Generation
Computing 40(1), 115–147 (2022)

16. Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a min-
imal number of cards. In: Proc. of Asiacrypt 2015, LNCS Vol. 9452. pp. 783–807
(2015)

17. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free xor gates and applica-
tions. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir,
A., Walukiewicz, I. (eds.) Proc. of 35th International Colloquium on Automata,
Languages, and Programming (ICALP 2008) Part II, LNCS Vol.5126. pp. 486–498.
Springer (2008)

18. Koyama, H., Toyoda, K., Miyahara, D., Mizuki, T.: New card-based copy proto-
cols using only random cuts. In: Proceedings of the 8th ACM on ASIA Public-Key
Cryptography Workshop. pp. 13–22. APKC ‘21, Association for Computing Ma-
chinery, New York, NY, USA (2021)

19. Kuzuma, T., Isuzugawa, R., Toyoda, K., Miyahara, D., Mizuki, T.: Card-based
single-shuffle protocols for secure multiple-input and and xor computations. In:
Proceedings of the 9th ACM on ASIA Public-Key Cryptography Workshop. pp.
51–58 (2022)

20. Manabe, Y., Ono, H.: Card-based cryptographic protocols for three-input functions
using private operations. In: Proc. of 32nd International Workshop on Combina-
torial Algorithms (IWOCA 2021), LNCS Vol. 12757. pp. 469–484. Springer (2021)

21. Manabe, Y., Ono, H.: Card-based cryptographic protocols with a standard deck of
cards using private operations. In: Proc. of 18th International Colloquium on The-
oretical Aspects of Computing (ICTAC 2021), LNCS Vol.12819. Springer (2021)

22. Marcedone, A., Wen, Z., Shi, E.: Secure dating with four or fewer cards. IACR
Cryptology ePrint Archive, Report 2015/1031 (2015)

23. Miyahara, D., Hayashi, Y.i., Mizuki, T., Sone, H.: Practical card-based implemen-
tations of yao’s millionaire protocol. Theoretical Computer Science 803, 207–221
(2020)

24. Miyahara, D., Ueda, I., Hayashi, Y.i., Mizuki, T., Sone, H.: Evaluating card-based
protocols in terms of execution time. International Journal of Information Security
20(5), 729–740 (2021)

25. Miyamoto, K., Shinagawa, K.: Graph automorphism shuffles from pile-scramble
shuffles. New Generation Computing 40(1), 199–223 (2022)

Free-XOR in Card-based Garbled Circuits 15

26. Mizuki, T.: Applications of card-based cryptography to education. In: IEICE Te-
chinical Report ISEC2016-53. pp. 13–17 (2016), (In Japanese)

27. Mizuki, T.: Card-based protocols for securely computing the conjunction of mul-
tiple variables. Theoretical Computer Science 622, 34–44 (2016)

28. Mizuki, T., Asiedu, I.K., Sone, H.: Voting with a logarithmic number of cards. In:
Proc. of 12th International Conference on Unconventional Computing and Natural
Computation (UCNC 2013), LNCS Vol. 7956. pp. 162–173 (2013)

29. Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four
cards. In: Proc. of Asiacrypt 2012, LNCS Vol.7658. pp. 598–606 (2012)

30. Mizuki, T., Shizuya, H.: A formalization of card-based cryptographic protocols
via abstract machine. International Journal of Information Security 13(1), 15–23
(2014)

31. Mizuki, T., Shizuya, H.: Computational model of card-based cryptographic pro-
tocols and its applications. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences 100(1), 3–11 (2017)

32. Mizuki, T., Sone, H.: Six-card secure and and four-card secure xor. In: Proc. of 3rd
International Workshop on Frontiers in Algorithms(FAW 2009), LNCS Vol. 5598.
pp. 358–369 (2009)

33. Murata, S., Miyahara, D., Mizuki, T., Sone, H.: Efficient generation of a card-
based uniformly distributed random derangement. In: Proc. of 15th International
Workshop on Algorithms and Computation (WALCOM 2021), LNCS Vol. 12635.
pp. 78–89. Springer International Publishing, Cham (2021)

34. Nakai, T., Misawa, Y., Tokushige, Y., Iwamoto, M., Ohta, K.: How to solve million-
aires’ problem with two kinds of cards. New Generation Computing 39(1), 73–96
(2021)

35. Nakai, T., Shirouchi, S., Iwamoto, M., Ohta, K.: Four cards are sufficient for a
card-based three-input voting protocol utilizing private permutations. In: Proc. of
10th International Conference on Information Theoretic Security (ICITS 2017),
LNCS Vol. 10681. pp. 153–165 (2017)

36. Nakai, T., Shirouchi, S., Tokushige, Y., Iwamoto, M., Ohta, K.: Secure computation
for threshold functions with physical cards: Power of private permutations. New
Generation Computing 40(1), 95–113 (2022)

37. Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols for any
boolean function. In: Proc. of 15th International Conference on Theory and Ap-
plications of Models of Computation(TAMC 2015), LNCS Vol. 9076. pp. 110–121
(2015)

38. Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Securely computing three-input
functions with eight cards. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences 98(6), 1145–1152 (2015)

39. Nishida, T., Mizuki, T., Sone, H.: Securely computing the three-input majority
function with eight cards. In: Proc. of 2nd International Conference on Theory
and Practice of Natural Computing(TPNC 2013), LNCS Vol. 8273. pp. 193–204
(2013)

40. Nishimura, A., Hayashi, Y.i., Mizuki, T., Sone, H.: Pile-shifting scramble for card-
based protocols. IEICE Transactions on Fundamentals of Electronics, Communi-
cations and Computer Sciences 101(9), 1494–1502 (2018)

41. Nishimura, A., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols
using unequal division shuffles. Soft Computing 22(2), 361–371 (2018)

42. Ono, H., Manabe, Y.: Efficient card-based cryptographic protocols for the mil-
lionaires’ problem using private input operations. In: Proc. of 13th Asia Joint
Conference on Information Security(AsiaJCIS 2018). pp. 23–28 (2018)

16 No Author Given

43. Ono, H., Manabe, Y.: Card-based cryptographic logical computations using private
operations. New Generation Computing 39(1), 19–40 (2021)

44. Ono, H., Manabe, Y.: Minimum round card-based cryptographic protocols using
private operations. Cryptography 5(3) (2021)

45. Ono, T., Nakai, T., Watanabe, Y., Iwamoto, M.: An efficient card-based protocol
of any boolean circuit using private operations. In: Proc. of Computer Security
Symposium. pp. 72–77 (2022), (In Japanese)

46. Ruangwises, S., Itoh, T.: And protocols using only uniform shuffles. In: Proc. of
14th International Computer Science Symposium in Russia(CSR 2019), LNCS Vol.
11532. pp. 349–358 (2019)

47. Ruangwises, S., Itoh, T.: Securely computing the n-variable equality function with
2n cards. Theoretical Computer Science 887, 99–110 (2021)

48. Saito, T., Miyahara, D., Abe, Y., Mizuki, T., Shizuya, H.: How to implement a
non-uniform or non-closed shuffle. In: Proc. of 9th International Conference on the
Theory and Practice of Natural Computing(TPNC 2020), LNCS Vol. 12494. pp.
107–118. Springer (2020)

49. Shinagawa, K., Miyamoto, K.: Automorphism shuffles for graphs and hypergraphs
and its applications. arXiv preprint arXiv:2205.04774 (2022)

50. Shinagawa, K., Mizuki, T.: The six-card trick:secure computation of three-input
equality. In: Proc. of 21st International Conference on Information Security and
Cryptology (ICISC 2018), LNCS Vol. 11396. pp. 123–131 (2018)

51. Shinagawa, K., Mizuki, T.: Secure computation of any boolean function based
on any deck of cards. In: Proc. of 13th International Workshop on Frontiers in
Algorithmics (FAW 2019), LNCS Vol. 11458. pp. 63–75. Springer (2019)

52. Shinagawa, K., Nuida, K.: A single shuffle is enough for secure card-based compu-
tation of any boolean circuit. Discrete Applied Mathematics 289, 248–261 (2021)

53. Shinoda, Y., Miyahara, D., Shinagawa, K., Mizuki, T., Sone, H.: Card-based covert
lottery. In: Proc. of 13th International Conference on Information Technology and
Communications Security(SecITC 2020), LNCS Vol. 12596. pp. 257–270. Springer
(2020)

54. Takashima, K., Abe, Y., Sasaki, T., Miyahara, D., Shinagawa, K., Mizuki, T., Sone,
H.: Card-based protocols for secure ranking computations. Theoretical Computer
Science 845, 122–135 (2020)

55. Toyoda, K., Miyahara, D., Mizuki, T.: Another use of the five-card trick: Card-
minimal secure three-input majority function evaluation. In: Proc. of 22nd Interna-
tional Conference on Cryptology in India (INDOCRYPT 2021), LNCS Vol. 13143.
pp. 536–555. Springer (2021)

56. Toyoda, K., Miyahara, D., Mizuki, T., Sone, H.: Six-card finite-runtime xor proto-
col with only random cut. In: Proc. of the 7th ACM Workshop on ASIA Public-Key
Cryptography. pp. 2–8 (2020)

57. Tozawa, K., Morita, H., Mizuki, T.: Single-shuffle card-based protocol with eight
cards per gate. In: Proc. of 20th International Conference on Unconventional Com-
putation and Natural Computation (UCNC 2023), LNCS vol. 14003. pp. 171–185.
Springer (2023)

58. Ueda, I., Miyahara, D., Nishimura, A., Hayashi, Y.i., Mizuki, T., Sone, H.: Secure
implementations of a random bisection cut. International Journal of Information
Security 19(4), 445–452 (2020)

59. Watanabe, Y., Kuroki, Y., Suzuki, S., Koga, Y., Iwamoto, M., Ohta, K.: Card-
based majority voting protocols with three inputs using three cards. In: Proc.
of 2018 International Symposium on Information Theory and Its Applications
(ISITA). pp. 218–222. IEEE (2018)

Free-XOR in Card-based Garbled Circuits 17

60. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium
on Foundations of Computer Science (SFCS 1986). pp. 162–167. IEEE (1986)

