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Abstract—This paper proposes a new double-private protocol
for fuzzy matching and ε-fuzzy matching. Many works have been
done for private database search in which the keyword that a
user inputs for the search is concealed to the database owner. In
these database searches, the exactly matched data are returned
to the user. Fuzzy matching has been proposed in which not
exactly matched but nearly matched data are returned to the
user. Then the condition to be matched is further relaxed by
ε-fuzzy matching.

In fuzzy matching and ε-fuzzy matching, a new security
requirement, the security of the database can be considered.
The database owner just answers the existence of a matched
data without showing the matched data itself. This paper first
formalizes the problem as the double-private ε-fuzzy matching.
We show a naive protocol and an efficient protocol for double-
private ε-fuzzy matching.
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I. INTRODUCTION

This paper proposes a new double-private protocol for
fuzzy matching and ε-fuzzy matching. Many works have been
done for private database search in which the keyword that a
user inputs for the search is concealed to the database owner
[1]–[8]. In these database searches, the exactly matched data
are returned to the user. Fuzzy matching has been proposed
in which not exactly matched but nearly matched data are
returned to the user [9]. Then the condition to be matched
is further relaxed by ε-fuzzy matching [10].

In fuzzy matching and ε-fuzzy matching, a new security
requirement, the security of the database can be considered.
The database owner just answers the existence of a matched
data without showing the matched data itself. In usual database
searches, answering the existence of a matched data is just
the same as answering the matched data itself, thus the
security of the database cannot be achieved anyway. In fuzzy
matching and ε-fuzzy matching, there are several cases when
the database owner wants to hide the information which data is
matched to the search. For example, consider a pharmaceutical
company’s database of patients’ genome information to whom
a new medicine was effective. A client doctor wants to know
the new medicine is effective or not to his current patient by
the search using his patient’s genome. If his patient’s genome
is close to an entry in the database, the possibility that the new
medicine is effective to his patient is high. The doctor wants
to conceal the genome information to the pharmaceutical com-
pany, because the genome information is private information of
his patient. The pharmaceutical company does not want to give
the genome information in the database to the doctor because

the genome data is private information. The pharmaceutical
company wants to give the information whether there is a
genome data that is close to the doctor’s input genome data
in the database or not. No other information in the database
must be given to the doctor. Thus, the client data must not be
known to the server and the server data must not be known to
the client either. We call this property double-private.

This paper first formalizes the problem as the double-
private ε-fuzzy matching. The proposed protocols for fuzzy
matching [11] and ε-fuzzy matching [10] are not double-
private, since they answer the matched data itself to the client.
We show a naive protocol and an efficient protocol for double-
private ε-fuzzy matching.

Related works are as follows. Fuzzy matching has been
first considered in [9], however, the protocol in [9] was shown
to be incorrect [11]. [11] showed a fuzzy private matching
protocol. More efficient fuzzy private matching protocols have
been shown [12], [13]. [14] showed that branching programs
can be used to improve efficiency of fuzzy private matching. ε-
fuzzy matching protocols have been shown in [10]. Application
of fuzzy private matching to fingerprint matching [15] and
fuzzy keyword search [16] have been considered.

The rest of the paper is organized as follows. Section II
presents the definition of ε-fuzzy matching and double-privacy.
Section III shows a naive double-private ε-fuzzy matching
protocol. Section IV presents an improved double-private ε-
fuzzy matching protocol. Section V summarizes the paper.

II. ε-FUZZY MATCHING

This section gives the definition of ε-fuzzy matching prob-
lem. The set of data in client C be X = {X1,X2, . . . , Xm}
and the set of data in server S be Y = {Y1, Y2, . . . , Yn}. Each
data Xi = (x1

i , x
2
i , . . . , x

T
i ) and Yj = (y1

j , y
2
j , . . . , y

T
j ) is a T -

dimensional vector whose elements xk
i , y

k
j ∈ Zp(1 ≤ k ≤ T ).

Note that for a set X , the number of elements in X is denoted
by |X|.

Fuzzy matching is defined as follows in [9].

Definition 1: For some threshold t ≤ T , Xi and Yj are
fuzzy matching if t ≤ |{k|xk

i = yk
j }| is satisfied and denoted

as Xi ∼t Yj .

Definition 2: For a data Xi and a set Y , Xi ∼t Y if there
is an element Yj ∈ Y that satisfies Xi ∼t Yj .

Definition 3: For two sets X and Y , X ∼t Y if there is a
pair of elementw Xi ∈ X and Yj ∈ Y that satisfy Xi ∼t Yj .
For given X and Y , the set {Yj ∈ Y |∃Xi ∈ X,Xi ∼t Yj} is
denoted as Simt(X;Y ).
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Then, ε-fuzzy matching is defined as follows [10].

Definition 4: For some threshold t ≤ T and some ε ≥ 0,
Xi and Yj are ε-fuzzy matching if t ≤ |{k||xk

i − yk
j | ≤ ε}| is

satisfied and denoted as Xi ∼ε,t Yj .

Next, ε-fuzzy matching between a data and a set is defined as
follows.

Definition 5: For a data Xi and a set Y , Xi ∼ε,t Y if there
is an element Yj ∈ Y that satisfies Xi ∼ε,t Yj .

Last, ε-fuzzy matching between two sets is defined as follows.

Definition 6: For two sets X and Y , X ∼ε,t Y if there is a
pair of elements Xi ∈ X and Yj ∈ Y that satisfy Xi ∼ε,t Yj .
For given X and Y , the set {Yj ∈ Y |∃Xi ∈ X,Xi ∼ε,t Yj}
is denoted as Simε,t(X;Y ).

A private fuzzy matching protocol has been proposed in
[9], in which the input and output of the protocol are defined
as follows.

• (Input) Client C: data set X
Server S: data set Y

• (Output) C: Simt(X;Y )
S: (none)

As the generalization to ε-fuzzy matching, a private ε-fuzzy
matching protocol has been proposed in [10], whose inputs and
outputs are as follows.

• (Input) Client C: data set X
Server S: data set Y

• (Output) C: Simε,t(X;Y )
S: (none)

As shown in the introduction, there are several cases when
the server wants to hide the information which data is matched
to X . Thus, we propose a double-private ε-fuzzy matching
protocol whose inputs and outputs are as follows.

• (Input) Client C: data set X
Server S: data set Y

• (Output) C: Whether X ∼ε,t Y or not (that is, whether
|Simε,t(X;Y )| > 0 or not)

S: (none)

The security of double-private ε-fuzzy matching protocol
is defined as follows. This paper assumes that all parties are
honest but curious, that is, all parties act according to the
protocol, but they try to obtain extra information using all the
information obtained during the execution of the protocol.

• The client’s security: The server obtains no infor-
mation from the protocol, that is, the server cannot
distinguish the two cases when the client has two
different inputs.
Formally, the security is defined by the following
game between adversary A and challenger C.
Adversary A selects two client inputs X0,X1 and
server input Y where |X0| = |X1|. A sends X0 and
X1 to challenger C.
C randomly selects bit b ∈ {0, 1}. Xb is given to an
honest client and Y is given to A. The honest client
and server A execute the protocol.

After the protocol execution, A outputs bit b′. A’s
advantage

Advc(A) = |Pr[b = b′]− 1/2|.
A wins the game if the advantage is not negligible.

• The server’s security: The client obtains no informa-
tion from the protocol other than whether X ∼ε,t Y
or not.
Formally, the security is defined by the following
game between adversary A and challenger C.
Adversary A selects two data sets Y0, Y1 and input X ,
where |Y0| = |Y1| and
( X ∼ε,t Y0 and X ∼ε,t Y1) or
( X �∼ε,t Y0 and X �∼ε,t Y1) holds.
A sends Y0 and Y1 to challenger C.
C randomly selects bit b ∈ {0, 1}. Yb is given to an
honest server and X is given to A. Client A and the
honest server S execute the protocol.
After the protocol execution, A outputs bit b′. A’s
advantage

Advs(A) = |Pr[b = b′]− 1/2|.
A wins the game if the advantage is not negligible.

An ε-fuzzy matching protocol is double-private if both of
Advc(A) and Advs(A) are negligible.

To the best of our knowledge, no fuzzy matching protocols
or ε-fuzzy matching protocols are double-private. The fuzzy
matching protocol [11] which outputs Simε,t(X;Y ) uses an
additively homomorphic public-key encryption, a symmetric
key encryption, and a t-out of-T secret sharing scheme.

Additively homomorphic public key encryption consists of
the following algorithms.

• Key generation Gen : (pk, sk)← Gen(1l)

• Encryption Enc: c← Enc(pk,m)

• Decryption Dec: Dec(sk, c) = m
if c← Enc(pk,m).

• Additive homomorphism: three is an operation + on
two ciphertexts. When c = c1 + c2,

Dec(sk, c) = m1 +m2

if ci ← Enc(pk,mi)(i = 1, 2).

Using the homomorphism for multiple times, it is possible to
calculate Enc(pk, a · m) for given c ← Enc(pk,m) and an
integer a > 0.

t-out of-T secret sharing scheme is as follows. For a secret
data s, a set of shares U = {v1, v2, . . . , vT } is calculated such
that from any set U ′ ⊂ U that satisfies |U ′| ≥ t, the secret
data s can be recovered. In addition, no information about s
can be obtained from any set U ′′ ⊂ U that satisfies |U ′′| < t.

The outline of the simple fuzzy matching protocol in [11]
is as follows. Note that the ε-fuzzy matching protocol in [10]
is based on the same idea.

1) Client C generates (pk, sk) ← Gen(1l) of an addi-
tive homomorphic public key encryption. C gives pk
to server S.
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2) For each Xi = (x1
i , x

2
i , . . . , x

T
i ) ∈ X , C generates

ciphertexts

cwi = Enc(pk, xw
i )(1 ≤ w ≤ T ).

C sends cwi (1 ≤ w ≤ T ) to S.
3) For each Yj ∈ Y and Xi ∈ X , execute the following

steps.
a) S generates a key kj of a symmetric key

encryption (EncS ,DecS), calculates

Cj = EncS(kj , Yj),

and sends Cj to S.
b) For the secret 0k||kj , S generates a set of

shares {v1
j , v

2
j , . . . , v

T
j } by a t-out of-T se-

cret sharing scheme, where || is concatena-
tion.
S then calculates the following ciphertexts
using homomorphism of the encryption.

cw = Enc
(
pk, rw · (xw

i − yw
j ) + vw

j

)

(1 ≤ w ≤ T ), where rw are random values
generated by S. S sends all ciphertexts to C.

c) C executes

pw = Dec(sk, cw)(1 ≤ w ≤ T ).

C can recover the secret 0k||kj from the
plaintexts if Xi ∼t Yj . C obtains Yj by

DecS(kj , Cj).

Note that the protocol is not double-private since C obtains
the matched data.

III. A NAIVE PROTOCOL

A naive double-private ε-fuzzy matching protocol is as
follows, whose main idea is the same as the (not double-
private) ε-fuzzy matching protocol in [11].

1) Client C generates (pk, sk) ← Gen(1l) of an addi-
tive homomorphic public key encryption. C gives pk
to server S.

2) Server S generates the set

Z = {Zk|Zk ∼ε,t Yj ∈ Y }.
Note that if the pair of parameters (ε, t) is the same
for all requests, S needs to calculate the set Z just
once in advance.

3) For each Xi = (x1
i , x

2
i , . . . , x

T
i ) ∈ X , C generates

ciphertexts

Enc
(
pk, (x1

i )
γ1 · (x2

i )
γ2 · . . . · (xT

i )γT
)
,

for every tuple (γ1, γ2, . . . , γT ) that satisfies

1 ≤
T∑

w=1

γw ≤ mn
(
T

t

)
(2ε+ 1)t

and γw ≥ 0(1 ≤ w ≤ T ).
C sends all ciphertexts to S.

4) S calculates the following ciphertext using homomor-
phism of the encryption.

CZ =

Enc

(
pk,

∏

Xi∈X

∏

Zk∈Z

(
T∑

w=1

rzk,w
(xw

i − zw
k )

))
,

where Xi = (x1
i , x

2
i , . . . , x

T
i ), Zk =

(z1
k, z

2
k, . . . , z

T
k ), and rzk,w

are random values
generated by S.
S sends CZ to C.

5) C executes PZ = Dec(sk, CZ). C obtains 0 if
X ∼ε,t Y , otherwise C obtains a random value.

If (x1
i , x

2
i , . . . , x

T
i ) = (z1

k, z
2
k, . . . , z

T
k ) then

T∑

w=1

rzk,w
(xw

i − zw
k ) = 0,

otherwise the sum is a random value. Thus, CZ is an encryp-
tion of 0 if there is a pair Xi ∈ X and Zk ∈ Z such that
Xi = Zk. Otherwise, CZ is an encryption of a random value.
Since Z = {Zk|Zk ∼ε,t Yj ∈ Y }, double-private ε-fuzzy
matching is achieved.

Note that the encryption is addively homorphic (fully
homomorphic encryption is not practical yet), thus S needs
to calculate the expanded form of the equation at step 4).
Therefore, C needs to send

Enc
(
pk, (x1

i )
γ1 · (x2

i )
γ2 · . . . · (xT

i )γT
)

to S. Since |X| = m and |Z| ≤ n(Tt
)
(2ε+ 1)t, the maximum

degree of the equation is at most mn
(
T
t

)
(2ε + 1)t, and the

number of terms is at most (T + 1)mn(T
t)(2ε+1)t

.

IV. AN IMPROVED PROTOCOL

The maximum degree of the polynomial of the above naive
protocol is very large. Thus, a simplication of the protocol is
necessary. We show another protocol below.

1) Let α = {1, 2, . . . , T}. Client C generates
(pk, sk) ← Gen(1l) of an additive homomorphic
public key encryption. C gives pk to server S.

2) For each Xi = (x1
i , x

2
i , . . . , x

T
i ) ∈ X , C generates

ciphertexts

Enc
(
pk, (xβ1

i )δβ1 · (xβ2
i )δβ2 · . . . · (xβT−t+1

i )δβT−t+1

)

for every β = {β1, . . . , βT−t+1} ⊆ α and
0 ≤ δβi

≤ 2ε+ 1(1 ≤ i ≤ T − t+ 1).
C sends all ciphertexts to S.

3) Server S calculates the following ciphertext using
homomorphism of the encryption.

C ′
Z = Enc(pk,

∏

Xi∈X
Yj∈Y

⎛

⎜⎝
∑

∀β⊆α
|β|=T−t+1

ryj,β

∏

w∈β

ε∏

c=−ε

(xw
i − (yw

j + c))

⎞

⎟⎠

⎞

⎟⎠ ,

where ryj,β
are random values generated by S.

S sends C ′
Z to C.

4) C executes
P ′

Z = Dec(sk, C′
Z).
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C obtains 0 if X ∼ε,t Y , otherwise C obtains a
random value.

If xwk
i = ywk

j is satisfied for at least t different wk’s among
T elements, any term

(xw1
i − yw1

j )(xw2
i − yw2

j ) · · · (xwT−t+1
i − ywT−t+1

j )

is 0, thus the sum of these terms is also 0. If xwk
i = ywk

j is
satisfied for less than t different wk’s among T elements, at
least one term

(xw1
i − yw1

j )(xw2
i − yw2

j ) · · · (xwT−t+1
i − ywT−t+1

j )

among
(

T
T−t+1

)
terms is not 0, thus the sum of these terms is

not 0. Each term (xwk
i −ywk

j ) in the above equation is replaced
with

(xwk
i − (ywk

j + ε))(xwk
i − (ywk

j + ε− 1)) · · · (xwk
i − (ywk

j − ε))
to allow the difference at most ε, then the equation in the
protocol is derived.

The maximum degree of the polynomials of this protocol
is at most mn(2ε+1)(T −t+1) and the number of terms is at
most ((2ε + 2)

(
T

T−t+1

)
)mn. The maximum degree is smaller

than mn
(
T
t

)
(2ε+ 1)t by the naive protocol.

V. CONCLUSION

This paper proposed a new protocol for ε-fuzzy matching.
The proposed protocol is double-private, that is, the client
obtains no information other than whether there is a ε-fuzzy
matching. A further study includes considering malicious
parties.
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