
A quorum-based extended group mutual exclusion algorithm
without unnecessary blocking

Yoshifumi Manabe
NTT Cyber Space Laboratories

Nippon Telegraph and Telephone Corporation
1-1 Hikarinooka, Yokosuka, 239-0847 Japan

manabe.yoshifumi@lab.ntt.co.jp

JaeHyrk Park�

IRIS
Information and Communications University

Yusong-ku, Taejon, 305-732 Korea
eye2174@icu.ac.kr

Abstract

This paper presents a quorum-based distributed algo-
rithm for the extended group mutual exclusion problem. In
the group mutual exclusion problem, multiple processes can
enter a critical section simultaneously if they belong to the
same group. Processes in different groups cannot enter a
critical section at the same time. In the extended group mu-
tual exclusion, each process is a member of multiple groups
at the same time. Each process can select which group it
belongs at making a request. The algorithm for the group
mutual exclusion cannot be applied for this extended prob-
lem, since there can be a case that two processes are pre-
vented from entering a critical section simultaneously even
when they are capable of doing so. We call the above sit-
uation unnecessary blocking. We present a quorum-based
algorithm that prevents unnecessary blocking and show its
correctness proof.

1 Introduction

Mutual exclusion is a fundamental problem in dis-
tributed systems. When some resource (for example, a file,
a communication channel, a printer) is shared among pro-
cesses, no two processes are allowed to enter a critical sec-
tion (CS) and use it at the same time. Many distributed mu-
tual exclusion algorithms have been proposed [17][18]. A
quorum-based algorithm [4] is a solution for fault-tolerance.
Some extensions of the quorum-based algorithms have been
discussed. In one there are multiple units of the same
resource [9][14][15] and in another the set of resources
that each process can access differs from process to pro-
cess [10][19].

�Part of this work was undertaken while the author was staying at NTT
Communication Science Laboratories.

Recently, group mutual exclusion [7] has been proposed.
There are multiple groups of processes. The processes in
the same group can enter CS at the same time. This prob-
lem corresponds to the following situation. There is a CD
jukebox and each process wants to read some data on the
CDs. If CD � is loaded, multiple processes which want to
read data on CD � can access it at the same time. These
processes are in the same group. By contrast, the processes
which want to read data on CD � cannot do so when � is
loaded. These processes form a different group. In the orig-
inal definition, each process is a member of just one group
at each instant1. In [8], the following extended definition
has been introduced. Some processes might be members of
multiple groups at the same time. In the CD jukebox exam-
ple, the same data might be copied CD � and �. In this
situation, the user can read the data if � or � is currently
loaded. This paper discusses this extended group mutual
exclusion problem.

For group mutual exclusion, shared memory system al-
gorithms [5][6][12][20], token-based algorithms [2][3][21]
quorum-based algorithms[1][8][11] have been proposed.
Though [8] discuss this extended group mutual exclusion
problem, it just notes that when a process belongs to multi-
ple groups, it arbitrary selects one group.

The above algorithm is not sufficient, since when some
process � is entering CS, another process ��, which can enter
CS at the time, might be blocked. We call above situation
as an unnecessary blocking. We show a new quorum-based
algorithm which prevents unnecessary blocking.

Section 2 defines the extended group mutual exclusion
problem. Section 3 briefly describes the former algorithm
and its unnecessary blocking. Section 4 presents our new
algorithm. Section 5 concludes the paper.

1This definition allows that when a process makes a new request after
using CD �, the new request might be for CD �.

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04)
1521-9097/04 $ 20.00 IEEE

2 Extended group mutual exclusion

A distributed system consists of processes and channels.
The processes are asynchronous and fail in accordance with
the fail-stop model. The process failure can be detected.
Processes communicate with each other by passing mes-
sages through first-in, first-out (FIFO), asynchronous, and
reliable (no message loss occurs) channels.

This paper assumes that the processes are divided into
requesting processes and manager processes to simplify the
discussion. The manager processes manages mutual exclu-
sion and the requesting processes just make requests to enter
CS. In actual systems, one process can perform both roles
simultaneously. The discussion in this paper can also be ap-
plied to such systems. Let us denote � � ���� ��� � � � � ���
as the set of manager processes and � � ���� ��� � � � � ���
as the set of requesting processes.

� � ���� ��� � � � � ��� is the set of groups. �� � � and
�� �� � for every ��� � � � 	�. The processes in �� can
enter CS at the same time. The set of groups �� belongs to
is called ��’s group set and is denoted as
����. That is,

���� � �� � ���� � ��. Each requesting process belongs
to at least one group in �, thus,
���� �� �.

In accordance with the example of the CD jukebox, the
following is assumed as regards group selection [8]. When
process �� enters CS, it selects one group � �
����, which
corresponds to the selection of a CD. This group is called
��’s group selection and is denoted as ������. The definition
of extended group mutual exclusion is as follows.
mutual exclusion: Process �� and �� cannot be in CS at the
same time if ������ �� ������.

starvation freedom: Every process that wants to enter CS
must be eventually able to do so.

Now we define the unnecessary blocking freeness. A
natural definition might be “when process � � is in CS, any
process �� such that ������ �
���� can enter CS at the
same time,” but this definition leads the following starva-
tion scenario. Process ���� � �� �� � � �� such that
���� �
������ � �� �� � � �� and �� such that
���� � ���� exist.
Initially, �� makes a request and enters CS. �� then makes
a request but it cannot enter CS. After that, �� makes a re-
quest. Because of the above unnecessary blocking freedom,
existence of �� allows �� to enter CS. Then �� exits, but ��
cannot enter CS because �� is currently entering CS. Then
�� makes a request and existence of �� allows �� to enter
CS, �� exits, �� makes a request and so on, and �� cannot
enter CS forever.

The chain of “allowing another process to enter CS at the
same time” leads a starvation. Thus, we prohibit a chain of
allowance. We call � is a pivot process if no other process
is in CS when � enters CS.
Unnecessary blocking freedom: When a pivot process ��

is entering CS, any process �� such that ������ �
���� can
enter CS at the same time.

In the above scenario, �� is a pivot process. Thus, �� can
enter CS at the same time. But �� is not a pivot process,
thus, �� cannot enter CS even if �� is currently entering CS.
After exiting of ��, no new process enters CS until every
currently entering process exits. Thus, �� eventually enters
CS.

3 Problems in former algorithm

This section provides the outline of the algorithm in [8]
and its unnecessary blocking. The 	-group quorum sys-
tem � � ���� � � � � ��� is defined as follows. �� is the set
of quorums for group ��. Each quorum � �� satisfies
 � � and �� �. 	-group quorum system satisfies the
following two properties.
Intersection property: 	� � �� and 	� � �� , �

� �� ��� � �� � � 	� � �� ��.
Minimality property: 	�� � ��, �� ��� � � � 	�.

Each manager process has one “��” vote to send. It can
send “��” to requesting processes in at most one group at
the same time. The intersection property means that for any
two requesting processes in different groups, the quorums
intersects, thus these two processes cannot enter CS at the
same time, because of the above manager processes’ rule as
regards sending “��”. The outline of their group mutual
exclusion algorithm is as follows.
(when requesting process � wants to enter CS)
(1) � selects one group �� from
���, selects one quorum

from ��, and sends “�����������” to every member of .
(2) When � receives “��” from every member in , � en-
ters CS.

(when manager process � receives “�����������” from
�) � sends “��” to � if
(1) � sends no “��” to any other processes, or
(2) � has sent “��” to a request �� such that ������ � ��.

The actual algorithm is more complex to avoid starvation
and achieve efficiency.

The above algorithm has two problems which lead to un-
necessary blocking. First, consider the following example.
��, whose group set
���� is ����, sends “�����������”
to every member in � ��. It receives “��” from ev-
ery member in � �� and enters CS. ��, whose group set

���� is ���� ���, then appears. The algorithm requires ��
to select one group from
���� before making a request.
Suppose that �� selects �� as ������. Then, �� cannot en-
ter CS because ������ �� ��. This blocking is unnecessary
because �� could enter CS if �� would set �� as ������.

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04)
1521-9097/04 $ 20.00 IEEE

This unnecessary blocking comes from the condition that
�� must set ������ when there is no information about the
other requests. If �� can set ������ after the current status is
obtained (for example, some process whose group selection
is �� is currently entering CS), �� can set a better group as
������ and this type of unnecessary blocking is avoided.

For the second type of unnecessary blocking, consider
the following example. There are two groups, �� and ��.
The quorum set for �� is ����� ���� ���� ���� and the quo-
rum set for �� is ����� ���� ���� ����. These quorum sets
satisfy the condition of a 2-group quorum system. Now
suppose that there are three requests, ��, ��, and ��. As-
sume that priorities of these requests satisfy �� � �� �

�� (� � � means �’s priority is higher than that of �).
����� � ����� � ���� and ����� � ����. Thus,
������ � ������ � �� and ������ � ��. Note that
������� � � for all 	, which means that each request’s group
selection is unique. Thus, the following scenario is not af-
fected by the above group selection problem, that is, the
following problem exists even for group mutual exclusion.
�� selects
� � ���� ��� as its quorum, sends a request, re-
ceives “��”, and enters CS. Next, �� selects ���� ��� and
sends a request. �� sends “��” to ��. However, since ��
has sent “��” to ��, it does not reply “��” to ��. Lastly
�� selects
� � ���� ��� and sends a request. Since �� has
sent “��” to ��, it does not send “��” to ��. Thus, ��
cannot enter CS. However, �� could enter CS because ��,
which satisfies ������ � ������, is currently entering CS.
This is another type of unnecessary blocking.

In this scenario, �� and �� select their quorums,
� and

�, such that
��
� � . Even if �� is currently entering
CS, �� cannot know the fact from the processes it is con-
tacting. By changing the definition of the quorum system,
this type of unnecessary blocking can be avoided.

In the next section, we outline our algorithm which al-
lows us to avoid unnecessary blocking.

4 New Algorithm for extended group mutual
exclusion

4.1 Quorum system for extended group mutual
exclusion

First, we define the condition to be satisfied to achieve
unnecessary blocking free extended group mutual exclu-
sion.

As shown in the example of first unnecessary blocking,
a requesting process � must not decide its group before it
sends a request. Thus, quorum system must be defined for
each group set, not for each group, because �’s group is not
decided at making a request.

Let us define group set quorum system � �
����

� � � � � ���
�, where ���

is a set of quorums for group

set ��. Requesting process �� whose group set is �� selects
a quorum
 in ���

and sends a request to every member of

.

We provide the conditions of the group set quorum sys-
tem with the following theorem.

Theorem 1 �
 � ���
and �
� � ���

�� � 	� � � ��,

 �
� �� must be satisfied to achieve extended group
mutual exclusion without unnecessary blocking.

(proof) First, suppose that �� � �� � . In this case, re-
questing processes �� and �� , whose group sets are �� and
�� , respectively, must not enter CS at the same time. If

 �
� � , �� and �� might receive “��” from every
member of
 and
�, respectively. Thus,
�
� �� must
be satisfied.

Next, suppose that �� � �� �� . Let � be a group in
�� � �� . Now, suppose that there is no requesting process
other than ��, whose group set is ��. Let
 � ���

be
the quorum �� selected. �� can enter CS as a member of
any group in ��. Let us assume that �� has set � as ������.
After that, �� , whose group set is �� , sends a request to
every member of
� � ���

. Since � � �� , �� must be able
to enter CS. In order to achieve this, the information that � �
is currently entering CS as a member of � must arrive at ��
as a reply. Thus,
 and
� must have at least one process in
common.

The above theorem implies that the coterie for simple
mutual exclusion can be used as the quorum set for any � �.
This fact makes the algorithm very simple, since we do not
need to prepare a different quorum set for each � �.

The coterie for simple mutual exclusion is defined as fol-
lows [4]. Coterie � � �
�� � � � �
��, where
� 	 � and

� �� , satisfies the following two properties.
Intersection property: �
�
� � �,
 �
� �� .
Minimality property: �
�
� � �,
 �	
�.

It is obvious that the coterie satisfies the condition in the-
orem 1.

4.2 New group mutual exclusion algorithm

We begin by discussing the first type of unnecessary
blocking. In order to avoid bad group selection, each re-
questing process must be able to set its group selection after
it receives some replies from manager processes. We intro-
duce a two-phase mutual exclusion algorithm. It was used
in [10][19] to solve the generalized mutual exclusion prob-
lem. In the generalized mutual exclusion problem, there
are multiple shared resources and each process may have
different accessible resources. In the two-phase algorithm,
each requesting process makes its decision after it receives
“��” from every process in a quorum. It then informs the

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04)
1521-9097/04 $ 20.00 IEEE

processes in the quorum of its decision. With the gener-
alized mutual exclusion, the decision is which resource it
uses. With the extended group mutual exclusion, the deci-
sion is which group it selects as �����.

First, the requesting process � sends “�������” to the
processes in a quorum � before it sets �����. Each process
� in �, which received the request, replies “	
” to inform
that � can enter CS or “�������” to inform that some pivot
process �� which satisfies � � ������ � ���� is currently
entering CS. Using the replies, � enters CS if
(1) every process in � replies “	
” or
(2) some process in � replies “�������”.

In case (1), � can set any group in ���� as �����, since
there is no other process that blocks �. � sends ����� to the
processes in �. In case (2), � selects ����� � � and enters
CS. By rule (2), the first type of unnecessary blocking is
avoided.

The outline of the procedure for the requesting process
is as follows:

1. When � whose group set is � wants to enter CS, �
selects a quorum � � � and sends “����������” to
every process in �.

2. There are two ways to enter CS.

(a) When � receives “	
” from every process in �,
� arbitrarily selects one group � � ���� as �����,
sends “�������” to every process in �, and en-
ters CS.

(b) When � receives “�������” from some process
in �, � sets � as ����� and enters CS.

3. When exiting CS, execute the following.

(a) (entered CS by “	
”) � sends “�������” to ev-
ery process in �.

When � receives “��������” from every process
in �, it sends “	��” to every process in �.

(b) (entered CS by “����”) � sends “������” to
the process “����” arrived.

The outline of the algorithm for the manager processes is
shown later.

The exiting procedure when entered by “	
” is a little
complicated. When “�������” arrives at a manager pro-
cess, the process must not send “	
” to a waiting request
immediately. Let us consider the following example. ��,
whose group set ����� � ����, uses �� � ���� ��� and
sends “�������”. �� and �� send “	
” to �� and �� en-
ters CS. After that, �� sends “�������” to �� � ���� ���
and ����� � ������� �� ���. �� sends “	
” to ��.
However, since �� has sent “	
” to ��, �� receives no re-
ply from ��. Then, ��, whose group set ����� � ����,

sends “�������” to �� � ���� ���. �� replies to �� with
“��������”, since ��, whose group selection is ��, is en-
tering CS. Thus, �� can enter CS. Now, suppose that �� ex-
its CS. �� sends “�������” to �� and ��. If �� sends “	
”
to �� immediately, �� enters CS, although �� is currently
entering CS. Thus, extended group mutual exclusion is not
achieved. Therefore, each process must not send “	
” to
a waiting request until every process that entered CS by re-
ceiving “����” has exited.

A two-phase release procedure is used to achieve
this. When “�������” arrives, each process stops send-
ing “����” to further requests, waits for the exit of ev-
ery process to which “����” was sent, and then replies
“��������”. When the requesting process � receives
“��������” from every process in �, it means all requests
which entered CS by receiving “����” have exited. Then
� sends “	��” to every member of �. When “	��” ar-
rives, each manager process sends “	
” to the highest pri-
ority waiting request.

The outline of the procedure for manager processes is
as follows. Variable ������ stores the current status of the
process. ������ � ������ means there is no request,
�������� means that it has sent “	
” to some process but
“����” has not arrived, and ������ means “����” is re-
ceived. Variable ���� stores the current group when some
process is entering CS.

In order to avoid starvation, each request has Lamport’s
logical clock [13]. A request with a smaller logical clock
has a higher priority. Thus the oldest request will eventually
have the highest priority and will be able to enter CS. The
procedure to update the logical clock and assign it to each
request is omitted in this procedure for simplicity.

The following is an outline of the procedure for manager
processes.

1. When � receives���������� from �, � inserts it in the
queue ���.

(a) If ������ � ������, � sends “	
” to � and sets
������ �� ��������.

(b) If ������ � ������ and ���� � �, � sends
“����������” to �.

2. When � receives “�������” from �, � sets ���� ��
� and ������ �� ������. � then sends “�������”
to every waiting request in ��� whose group set �
satisfies � � �.

3. When � receives “�������”, � stops further sending of
“����” (by changing ������). And if there is no pro-
cess to which “����” is sent, � replies “��������”.

4. When � receives “������” from �, � sends
“��������” to the process which sent “�������” to

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04)
1521-9097/04 $ 20.00 IEEE

�, if currently there is no process � has sent “�����”
or “��”.

5. When � receives “����”, � sets 	�
��	 �� �
�
��

and tries to send “��” to the highest priority request
in ��.

In order to avoid deadlock, an additional mechanism is nec-
essary. Assume that ��’s priority is higher than that of ��.
At ��, “�����	�” arrives in the order ��, �� and at ��, it
arrives in the order ��, ��. In this case, the “��” sent from
�� to �� must be canceled to avoid deadlock. The cancel-
lation procedure is the same as that used for simple mutual
exclusion in [16].

1. When process � receives “�����	����” from ��, if
� has sent “��” to �� but “����” has not arrived,
and ��’s priority is higher than that of ��, then � sends
“�
����” to ��.

2. When �� receives “�
����” from �, if it has not en-
tered CS, it replies to � with “�
�������” (and waits
for the next arrival of “��”).

3. When � receives “�
�������”, � sends “��” to the
highest priority request in ��.

The meaning of the other variables used in Fig.1 are
as follows. As regards each requesting process, �	�
��	
stores the status of the request. �	�
��	 � �
�� means it is
waiting for “��” or “�����”. ��means that it is in the CS,
��� means that it has exited CS. The quorum currently in
use is stored in . The set of processes from which “��”
has arrived (when making a request) or “����	���” has ar-
rived (when releasing) is stored in �. Thus, if � � , the
requesting process can enter CS (when making a request) or
can send “����” (when releasing).

Next, we describe the meaning of the variables for each
manager process. �� is the priority queue of the requests
(����� is the highest priority request). ����� has entry
�������� (the requesting process) and ������� (the set
of groups). The requesting process to which “��” is sent
is stored in variable 	�����. Variable �	��� is the set of
processes currently entering CS. The other values stored to
variable 	�
��	 are as follows: �
���
���� when “�
����”
is sent and ����
	��� when “����
	�” arrives.

Note that when � exits CS and makes another request,
� might receive replies to the earlier request. � can ignore
such old replies easily if the logical clock of each request is
attached to every reply message. The procedure for ignoring
such replies is omitted from Fig. 1 for simplicity.

4.3 Correctness of the algorithm

This subsection shows the correctness of the algorithm.
First, it is shown that extended group mutual exclusion is

achieved.

Theorem 2 �� and �� never enter CS at the same time by
the algorithm in Fig. 1 if �	���� �� �	����.

(Proof) Suppose that the above situation occurs. Let �� �
�	����, �� � �	����, and �(�) be the quorum ��(��)
uses. �� (and ��) enters CS by (1) receiving “��” from
every member of � (�) or (2) receiving “�����” from
some process in � (�). In case (2), there is another pro-
cess ��

�
(��

�
), whose group selection is ��(��), which enters

CS before �� (��). ��

�
(��

�
) receives “��” from every mem-

ber of some quorum, say �

�
(�

�
). Though ��

�
(��

�
) might

have exited CS before �� (��) exits CS, the processes in �

�

(�

�
) cannot send “��” to any other process until �� (��)

exits CS and sends “������”.
In case (1), let ��

�
� �� (��

�
� ��) and �

�
� � (�

�
�

�).
��

�
�� ��

�
holds in any cases since �	���

�
� �� �	���

�
�.

Now, every process in �

�
(and �

�
) has sent “��” to ��

�

(��

�
) at the same time. Since �

�
��

�
�� � and each process

sends “��” to at most one process at the same time, this
situation cannot occur.

Next, deadlock-freeness is briefly shown. Assume that
a deadlock occurs. Assume that there is no new request-
ing process and every process that can enter CS enters and
exits CS after the deadlock. In this situation, there is no pro-
cess that waits for “����” or “������”, since every pro-
cess that entered CS has exited CS. Thus, the deadlocked
requesting processes send “�����	�” and wait for “��”.
Therefore, this deadlock situation is just the same as that
without the mechanism of entering CS by the “�����” mes-
sage, that is, the same one in the simple mutual exclusion
algorithm in [16]. Since the algorithm in [16] is deadlock-
free, the algorithm in Fig. 1 is also deadlock-free.

Lastly, starvation-freeness is shown.

Theorem 3 No starvation occurs with the algorithm in Fig.
1

(Proof) Assume that starvation occurs. Let �� be the high-
est priority request which cannot ever enter CS. Let � be
the quorum �� selects. From the assumption, �� is the high-
est priority request that does not enter CS from some time
�. Let �� be the time at which “�����	�” from �� arrives
at every member of �. Let us consider the system state
after time � !
"��# ���. Each process � � � must
try to send “��” to �� because �� has the highest priority.
If � has not sent “��” to any process, obviously it sends
“��” to ��. If � has sent “��” to another process, say ��,
� sends “�
����” ��. If �� has not entered CS, it replies
“�
�������” and thus, � will be able to send “��” to ��. If

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04)
1521-9097/04 $ 20.00 IEEE

�� has entered CS before the arrival of “������”, �� even-
tually exits CS. After time � , � does not send “	�
��” to
any other requests. In addition, every process that entered
CS by receiving “	�
��” from � (before �) also eventually
exits CS. Thus, � eventually sends “������” to �� and
thus, �� eventually sends “����” to �. Therefore, � will be
able to send “��” to �� and no starvation occurs.

Lastly, we show unnecessary blocking freeness.

Theorem 4 Unnecessary blocking never occurs with the
algorithm in Fig. 1

(Proof) Assume that unnecessary blocking occurs. Suppose
that ��, whose group selection is ������, is currently in CS
as a pivot. Suppose that �� uses �� as its quorum. Since
�� is entering CS as a pivot, it receives “OK” from every
member of ��. Thus, every manager process in �� satisfies
that �
�
�� � ������ and ����� � ������.

Now, suppose that �� , which satisfies ������ � �����
makes a request using �� . Since �� � �� �� �, there is
at least one manager process, � � ��, which receives this
request. Since �
�
�� � ������ and ����� � ������, �

sends “Enter(������)” to �� and �� can enter CS.

4.4 Communication complexity

The communication complexity of the proposed algo-
rithm is shown. Let ��� be the size of the smallest quorum
in a coterie.

The no-exclusion case is that there is only one request at
any time. This case is considered to the best case for the
discussion of simple mutual exclusion.
(1) Process � sends “������
” to every member of �.
(2) � receives “��” from every member of �.
(3) � sends “����” to every member of � and enters CS.
(4) � exits CS and sends “�������” to every member of �.
(5) � receives “������” from every member of �.
(6) � sends “����” to every member of �.

In this case, the total number of messages is ����.
Next, consider the best case. The best case is when a re-

questing process ��, which satisfies ������ � ��, is in CS
for a very long time and there are many processes ��� ��� � � �

during the period, whose group set satisfies �� � ������ �
�� �� � � ��. ��’s execution is the above no-execution case
and its number of messages is ����. The execution for
��� ��� � � � are as follows:
(1) �� sends “������
” to every member of ��.
(2) �� receives “	�
������” from �� � ��, where ���� �
����.
(3) Each process in �� � ���� sends “��” to ��.
(4) �� sends “������” to every member of �� ����� and
enters CS.

(5) �� exits CS and sends “������” to ��.

The total number of messages for ��� � �� �� � � �� is �����.
Thus, the total number of messages per request is ����� ,
if ���� � ���.

Lastly, consider the worst case, when the highest priority
request arrives later.
(1) � sends “������
” to every member of �.
(2) Each process �� � � has sent “��” to another process
��, whose priority is lower than that of �. �� sends “������”
to ��.
(3) �� sends “���������” to ��.
(4) �� receives “���������” and sends “��” to �.
(5) � receives “��” from every member of �. Thus, it
sends “����” to every member of � and enters CS.
(6) � exits CS and sends “�������” to every member of �.
(7) � receives “������” from every member of �.
(8) � sends “����” to every member of �.
(9) �� receives “����” and sends “��” again to the process
to which “������” is sent (The messages for �� to enter and
exit CS are counted as the messages for ��).

The total number of messages per request is ����.
Although the number of messages in the worst case is

larger than �� � � in [8], where � is the size of the quo-
rum in the m-group quorum system, our algorithm avoids
unnecessary blocking.

5 Conclusion

This paper has shown a new extended group mutual ex-
clusion algorithm that prevents unnecessary blocking. One
possible improvement of the proposed algorithm involves
improving group selection. This paper’s algorithm selects
an arbitrary group when it can enter CS by receiving “��”.
If the group is selected using the information on the waiting
processes’ group sets, the possibility for the waiting pro-
cesses to enter CS increases. However, the worst case mes-
sage complexity is unchanged by this modification.

Acknowledgement The authors would like to thank
Mr. Yoshifumi Ooyama of NTT (currently NTT Advanced
Technology) for his encouragement and suggestions.

References

[1] R. Atreya and N. Mittel, A Distributed Group Mutual Exclu-
sion Algorithm using Surrogate-Quorums, Technical Report,
The University of Texas at Dallas, 2003.

[2] S. Cantareli, A.K. Datta, F. Perit, V. Villain, Token Based
group mutual exclusion for asynchronous rings, Proc. of 21st
ICDCS, (2001), 691-694.

[3] S. Cantareli, A.K. Datta, F. Perit, V. Villain, Group Mutual
Exclusion in Token Rings, Proc. of 8th Colloquium Struc-

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04)
1521-9097/04 $ 20.00 IEEE

tural Information and Communication Complexity, June
2001.

[4] H. Garcia-Molina, D. Barbara, How to assign votes in a dis-
tributed system, Journal of the ACM, 32, 4, (1985), 841-860.

[5] V. Hadzlilacos, A note on group mutual exclusion, Proc. of
20th PODC, (2001), 100-106.

[6] P. Jayanti, S. Petrovic, and K. Tan, Fair Group Mutual Ex-
clusion, Proc. 22nd PODC, pp.275-284 (2003).

[7] Y.-J. Joung, Asynchronous group mutual exclusion, Dis-
tributed Computing, 13,4, (2000), 189-206.

[8] Y.-J. Joung, Quorum-based algorithm for group mutual ex-
clusion, IEEE Trans. on Parallel and Distributed Systems,
Vol.14, No.5, pp.463-476(May 2003).

[9] H. Kakugawa, S. Fujita, M. Yamashita, T. Ae, A distributed
�-mutual exclusion algorithm using �-coterie, Information
Processing Letters, 49, (1994), 213-238.

[10] H. Kakugawa, M. Yamashita, Local coteries and a distributed
resource allocation algorithm, Trans. IPSJ, 37, 8 (1996), 145-
159.

[11] M. Tonomura, S. Kamei, and H. Kakugawa, A Quorum-
based Distributed Algorithm for Group Mutual Exclusion,
Proc. 4th Int. Conf. on Parallel and Distributed Computing,
Applications and Technologies, pp.74-74 (Aug. 2003).

[12] P. Keane, M. Moir, A simple local-spin group mutual ex-
clusion algorithm, IEEE Trans. Parallel and Distributed Sys-
tems, 12, 7, (2001), 673-685.

[13] L. Lamport, Time, clocks, and the ordering of events in a
distributed system, Communications of ACM, 21, 7, (1978),
558-565.

[14] Y. Manabe, R. Baldoni, M. Raynal, S. Aoyagi, k-Arbiter:
A safe and general scheme for h-out of-k mutual exclusion,
Theoretical Computer Science, 193, 1-2, (1998), 97-112.

[15] Y. Manabe and N. Tajima: (h,k)-Arbiters of h-out-of-k
Mutual Exclusion Problem, Theoretical Computer Science,
Vol.310, No.1-3 (2004).

[16] B.A. Sanders, The information structure of distributed mu-
tual exclusion algorithms, ACM TOCS, 5, 3, (1987), 284-
299.

[17] M. Singhal, A taxonomy of distributed mutual exclusion,
Journal of Parallel and Distributed Computing, 18, 1, (1993),
94-101.

[18] R.K. Srimani, S.R. Das (eds.), Distributed mutual exclusion
algorithms, IEEE Computer Society Press, 1992.

[19] S.-C. Sung, Y. Manabe, Coterie for generalized mutual ex-
clusion problem, Trans. IEICE, E82-D, 5, (1999), 968-972.

[20] K. Vidyasankar, A highly concurrent group mutual �-
exclusion algorithm, Proc. of 21th PODC, (2002), 130

[21] K.-P. Wu and Y.-J. Joung, Asynchorous Group Mutual Ex-
clusion in Ring Networks, IEE Proc. Computers and Digital
Techniques, Vol.147, No.1, pp.1-8 (2000).

program RequestingProcess(�:process);
var ������� � ��	� : status of request ;

 : set of process; /* quorum */
� : set of process; /* reply arrived */
� : set of group; /* current group set */

When � (group set is �) wants to enter CS:
begin
������� ��wait;
Select arbitrary
 from coterie;
� �� ;
send “Request(�)” to all � �
;

end; /* end of request initiation. */

At arrival of “OK” from �:
begin

if ������� � ��	� then begin
� �� � � ���;
if � �
 then

begin /* can enter CS */
select arbitrary � � �;
send “Lock(�)” to all � �
;
������� �� 	�;
.... /* in the CS */
������� �� ���;
send “Release” to all � �
;
� �� ; /* waits for “Finished” */

end/* end of � �
 */
end /* end of ������� � ��	� */

end; /* end of “OK” arrival */

At arrival of “Enter(�)” from �:
begin

if ������� � ��	� then begin
send “NoNeed” to all � �
� ���;
������� �� 	�;
.... /* in the CS */
������� �� ���;
send “NoNeed” to �;

end; /* end of ������� � ��	� */
end; /* end of “Enter” arrival */

At arrival of “Cancel” from �:
begin

if ������� � ��	� then begin
� �� � � ���;
send “Cancelled” to �;

end; /* end of ������� � ��	� */
end; /* end of “Cancel” arrival */

At arrival of “Finished” from �:
begin
� �� � � ���;
if � �
 then send “Over” to all � �
;

end; /* end of “Finished” arrival */

Figure 1(a). Algorithm for requesting process.

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04)
1521-9097/04 $ 20.00 IEEE

program ManagerProcess(�:process);
var ������ � ������ : status;
�	
�� : group; /* current group */
�� � ���� : priority queue of requests;
����� � ���� : set of processes;
���
� � ���� : process; /* “OK” is sent. */

At arrival of “Request(�)” from �:
begin

insert the request to ��;
/* assume that ����� is the position. */
�������	 �� �;
������� �� �;
if ������ � ������ then begin

send “OK” to �;
���
� �� �;
������ �� �����
��;

end/* end of vacant */
else if ������ � �
��� then begin

if �	
�� � � then begin
send “Enter(�	
��)” to �;
����� �� ����� � ���;

end
end/* end of locked */
else if ������ � �����
�� then begin

if � � � then begin
/* � � � : �’s priority is the highest */
send “Cancel” to ���
�;
������ �� ���������;

end
end /* end of waitlock */

end; /* End of “Request” arrival */

At arrival of “Lock(�)” from � (� � �������):
begin
����� �� ���;
������ �� �
���;
�	
�� �� �;
for every request ������� �� �� such that
�	
�� � ������� do begin

send “Enter(�	
��)” to �������	;
����� �� ����� � ��������	�;

end; /* end of do */
end; /* end of “Lock” arrival */

At arrival of “Release” from � (� � �������):
begin
������ �� 	������;
remove entry �����;
����� �� ����� � ���;
if ����� � � then send “Finished” to �;

end; /* end of “Release” arrival */

At arrival of “NoNeed” from � (� � �������):
begin

remove entry �����;
if � � ���
� then SendOK

else if � � ����� then begin

����� �� ����� � ���;
if ����� � � then send “Finished” to ���
�;

end
end; /* end of “NoNeed” arrival */

At arrival of “Cancelled” from �:
begin

SendOK;
end;

At arrival of “Over” from �:
begin

SendOK;
end;

procedure SendOK; /* “OK” is released. */
begin

if �� is not empty then begin
/* ����� is the highest priority request */

Send “OK” to �������	;
���
� �� �������	;
������ �� �����
��;

end /* end of �� is not empty */
else ������ �� ������;

end; /* end of procedure SendOK */

Figure 1(b). Algorithm for manager process.

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04)
1521-9097/04 $ 20.00 IEEE

	footer1:

