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Abstract. This paper presents an efficient secure auction protocol for
M + 1st price auction. In our proposed protocol, bidding prices are rep-
resented as binary numbers. Thus, when the bidding price is an integer
up to p and the number of bidders is m, the complexity of our protocol
is a polynomial of log p and m, while in previous secure M + 1st price
auction protocols, the complexity is a polynomial of p and m. We ap-
ply the Boneh-Goh-Nissim encryption to the mix-and-match protocol to
reduce the computation costs.

1 Introduction

1.1 Background

Recently, as the Internet has expanded, many researchers have become interested
in secure auction protocols and various schemes have been proposed to ensure
the safe transaction of sealed-bid auctions. A secure auction is a protocol in
which each player can find only the highest bid and its bidder (called the first
price auction) or the second highest bid and the first price bidder (called the
second price auction). There is also a generalized auction protocol called M+1st
price acution. The M+1st price auction is a type of sealed-bid auction for selling
M units of a single kind of goods, and the M + 1st highest price is the winning
price. M bidders who bid prices higher than the winning price are the winning
bidders, and each winning bidder buys one unit of the goods at the winning
price.

A simple solution is to assume a trusted auctioneer. Bidders encrypt their
bids and send them to the auctioneer, and the auctioneer decrypts them to
decide the winner. To remove the trusted auctioneer, some secure multi-party
protocols have been proposed. The common essential idea is the use of threshold
cryptosystems, where a private decryption key is shared by the players. Jakobs-
son and Juels proposed a secure MPC protocol to evaluate a function comprising
a logical circuit, called mix-and-match [6]. As for a target function f and the
circuit that calculates f , Cf , all players evaluate each gate in Cf based on their



encrypted inputs and the evaluations of all the gates in turn lead to the eval-
uation of f . Based on the mix-and-match protocol, we can easily find a secure
auction protocol by repeating the millionaires’ problem for two players. Kuro-
sawa and Ogata suggested the ”bit-slice auction”, which is an auction protocol
that is more efficient than the one based on the millionaire’s problem [8].

Boneh, Goh and Nissim suggested a public evaluation system for 2-DNF
formula based on an encryption of Boolean variables [3]. Their protocol is based
on Pallier’s scheme [13], so it has additive homomorphism in addition to the
bilinear map, which allows one multiplication on encrypted values. As a result,
this property allows the evaluation of multivariate polynomials with the total of
degree two on encrypted values.

In this paper, we introduce an efficient secure auction protocol for M + 1st
price auction, in which if the bidding price is an integer up to p and the number
of bidders is m, the complexity of our protocol is a polynomial of log p and m.

1.2 Related works

As related works, there are many secure auction protocols, however, they have
problems such as those described hereafter. The secure auction scheme for first
price auction proposed by Franklin and Reiter [5] does not provide full privacy,
since at the end of an auction players can know the other players’ bids. Naor,
Pinkas and Sumner achieved a secure second price auction by combining Yao’s
secure computation with oblivious transfer assuming two types of auctioneers
[10]. However, the cost of the bidder communication is high because it proceeds
bit by bit using the oblivious transfer protocol. Juels and Szydlo improved the
efficiency and security of this scheme with two types of auctioneers through ver-
ifiable proxy oblivious transfer [7], which still has a security problem in which
if both types of auctioneers collaborate they can retrieve all bids. Mitsunaga,
Manabe and Okamoto suggested secure auction protocols for first and second
price auction. They applied Boneh-Goh-Nissim Encryption to the bit-slice auc-
tion protocol to improve computation costs [11].

For M + 1st price auction, Lipmaa, Asokan and Niemi proposed an efficient
secure M+1st auction scheme [9]. In their scheme, the trusted auction authority
can know the bid statistics. Abe and Suzuki suggested a secure auction scheme
for the M +1st auction based on homomorphic encryption [1]. However in their
scheme, a player’s bid is not a binary expression. So, its time complexity is
O(m2p) for a m-player and p-bit bidding price auction.

1.3 Our result

This paper presents an efficient secure auction protocol forM+1st price auction.
In our proposed protocol, bidding prices are represented as binary numbers.
Thus, when the bidding price is an integer up to p and the number of bidders
is m, the complexity of our protocol is a polynomial of log p and m, while in
previous secureM+1st price auction protocols[1], the complexity is a polynomial
of p and m.



2 Preliminaries

2.1 The model of auction and outline of auction protocol

This model involves n players, denoted by P1, P2, ..., Pm and assumes that there
exists a public board. The players agree in advance on the presentation of the
target function, f as a circuit Cf . For each player Pi’s bidding price Zi, the aim
of the protocol is for players to compute f(Z1, ..., Zm) without revealing any
additional information. Its outline is as follows.

1. Input stage: Each Pi(1 ≤ i ≤ m) computes ciphertexts of the bits of Zi

and broadcasts them and proves that the ciphertext represents 0 or 1 by
using the zero-knowledge proof technique in [3].

2. Mix and Match stage: The players blindly evaluates each gate, Gj , in
order.

3. Output stage: After evaluating the last gate GM , the players obtain OM ,
a ciphertext encrypting f(Z1, ..., Zm). They jointly decrypt this ciphertext
value to reveal the output of function f .

2.2 Mix and Match protocol

Requirements for the encryption function Let E be a public-key proba-
bilistic encryption function. We denote the set of encryptions for a plaintext m
by E(m) and a particular encryption of m by c ∈ E(m) .

Function E must satisfy the following properties.

1.Homomorphic property There exist polynomial time computable opera-
tions, −1 and ⊗, as follows. For a large prime q,
1. If c ∈ E(m), then c−1 ∈ E(−m mod q).
2. If c1 ∈ E(m1) and c2 ∈ E(m2), then c1 ⊗ c2 ∈ E(m1 +m2 mod q).
For a positive integer a, define
a · e = c⊗ c⊗ · · · ⊗ c︸ ︷︷ ︸

a

.

2.Random re-encryption Given c ∈ E(m), there is a probabilistic re-encryption
algorithm that outputs c′ ∈ E(m), where c′ is uniformly distributed over
E(m).

3.Threshold decryption For a given ciphertext c ∈ E(m), any t out of n
players can decrypt c along with a zero-knowledge proof of the correctness.
However, any t-1 out of n players cannot decrypt c.

MIX protocol The MIX protocol [4] takes a list of ciphertexts, (ξ1, ...., ξL), and
outputs a permuted and re-encrypted list of the ciphertexts (ξ′1, ..., ξ

′
L) without

revealing the relationship between (ξ1, ..., ξL) and (ξ′1, ..., ξ
′
L), where ξi or ξ

′
i can

be a single ciphertext c, or a list of l ciphertexts, (c1, ..., cl), for some l > 1.
For all players to verify the validity of (ξ′1, ..., ξ

′
L), we use the universal verifiable

MIX net protocol described in [14].



Plaintext equality test Given two ciphertexts c1 ∈ E(v1) and c2 ∈ E(v2),
this protocol checks if v1 = v2. Let c0 = c1 ⊗ c−1

2 .

1. (Step 1) For each player Pi (where i = 1,...,n):
Pi chooses a random element ai ∈ Z∗

q and computes zi = ai·c0. He broadcasts
zi and proves the validity of zi in zero-knowledge.

2. (Step 2) Let z = z1 ⊗ z2 ⊗ · · · ⊗ zn. The players jointly decrypt z using
threshold verifiable decryption and obtain plaintext v. Then it holds that

v =

{
0 if v1 = v2
random otherwise

Mix and Match Stage For each logical gate, G(x1, x2), of a given circuit, n
players jointly computes E(G(x1, x2)) from c1 ∈ E(x1) and c2 ∈ E(x2) keeping
x1 and x2 secret. For simplicity, we show the mix-and-match stage for AND gate.

1. n players first consider the standard encryption of each entry in the table
shown below.

2. By applying a MIX protocol to the four rows of the table, n players jointly
compute blinded and permuted rows of the table. Let the ith row be (a′i, b

′
i, c

′
i)

for i = 1,...,4.
3. n players next jointly find the row i such that the plaintext of c1 is equal to

that of a′i and the plaintext of c2 is equal to that of b′i by using the plaintext
equality test protocol.

4. For the row i, it holds that c′i ∈ E(x1 ∧ x2).

Table 1. Mix-and-match table for AND

x1 x2 x1 ∧ x2

a′
1 ∈ E(0) b′1 ∈ E(0) c′1 ∈ E(0)

a′
2 ∈ E(0) b′2 ∈ E(1) c′2 ∈ E(0)

a′
3 ∈ E(1) b′3 ∈ E(0) c′3 ∈ E(0)

a′
4 ∈ E(1) b′4 ∈ E(1) c′4 ∈ E(1)

2.3 Evaluating 2-DNF formulas on ciphertexts

Given encrypted Boolean variables x1, ..., xn ∈ {0, 1}, a mechanism for public
evaluation of a 2-DNF formula was suggested in [3]. They presented a homomor-
phic public key encryption scheme based on finite groups of composite order that
supports a bilinear map. In addition, the bilinear map allows for one multiplica-
tion on encrypted values. As a result, their system supports arbitrary additions
and one multiplication on encrypted data. This property in turn allows the eval-
uation of multivariate polynomials of a total degree of two on encrypted values.



Bilinear groups Their construction makes use of certain finite groups of com-
posite order that supports a bilinear map. We use the following notation.

1. G and G1 are two (multiplicative) cyclic groups of finite order n.
2. g is a generator of G.
3. e is a bilinear map e : G×G→ G1.

Subgroup decision assumption We define algorithm G such that given secu-
rity parameter τ ∈ Z+ outputs a tuple (q1, q2,G,G1, e) where G,G1 are groups
of order n = q1q2 and e : G×G→ G1 is a bilinear map. On input τ , algorithm
G works as indicated below,

1. Generate two random τ -bit primes, q1 and q2 and set n = q1q2 ∈ Z.
2. Generate a bilinear group G of order n as described above. Let g be a gen-

erator of G and e : G×G→ G1 be the bilinear map.
3. Output (q1, q2,G,G1, e).

We note that the group action in G and G1 as well as the bilinear map can
be computed in polynomial time.

Let τ ∈ Z+ and let (q1, q2,G,G1, e) be a tuple produced by G where n = q1q2.
Consider the following problem. Given (n,G,G1, e) and an element x ∈ G, out-
put ’1’ if the order of x is q1 and output ’0’ otherwise, that is, without knowing
the factorization of the group order n, decide if an element x is in a subgroup of
G. We refer to this problem as the subgroup decision problem.

Homomorphic public key system We now introduce the public key system
which resembles the Pallier [13] and the Okamoto-Uchiyama encryption schemes
[12]. We describe the three algorithms comprising the system.

1.KeyGen Given a security parameter τ ∈ Z, run G to obtain a tuple (q1, q2,G,G1, e).

Let n = q1q2. Select two random generators, g and u
R←− G and set h = uq2 .

Then h is a random generator of the subgroup of G of order q1. The public
key is PK = (n,G,G1, e, g, h). The private key is SK = q1.

2.Encrypt(PK,M) We assume that the message space consists of integers in
set {0, 1, ..., T} with T < q2. We encrypt the binary representation of bids
in our main application, in the case T = 1. To encrypt a message m using
public key PK, select a random number r ∈ {0, 1, ..., n− 1} and compute

C = gmhr ∈ G.

Output C as the ciphertext.
3.Decrypt(SK,C) To decrypt a ciphertext C using the private key SK = q1,

observe that Cq1 = (gmhr)q1 = (gq1)m. Let ĝ = gq1 . To recover m, it suffices
to compute the discrete log of Cq1 base ĝ.



Homomorphic properties The system is clearly additively homomorphic.
Let (n,G,G1, e, g, h) be a public key. Given encryptions C1 and C2 ∈ G1 of
messages m1 and m2 ∈ {0, 1, ..., T} respectively, anyone can create a uniformly
distributed encryption ofm1+m2 mod n by computing the product C = C1C2h

r

for a random number r ∈ {0, 1, ..., n−1}. More importantly, anyone can multiply
two encrypted messages once using the bilinear map. Set g1 = e(g, g) and h1 =
e(g, h). Then g1 is of order n and h1 is of order q1. Also, write h = gαq2 for some
(unknown)α ∈ Z. Suppose we are given two ciphertexts C1 = gm1hr1 ∈ G and
C2 = gm2hr2 ∈ G. To build an encryption of product m1 ·m2 mod n given only
C1 and C2, 1) select random r ∈ Zn, and 2) set C = e(C1, C2)h

r
1 ∈ G1. Then

C = e(C1, C2)h
r
1 = e(gm1hr1 , gm2hr2)hr

1

= gm1m2
1 hm1r2+r2m1+q2r1r2α+r

1 = gm1m2
1 hr′

1 ∈ G1

where r′ = m1r2+r2m1+q2r1r2α+r is distributed uniformly in Zn as required.
Thus, C is a uniformly distributed encryption of m1m2 mod n, but in the group
G1 rather than G (this is why we allow for just one multiplication). We note that
the system is still additively homomorphic in G1. For simplicity, in this paper
we denote an encryption of message m in G as EG(m) and one in G1 as EG1(m).

2.4 Key sharing

In [2], efficient protocols are presented for a number of players to jointly generate
RSA modulus N = pq where p and q are prime, and each player retains a share
of N . In this protocol, none of the players can know the factorization of N . They
then show how the players can proceed to compute a public exponent e and the
shares of the corresponding private exponent. At the end of the computation
the players are convinced that N is a product of two large primes by using zero-
knowledge proof. Their protocol was based on the threshold decryption that
m out of m players can decrypt the secret. The cost of key generation for the
shared RSA private key is approximately 11 times greater than that for simple
RSA key generation. However the cost for computation is still practical. We use
this protocol to share private keys among auction managers. We can assume
that auction managers are either a subset of players or a different group such as
management group for auctions.

3 New efficient auction protocol

In this section, we show an efficient M + 1st price auction based on bit-slice
auction protocols. Compared to previous works on secure M+1st price auctions,
proposed protocol is more efficient because bidding prices are represent as binary
numbers, however it needs high computation costs if a quite large number of
players participate an auction. Because complexity of proposed protocol is a
polynomial of m for the m-player auction.



3.1 Proposed M + 1st price auction protocol

We define three types of player’s status on j-th bit asWj(Winner), Cj(Candidate)
and Sj(Survivor) shown as below and the numbers of players in Wj and Sj as
|Wj | and | Sj |. We define the status of players for m-player and k-bit bidding
price shown as below,

Wj [1...m]: Wj [i]=1 if player Pi is decided to be a winner by upper k− j bits
of the bids.

Cj [1...m]: Cj [i]=1 if player Pi is not decided to be a winner but has a possi-
bility of M + 1st highest bidder by upper k − j bits of the bids.

Sj [1...m]: Sj [i]=1 if Cj [i]=1 and j-th bit of Pi’s bid is 1.

Suppose that BM+1st = (b
(k−1)
M+1st, ..., b

(0)
M+1st)2 is the M +1st highest bidding

price and Zi = (z
(k−1)
i , ..., z

(0)
i )2 is the bid of player i, where ()2 is the binary

expression. The winners and winning price are found by the following protocol.
As initial setting, we set Wk[i]=0 (1 ≤ i ≤ m) and Ck[i]=1 ( 1 ≤ i ≤ m).

For j = k-1 to 0

Sj [i]=Cj+1[i] * z
(j)
i (1 ≤ i ≤ m)

if |Wj+1 | + | Sj | > M then

b
(j)
M+1st=1
Cj [i] = Sj [i] ( 1 ≤ i ≤ m)
Wj [i] = Wj+1[i] (1 ≤ i ≤ m)

else
b
(j)
M+1st=0
Wj [i] = Wj+1[i] + Sj [i] (1 ≤ i ≤ m)
Cj [i] = Cj+1[i] - Sj [i] (1 ≤ i ≤ m)

end
end

If the number of Winners on (j + 1)-th bit and Survirors on j-th bit is more
than M , we keep Winners remained and update Candidates to eliminate players
i in a set of (Cj [i]− Sj [i]), because they have no possibility to win the auction.
If the number of Winners on (j +1)-th bit and Survirors on j-th bit is less than
or equal to M , Survivors on j-th bid are determined as Winners, so we update
Wj as Wj+1[i] + Sj [i] and eliminate players i of Sj [i] from Cj+1[i].

3.2 Example

We show an example 5-player auction for 3 goods (M=3). The information we
need to find are the first, second and third highest bidders as the winners of the
auction and the forth highest bidding price as the winning price. Assume each
player’s bid as follows,
P1 = 11 = (1011)2
P2 = 7 = (0111)2
P3 = 5 = (0101)2
P4 = 4 = (0100)2



Table 2. Example of 5-player auction for 3 goods

C5 W5 K4 S4 C4 W4 K3 S3 C3 W3 K2 S2 C2 W2 K1 S1 C1 W1

P1 1 0 1 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1

P2 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1

P3 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 1

P4 1 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 1 0

P5 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

|W | and | S | 0 1 1 3 1 1 2 1 3

BM+1st 0 1 0 0

P5 = 1 = (0001)2
So, the winners are P1, P2 and P3 and the winning price is 4. We denote Kj be

the vector of players’ j-th bid as Kj = (z
(j)
1 , z

(j)
2 , z

(j)
3 , z

(j)
4 , z

(j)
5 )

We also denoteWj , Cj and Sj be the vector of players’ status, Winner, Candidate
and Survivors on j-th bid respectively.

For initial setting j =5, all players have possibilities to win the auction, so
according to the definition of the player status all players are Candidates and
they are not decided to win the auction yet, so none of them are Winners.

Next step j =4, only P1’s bid is 1, so P1 is decided to be Survivor and the
number of Winner on upper bit and Survivor on 4th bid is 1. Then, by following
the protocol, P1 is the Winner and is removed from Candidate. The other players
are kept to be Candidates because they have still possibilities to win the auction.

Next step j =3, bids of P2, P3 and P4 are 1, so they are decided as Suvivors.
The number of Winner on upper bit and Survivor on 3rd bid is 4, which means
P2, P3 and P4 can not decided to be Winners but kept to be Candidates and P5

already loses the auction.
Following the protocol, from the 1st bits of the bids P1, P2 and P3 are decided

to be Winners. The winning price is shown in the row of BM+1st in the table 2.

3.3 Secure M + 1st price auction using 2-DNF scheme and
mix-and-match protocol

We assume n players, P1, ..., Pn and a set of auction managers, AM . The play-
ers bid their encrypted prices and broadcast them. The AM runs an auction
protocol with the encrypted bids and after the auction AM jointly decrypts the
results of the protocol and broadcast it to the players. Players can verify the
winning price (the M + 1st price) and the winners from the encrypted bidding
prices by using verification protocols. To maintain secrecy of the players’ bidding
prices through the protocol, we need to use the mix-and-match protocol. Here,
we define two types of new tables, MAP1 and MAP2. In the proposed protocol,
the MAP1 and MAP2 tables are created among AM before an auction. The AM
jointly computes values in the mix-and-match table for distributed decryption
of plaintext equality test. The function of table MAP1, shown in Table 2, is a



mapping x1 ∈ {EG1(0), EG1(1)} → x2 ∈ {EG(0), EG(1)}. The table MAP2,
shown in Table 3, is the one for mapping x1 ∈ {EG1(0), EG1(1), ..., EG1(m)} →
x2 ∈ {EG(0), EG(1)}. These tables can be constructed using the mix-and-match
protocol because the Boneh-Goh-Nissim encryption has homomorphic proper-
ties.

Setting AM jointly generates and shares private keys among themselves using
the technique described in [2].

Bidding Phase Suppose that BM+1st = (b
(k−1)
M+1st, ..., b

(0)
M+1st)2 is the M + 1st

highest bidding price and a bid of a player i is Zi = (z
(k−1)
i , ..., z

(0)
i )2, where ()2

is the binary expression. Each player Pi computes a ciphertext of his bidding
price, Zi, as

ENCi = (bk−1
i , ...., b0i )

where bji ∈ EG(z
(j)
i ), and publishes ENCi on the bulletin board. He also proves

in zero-knowledge that z
(j)
i = 0 or 1 by using the technique described in [3].

Opening phase Let Ck = (ck1 , .., c
k
m), where each cki ∈ EG(1) and Wk =

(wk
1 , .., w

k
m), where each wk

i ∈ EG1(0).
(Step 1) For j = k -1 to 0, perform the following.
(Step 1-a) For Cj = (cj1, ..., c

j
m), AM computes sji = Mul(bji , c

j
i ) for each player

i, and

Sj = (Mul(cj1, b
j
1), ...,Mul(cjm, bjm))

hj = Mul(bj1, c
j
1)⊗ · · · ⊗Mul(bjm, cjm)

dj = wj
1 ⊗ · · · ⊗ wj

m

(Step 1-b) The AM uses table MAP1 for sji for each i and finds the values of

s̃ji . Let S̃j = (s̃j1, ..., s̃
j
m).

(Step 1-c) AM uses table MAP2 for dj ⊗ hj and decrypts the output value.
The reason MAP2 is used here is to prevent AM finding any other infomation
except dj ⊗ hj is more than M + 1 or not. If the output value is 0, the number
of winners and survivors are less than M + 1. Then, AM updates

Wj = Wj+1 + Sj = (wj+1
1 ⊗ sj1, .., w

j+1
m ⊗ sjm)

Cj−1 = Cj − S̃j = (cj1 ⊗ (s̃j1)
−1, .., cjm ⊗ (s̃jm)−1)

b
(i)
M+1st = 0

If the output value is 1, then
Wj = Wj+1 = (wj+1

1 , .., wj+1
m )

Cj−1 = S̃j = (s̃j1, ..., s̃
j
m)

b
(i)
M+1st = 1

(Step 2) For the finalW0 = (w0
1, ..., w

0
m), AM decrypts each w0

i with verification
protocols and obtains the winners of the auction. Pi is the winners if and only



Table 3. Table for MAP1

x1 x2

a1 ∈ EG1(0) b1 ∈ EG(0)

a2 ∈ EG1(1) b2 ∈ EG(1)

Table 4. Table for MAP2

x1 x2

a1 ∈ EG1(0) b1 ∈ EG(0)

a2 ∈ EG1(1) b2 ∈ EG(0)

· · · bi ∈ EG(0)

aM+1 ∈ EG1(M) bM+1 ∈ EG(0)

aM+2 ∈ EG1(M + 1) bM+2 ∈ EG(1)

· · · bi ∈ EG(1)

am+1 ∈ EG1(m) bm+1 ∈ EG(1)

if plaintexts of w0
i = 1 and

∑
w0

i = M . The M + 1st highest price is obtained

as BM+1st = (b
(k−1)
M+1st, ..., b

(0)
M+1st)2.

If more than M players bid the same price which is M + 1st highest, such as a
case four players bid the same price for 5-player auction for 3 goods, this protocol
does not work well. At the end of auction, winners and winning price can not be
decided.

Verification protocols
Verification protocols are the protocols for players to confirm that AM decrypts
the ciphertext correctly. By using the protocols, each player can verify the results
of the auction are correct. We denote b as a palintext and C as a BGN encryption
of b (C = gbhr), where g, h and r are elements used in BGN scheme and f =
C(gb)−1. Before a player verifies whether b is the plaintext of C, the player
must prove that a challenge ciphertext C ′ = gxfr is created by himself with
zero-knowledge proof that he has the value of x.

1. A player proves that he has random element x ∈ Z∗
n with zero-knowledge

proof.
2. The player computes f = C(gb)−1 from the published values, h, g and b,

and select a random integer r ∈ Z∗
n. He sends C ′ = gxfr to AM .

3. The AM decrypts C ′ and sends value x′ to the player.
4. The player verifies whether x = x′. AM can decrypt C ′ correctly only if

order(f) = q1, which means that the AM correctly decrypts C and publishes
b as the plaintext of C.

3.4 Security

1. Privacy for bidding prices
Each player can not retrieve any information except for the winners and the



(PK,SK) ← KeyGen
(m0,m1, s) ← Ao1

1 (PK)
b← {0, 1}

c← Encrypt(PK,mb)
b′ ← Ao1

2 (c, s)
return 1 iff b = b′

Fig. 1. EXPTA,Π

M +1st highest price. An auction scheme is secure if there is no polynomial
time adversary that breaks privacy with non-negligible advantage ϵ(τ). We
prove that the privacy for bidding prices in the proposed auction protocols
under the assumption that BGN encryption with the mix-and-match oracle is
semantically secure. Given a message m, the mix-and-match oracle receives
an encrypted value x1 ∈ EG1(m) and returns the encrypted value x2 ∈
EG(m) according to the mix-and-match table shown in Table 3. (which has
the same function as MAP2). Given a message m and the ciphertext x1 ∈
EG1(m), the function of mix-and-match table is to map x1 ∈ EG1(m) →
x2 ∈ EG(m). The range of the input value is supposed to be {0,1,...,m} and
the range of the output is {0,1}. We do not consider cases where the input
values are out of the range. Using this mix-and-match oracle, an adversary
can compute any logical function without the limit where BGN encryption
scheme can use only one multiplication on encrypted values. MAP1 can also
be computed if the range of the input value is restricted in {0,1}. Here,
we define two semantic secure games and advantages for BGN encryption
scheme and the proposed auction protocols. We also show that if there is
adversary B that breaks the proposed auction protocol, we can compose
adversary A that breaks the semantic security of the BGN encryption with
the mix-and-match oracle by using B.

Definition 1
Let Π = (KeyGen,Encrypt,Decrypt) be a BGN encryption scheme, and
let AO1 = (AO1

1 , AO1
2 ), be a probabilistic polynomial-time algorithm, that can

use the mix-and-match oracle O1.

BGN-Adv(τ) = Pr[EXPTA,Π(τ)⇒ 1] − 1/2

where, EXPTA,Π is a semantic security game of the BGN encryption scheme
with the mix-and-match oracle shown in Fig. 1.
We then define an adversary B for an auction protocol and an advantage for
B.

Definition 2
Let Π = (KeyGen,Encrypt,Decrypt) be a BGN encryption scheme, and



(PK,SK) ← KeyGen
(b1, b2, ..., bm−1, bm0, bm1, s) ← B1(PK)

b← {0, 1}
c← (Encrypt(PK, b1), Encrypt(PK, b2), ..., Encrypt(PK, bm−1), Encrypt(PK, bmb))

execute auction protocols using c as players′ bids
and x is transcript of the auction protocol.

b′ ← B2(c, s, x)
return 1 iff b = b′

Fig. 2. EXPTB,Π

let B be two probabilistic polynomial-time algorithm B1 and B2.

Auction-Adv(τ) = Pr[EXPTB,Π = 1] − 1/2

where EXPTB,Π is a semantic security game of the privacy of the auction
protocol shown in Fig. 2.
First of all, B1 generates k-bit integers, b1, b2, ..., bm−1 as plaintexts of bid-
ding prices for player 1 to m−1, and two challenge k-bit integers as bm0 , bm1

where bm0 and bm1 are the same bits except for i-th bit mi
0 and mi

1. We
assume bm0 and bm1 are not the M + 1st highest price. Then the auction is
executed with (Encrypt(PK, b1), Encrypt(PK, b2), ..., Encrypt(PK, bm−1),

Encrypt(PK, bmb
)) as the players’ encrypted bidding prices where b

r←−
{0,1}. After the auction, B2 outputs b’ ∈ {0,1} as a guess for b. B wins
if b = b’.

Theorem 1 The privacy of the auction protocols is secure under the as-
sumption that the BGN encryption is semantically secure with a mix-and-
match oracle.

We show if there is adversary B that breaks the security of the proposed
auction protocol, we can compose adversary A that breaks the semantic
security of the BGN encryption with the mix-and-match oracle. A receives
two challenge k-bit integers as bm0 and bm1 from B and then A uses mi

0

and mi
1 as challenge bits for the challenger of the BGN encryption. Then A

receives Encrypt(PK,mi
b) and executes a secure auction protocol with the

mix-and-match oracle. When calculation of plain equality test or mix-and-
match is needed such as checking whether hj is 0 and updating W̃ , A uses
mix-and-match oracle to transfer encrypted value over EG1 to EG. bm0 and
bm1 are not the winning bidding prices and A knows all the input values,
b1, b2, ..., bm−1 except the i-th bit of bmb

. So, A with mix-and-match oracle
can simulate an auction for the adversary of auction B. Through the auction,
B observes the calculation of the encrypted values and the results of the
auction. After the auction, B outputs b′, which is the guess for b. A outputs
b′, which is the same guess with B’s output for bmb

. If B can break the privacy



of the bidding prices in the proposed auction protocol with advantage ϵ(τ),
A can break the semantic security of the BGN encryption with the same
advantage.

2. Correctness
For correct players’ inputs, the protocol outputs the correct winner and price.
From Theorem 1 introduced in Section 1.4, the bit-slice auction protocol
obviously satisfies the correctness.

3. Verification of the evaluation
To verify whether the protocol works, players need to validate whether the
AM decrypts the evaluations of the circuit on ciphertexts through the pro-
tocol. We use the verification protocols introduced above so that each player
can verify whether the protocol is computed correctly.

4 Comparison of auction protocols

The protocol proposed in [1] based on homomorphic encryption. Each player
encrypts his bidding price k as an integer. When m players and the bidding
prices are in the range of [1, p], AM calculates multiplications of ciphertexts
2mp times. Mixing and decrypting is used for PET (plain equality test) in the
opening phase to check whether the number of i-th bid is more than M + 1
or not for each price i in [1, p] using binary search. Binary search for p needs
log p comparisons and one comparison needs M+1 PETs for each bid to check
whether it is more than M+1. And m decryptions are used to decide the winner
of the auction. In our protocol each player’s bidding price is represented as a
binary expression. We use PET Mp times when AM calculates s̃ji from player

j’s i-th bid for all i and j. We also use PET when AM detects whether b
(i)
M+1st

is more than M or not. And logp decryptions are used to open the winning price
and m decryptions are used to to open the winners of auction.

5 Conclusion

We introduced new efficient secure M +1st price auction protocols based on the
mix-and-match protocol and the BGN encryption. As a topic of future work, we

Table 5. The Comparision of computational complexity.

[AS02] Proposed

Bidding(per one bidder) p encryptions logp encyrptions

Running auction (Calculation over group) 2mp multiplications mlogp multiplications
mlogp pairing

Running auction(Mix and Match) log p times on M + 1 inputs log p times on M + 1 inputs

Decrypting to decide the winners m m

Decrypting to decide the winning price logp logp



will try to compose a secure auction protocol without using the mix-and-match
protocol.
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