
Efficient Card-based Cryptographic Protocols for
the Millionaires’ Problem

Using Private Input Operations

Hibiki Ono Yoshifumi Manabe
Faculty of Informatics,

Kogakuin University

Shinjuku, Tokyo 163-8677 Japan

manabe@cc.kogakuin.ac.jp

Abstract—This paper proposes new efficient card-based cryp-
tographic protocols for the millionaires’ problem using private
input operations. The millionaires’ problem is one of the fun-
damental problems in cryptography. Two players, Alice and
Bob, want to know which of them is richer without revealing
their actual amount of asset. Many cryptographic protocols
were proposed to solve the problem. Card-based cryptographic
protocols were proposed to execute cryptographic protocols
using physical cards instead of computers. Though some card-
based cryptographic protocols for the millionaires’ problem were
proposed, most of them use many cards whose number depends
on the size of the amount of asset. Though Nakai et al. implicitly
proposed a new protocol that uses a constant number of cards
using private input operations, their protocol is not efficient since
the number of rounds is 2n+1, where n is the maximum number
of bits of the asset. This paper shows new card-based protocols
whose number of rounds is n+1. Another important feature of
the proposed protocols is no-open property. No cards are opened
until the end of the protocol.

Index Terms—Multi-party secure computation, card-based
cryptographic protocols, private input operations, millionaires’
problem

I. INTRODUCTION

The millionaires’ problem [1] is one of the fundamental

problems in cryptography. Two players, Alice and Bob, want

to know which of them is richer without revealing their actual

amount of asset. Many cryptographic protocols were proposed

to solve the problem [2]–[7].

Card-based cryptographic protocols [8], [9] have been pro-

posed in which physical cards are used instead of computers

to securely calculate values. These protocols are useful when

computers cannot be used. They are also useful among people

who are not familiar with cryptography. den Boer [10] first

showed a five card protocol to securely calculate logical AND

of two inputs. Since then, many protocols have been proposed

to calculate general logical functions [11]–[22] and specific

computations such as computations on three inputs [23], [24],

voting [25], [26], random permutation [27], [28], grouping

[29], zero-knowledge proof [30], and the millionaires’ prob-

lem.

If Yao’s original protocol is executed by a card-based

protocol, the number of cards used in the protocol depends on

the size of assets [31]. Thus, a new protocol that the number

of cards used in the protocol is a constant is necessary. This

paper aims to obtain card-based protocols whose number of

cards are a constant.

In order to securely calculate a function using physical

cards, some primitives whose result is unknown are necessary.

If every primitive execution result is known to a player, some

information about private input values is known to the player

by reversely executing the protocol in his/her mind using

the final outputs. There are two types of primitives whose

results are unknown to the players: randomizations and private

operations.

Randomization is shuffling some number of cards so that

the result is unknown to the players. Many recent protocols use

random bisection cuts [13], which randomly execute swapping

two decks of cards or doing nothing. The result must be

unknown to the players. Several realization methods of the

randomization are discussed [32].

The other type of primitives is private operations. Private

operations are primitives executed by a player at some place

where the other players cannot see. They are realized by

executing the operation in a different room, under the table,

and so on. There are three types of private operations: private

randomization, private reveal operation, and private input

operation.

Private randomization is a randomization executed by a

player whose result is known to the player but unknown to

the other players.

Private reveal operation is opening some cards at some place

where the other players cannot see. The player who executes

this type of operation must not know the private value, thus the

cards must be privately randomized by another player before

the private reveal.

With the combination of private randomizations and private

reveals, Nakai et al. proposed a protocol to solve the mil-

lionaires’ problem [31]. The number of cards used by their

protocol is 3n + 2, where n is the maximum number of the

bits of the asset.

Though the combination of the private randomizations and

the private reveals is effective, it is better if the private reveal

23

2018 13th Asia Joint Conference on Information Security

978-1-5386-7380-5/18/$31.00 ©2018 IEEE
DOI 10.1109/AsiaJCIS.2018.00013

operations are not used. In order to execute the private reveals,

the cards must be able to be relatively easily opened. Such

“easy to open” cards might lead the players’ mistakes during

the protocol execution. If a player make a mistake to open a

card that is not allowed, some private information is leaked

to the player. If no cards are opened until the end of the

protocol, that is, the time when the final output is provided,

the cards can be made so that they are not easy to be opened,

for example, the faces of the cards can be sealed. Such a

protection is effective for preventing mistakes and cheats that

a player sees the faces of the cards that are not allowed. Such

a hard protection is not applicable when the players need to

execute private reveal operations.
The last type of operations is private input operations. When

a player has his/her own private input values that must not be

disclosed to the other players, the player sets his/her input

values at a place where the other players cannot see. Several

works have been done to calculate logical functions using

private input operations [33], [34]. Though these protocols also

satisfy no-open property, the papers do not mention the prop-

erty. This paper proposes new protocols for the millionaires’

problem using private input operations.
Nakai et al.’s paper [31] says their protocol can be modified

to use private input operations. They do not explicitly show the

protocol, but the protocol will have the following properties.

• The number of cards is 4.

• The number of rounds is 2n+ 1.

• Two types of outputs, a ≥ b or a < b.
• Private reveal operations are used.

This paper shows two new card-based cryptographic proto-

cols for the millionaires’ problem. The first protocol has the

following properties.

• The number of cards is 5.

• The number of rounds is n+ 1.

• Three types of outputs, a > b, a < b or a = b.
• Private reveal operations are not used, that is, no cards

are opened until the end of the protocol.

The equality can be detected, the number of rounds is small,

and no cards are opened until the end of the protocol.
The second protocol has the following properties.

• The number of cards is 4.

• The number of rounds is n+ 1.

• Two types of outputs, a ≥ b or a < b.
• Private reveal operations are not used.

Though the second protocol cannot distinguish a > b and

a = b, the number of cards is decreased.

II. PRELIMINARIES

This section gives the notation and basic definitions of card-

based protocols. This paper is based on the standard two type

card model. In the two type card model, there are two kinds

of marks, and . Cards of the same marks cannot be

distinguished. In addition, the back of both types of cards is

. It is impossible to determine the mark in the back of a

given card with .

One bit of data is represented by two cards as follows:

= 0 and = 1.

One pair of cards that represents one bit x ∈ {0, 1}, whose

face is down, is called a commitment of x, and denoted as

commit(x). Note that if the two cards of commit(x) are

swapped, commit(x̄) is obtained.

A linearly ordered card is called a sequence of cards. A

sequence of cards S whose length is n is denoted as S =
s1, s2, . . . , sn, where si is the i-th card of the sequence. S =

︸︷︷︸
s1

︸︷︷︸
s2

︸︷︷︸
s3

. . . , ︸︷︷︸
sn

. S1||S2 is a concatenation of sequence

S1 and S2.

All protocols are executed by multiple players. Throughout

of this paper, all players are semi-honest, that is, they obey

the rule of the protocols, but try to obtain private information.

There is no collusion among players executing one protocol

together. No player wants any other player to obtain his/her

own private information.

Card-based protocols using private operations are evaluated

by the following criteria.

• The number of cards used in the protocol.

• The number of rounds.

In the first round of a protocol, each player executes primi-

tives which include sending cards to another player, but do not

include receiving cards from another player. In the i-th (i > 1)

round of the protocol, each player receives the cards sent from

another player in the (i− 1)-th round and executes primitives

which includes sending cards to another player. The number

of rounds of a protocol is the maximum number of rounds

among all possible inputs. Since each primitive is relatively

simple, handing cards between players and setting up so that

the cards are not seen by the other players is the dominating

time to execute private operations. Thus the number of rounds

is the most appropriate criteria to evaluate the time complexity

of card-based protocols using private operations.

III. OUTLINE OF NAKAI ET AL.’S PROTOCOL

This section shows Nakai et al.’s protocol in [31], which is

modified to use a constant number of cards using private input

operations.

Assumption 1: Alice and Bob have their private input a and

b, respectively. The number of bits of the input values is n,

which is decided before the execution of the protocol. Let a(i)
and b(i) be the i-th bit of a and b, where LSB(Least Significant

Bit) is a(1) and b(1).
Note that the names of variables (cards) are changed from

the original paper so that similar variables in our protocol

have similar names. The protocol is executed bit by bit from

LSB. The protocol uses two cards s
(i)
1 s

(i)
2 to store intermediate

states. The result up to i-th bit is stored in s
(i)
1 . The final result,

given by s1 = s
(n)
1 is as follows:

• a ≥ b if s1 =

• a < b if s1 =

24

During the execution, one bit data is sent by one card. If the

data is 1, it is represented by and if the data is 0, it is

represented by . In the following protocol, single means

1 and single means 0.

Protocol 1: Nakai et al.’s protocol [31].

1) Let s
(0)
1 s

(0)
2 = . Note that these cards are face

down.

2) Execute the following procedure for i = 1, . . . n.

a) Alice privately selects a random bit r. If r = 0,

Alice privately sets x1x2 = s
(i−1)
1 s

(i−1)
2 , otherwise

privately sets x1x2 = s
(i−1)
2 s

(i−1)
1 . Alice privately

sets y = if a(i)⊕ r = 0 otherwise sets y = .

Note that y is face down.

b) Alice sends x1, x2, and y to Bob.

c) Bob privately opens y. If (y= and b(i) = 0)

or (y= and b(i) = 1), Bob privately replaces

x2 with one card that represents b(i), otherwise (

(y= and b(i) = 1) or (y= and b(i) = 0)), Bob

privately replaces x1 with one card that represents

b(i).
Note that the unused card is discarded.

d) Bob hands x1x2 to Alice.

e) Alice privately sets s
(i)
1 s

(i)
2 = x1x2 if r = 0,

otherwise privately sets s
(i)
1 s

(i)
2 = x2x1.

The result is given by s
(n)
1 .

Initially, two cards are used to set s
(0)
1 s

(0)
2 . After the initial-

ization, Alice needs one and one to set an input value

in each round. Thus, the total number of cards used in the

protocol is 4. The number of rounds is 2n+ 1.

IV. NEW PROTOCOL FOR THE MILLIONAIRES’ PROBLEM

First, we show a simple protocol to show the idea. Then the

protocol is modified to decrease the number of rounds. The

assumption of the protocol is just the same as Assumption 1.

The protocol is executed bit by bit from LSB. The result is

given by two cards s1s2 as follows:

• a > b if s1s2 =

• b > a if s1s2 =

• a = b if s1s2 =

Note that s1s2 = never occurs by the protocol.

Let s
(i)
1 s

(i)
2 be the result up to the i-th bit. Thus the final

result s1s2 = s
(n)
1 s

(n)
2 .

Protocol 2: The protocol for the first bit: (i = 1)

(Input) a(1), b(1).

(Output) s
(1)
1 s

(1)
2 .

1) Alice hands commit(a(1)) to Bob.

2) Let the received card sequence be x1x2. Bob privately

sets s
(1)
1 s

(1)
2 by the following rule.

• s
(1)
1 = x1, s

(1)
2 = if b(1)=0

• s
(1)
1 = , s

(1)
2 = x2 if b(1)=1

Note that all cards are face down. Bob discards the

unused card.

Protocol 3: The protocol for the i-th bit: (i > 1)

(Input) s
(i−1)
1 s

(i−1)
2 , a(i), b(i).

(Output) s
(i)
1 s

(i)
2 .

1) Alice privately sets card sequence S as follows:

• S = s
(i−1)
1 s

(i−1)
2 || if a(i) = 0

• S = ||s(i−1)
1 s

(i−1)
2 if a(i) = 1

Note that all cards are face down. Alice hands S to Bob.

2) Bob privately selects left two cards if b(i) = 0, other-

wise selects right two cards as the output s
(i)
1 s

(i)
2 . Bob

discards the unused cards.

The reason the proposed protocol is simplified and has no

open property is that the result that Alice wins equals to the

commitment of a(i). The result that Bob wins equals to the

commitment of b(i). Thus obtaining the comparison result is

whether to replace the previous result with the commitment

of input values.

Theorem 1: The protocol is correct, secure, and uses at most

four cards at any instant.

Proof: Correctness: For the first bit, x1x2 = if

a(1) = 1. In this case, Bob sets s
(1)
1 s

(1)
2 = if b(1) = 0

and s
(1)
1 s

(1)
2 = if b(1) = 1. Thus, the result is correct

when a(1) = 1.

x1x2 = if a(1) = 0. In this case, Bob sets

s
(1)
1 s

(1)
2 = if b(1) = 0 and s

(1)
1 s

(1)
2 = if b(1) = 1.

Thus, the result is correct when a(1) = 0.

For the i-th (i > 1) bit, the desired output is as follows:

s
(i)
1 s

(i)
2 =

⎧⎪⎪⎨
⎪⎪⎩

if a(i) = 1 and b(i) = 0

if a(i) = 0 and b(i) = 1

s
(i−1)
1 s

(i−1)
2 if a(i) = b(i)

(1)

When a(i) = 0, S = s
(i−1)
1 s

(i−1)
2 || is handed to

Bob. Bob selects left two cards if b(i) = 0, thus the result

is s
(i−1)
1 s

(i−1)
2 and the output is correct. Bob selects right two

cards if b(i) = 1, thus the result is and the output is

correct.

When a(i) = 1, S = ||s(i−1)
1 s

(i−1)
2 is handed to Bob.

Bob selects left two cards if b(i) = 0, thus the result is

and the output is correct. Bob selects right two cards if b(i) =

1, thus the result is s
(i−1)
1 s

(i−1)
2 and the output is correct.

At the end of the protocol, no information other than the

comparison result is obtained from the output cards. During

the execution of the protocol, no cards are opened. Thus, Alice

and Bob obtain no information other than the final comparison

result.

At most four cards are used at any instant of the protocol.

25

A note is necessary for the number of cards. Four cards

are sufficient if the marks of the discarded cards can be easily

erased by some machine without revealing the faces and a new

mark can be printed again and again. If the marks of discarded

cards cannot be erased, a careful treatment of discarded cards

is necessary. The discarded cards must be mixed with the other

cards (no one knows the number of cards of each mark) and

new cards necessary for the next round, one and one ,

must be picked up. Alice uses these cards to set S. The marks

of the discarded cards leak the privacy of Alice or Bob. For

example, when i = 1 and the discarded card is , it means

that a(1) = b(1).
If there are very few number of cards so that the above

mixing of discarded cards is impossible, the discarded cards

must be handed to TTP(Trusted Third Party) and new cards

must be handed to the players from the TTP. TTP knows the

secret information from the marks of the discarded cards, but

TTP does not disclose the information. In the case, the TTP

must initially have at least five cards, three cards and two

cards, though four cards are used at any instant. When

i = 1, two cards and one card are necessary. When

i > 1, one card and one card are necessary for Alice

to set S. The discarded card when i = 1 might be one

or one . If the discarded card is (that is, a(1) = b(1)),

another card is necessary for i = 2. If a(2) > b(2), the

discarded cards for i = 2 are two s. Thus another card

is necessary for i = 3. This is the worst case and three

and two cards are necessary. Thus in the worst case, five

cards are necessary.

V. ROUND-EFFICIENT PROTOCOL

The protocol in the previous section can be modified to

decrease the number of rounds. The protocol is initiated by

Alice for every i. Thus, the number of rounds is 2n−1, because

the cards must be handed back from Bob to Alice at the end

of procedure for each i other than the case i = n. Since the

protocol is symmetric between Alice and Bob, the protocol

can also be initiated from Bob.
The previous section’s protocol for i > 1 is used only when

i is odd. If i is even the protocol below is used instead.
Protocol 4: The protocol for the i-th bit: (i > 1 and i is

even)

(Input) s
(i−1)
1 s

(i−1)
2 , a(i), b(i).

(Output) s
(i)
1 s

(i)
2 .

1) Bob privately sets card sequence S as follows:

• S = s
(i−1)
1 s

(i−1)
2 || if b(i) = 0

• S = ||s(i−1)
1 s

(i−1)
2 if b(i) = 1

Note that all cards are face down. Bob hands S to Alice.

2) Alice privately selects left two cards if a(i) = 0,

otherwise selects right two cards as the output s
(i)
1 s

(i)
2 .

Alice discards the unused cards.

The modified protocol is executed as follows.

• Alice executes step (1) of i = 1.

• Alice hands S to Bob.

• Bob executes step (2) of i = 1 and then step (1) of i = 2.

• Bob hands S to Alice.

• Alice executes step (2) of i = 2 and then step (1) of

i = 3.

• . . .
• If n is even(odd), Alice(Bob) executes step (2) of i = n.

Handing cards is executed once for each i, thus the number

of rounds is n+ 1.

Example 1: Suppose that n = 3, a = 110 and b = 010.

The protocol is executed as follows. Note that all cards are

face down.

1) i = 1: Alice hands commit(0) = to Bob since

a(1) = 0.

2) Let the received card be x1x2. Since b(1) = 0, Bob

selects x1 = , and sets s
(1)
1 s

(1)
2 = . Note that the

result is correct for i = 1.

i = 2: Bob sets S = ||s(1)1 s
(1)
2 , which is

, since b(2) = 1. Bob hands S to Alice.

3) Alice selects right two cards of S, since a(2) = 1. The

result, s
(2)
1 s

(2)
2 = . Note that the result is correct

for i = 2.

i = 3: Alice sets S = ||s(2)1 s
(2)
2 , which is

, since a(3) = 1. Alice hands S to Bob.

4) Bob selects left two cards of S, since b(3) = 0. The

result, s
(3)
1 s

(3)
2 = .

The final result, s
(3)
1 s

(3)
2 , means that a > b since the

cards are .

Theorem 2: The modified protocol is correct and secure.

Proof: The proof of the security and the number of cards

used by the protocol is just the same as Theorem 1. We just

show the correctness of the protocol when i > 1 and i is even.

The desired output is the same as the equation (1).

When b(i) = 0, S = s
(i−1)
1 s

(i−1)
2 || is handed to Alice.

Alice selects left two cards if a(i) = 0, thus the result is

s
(i−1)
1 s

(i−1)
2 and the output is correct. Alice selects right two

cards if a(i) = 1, thus the result is and the output is

correct.

When b(i) = 1, S = ||s(i−1)
1 s

(i−1)
2 is handed to Alice.

Alice selects left two cards if a(i) = 0, thus the result is

and the output is correct. Alice selects right two cards

if a(i) = 1, thus the result is s
(i−1)
1 s

(i−1)
2 and the output is

correct.

VI. PROTOCOL WITH FEWER NUMBER OF CARDS

This section shows another protocol with the following

properties.

• The number of cards is 4.

• The number of rounds is n+ 1.

26

• Two types of outputs, a ≥ b or a < b.
• Private reveal operations are not used.

For the protocol in the previous section, two cards are

necessary to obtain three different outputs. If the output is

one bit (a ≥ b or a < b), one card is sufficient to remember,

thus the total number of cards can be decreased.

The assumption of the protocol is just the same as Assump-

tion 1.

The protocol is executed bit by bit from LSB. The result is

given by one card s as follows:

• a ≥ b if s = .

• a < b if s = .

Let s(i) be the result up to the i-th bit. Thus the final result

s = s(n).
Protocol 5:
The protocol for the first bit: (i = 1):

(Input) a(1), b(1).
(Output) s(1).

1) Alice privately sets x1x2 = if a(1) = 1, otherwise

sets x1x2 = . Note that all cards are face down.

Alice hands x1x2 to Bob.

2) Bob privately sets s(1) = x1 if b(1) = 1, otherwise sets

s(1) = x2. Bob discards the unused card.

The protocol for the i-th bit: (i > 1) when i is even:

(Input) s(i−1), a(i), b(i).
(Output) s(i).

1) Bob privately sets card sequence S as follows:

• S = s(i−1)|| if b(i) = 1

• S = ||s(i−1) if b(i) = 0

Note that all cards are face down. Bob hands S to Alice.

2) Alice privately selects the left card if a(i) = 1, otherwise

selects the right card as the output s(i). Alice discards

the unused card.

The protocol for the i-th bit: (i > 1) when i is odd:

(Input) s(i−1), a(i), b(i).
(Output) s(i).

1) Alice privately sets card sequence S as follows:

• S = s(i−1)|| if a(i) = 1

• S = ||s(i−1) if a(i) = 0

Note that all cards are face down. Alice hands S to Bob.

2) Bob privately selects the left card if b(i) = 1, otherwise

selects the right card as the output s(i). Bob discards the

unused card.

An example for the same input is shown.

Example 2: Suppose that n = 3, a = 110 and b = 010.

The protocol is executed as follows. Note that all cards are

face down.

1) i = 1: Alice hands to Bob since a(1) = 0.

2) Let the received card be x1x2. Since b(1) = 0, Bob

selects x2 = as s(1). Note that the result is correct

for i = 1.

i = 2: Bob sets S = s(1)|| , which is , since

b(2) = 1. Bob hands S to Alice.

3) Alice selects the left card of S, since a(2) = 1. The

result, s(2) = . Note that the result is correct for i = 2.

i = 3: Alice sets S = s(2)|| , which is , since

a(3) = 1. Alice hands S to Bob.

4) Bob selects the right card of S, since b(3) = 0. The

result, s(3) = .

The final result, s(3), means that a ≥ b since the card is

.

Theorem 3: Protocol 5 is correct and secure.

Proof: Proof of the security of the protocol is just the

same as the previous protocol. Alice and Bob open no cards

other than the final output. Thus they obtains no information

other than the final output.

Next we show the correctness.

For the first bit (i = 1), Alice sets if a(1) = 1. In

this case, the result s(1) = regardless whether b(1) = 0 or

1. The result is correct since a(1) ≥ b(1).

When a(1) = 0, Alice sets . In this case, Bob selects

if b(1) = 1. The output is correct since a(1) < b(1). Bob

selects if b(1) = 0. The output is correct since a(1) ≥ b(1).
For the i-th bit (i > 1), the desired output is as follows:

s(i) =

⎧⎪⎪⎨
⎪⎪⎩

if a(i) = 1 and b(i) = 0

if a(i) = 0 and b(i) = 1

s(i−1) if a(i) = b(i)

(2)

First consider the case when i(> 1) is even. Bob sets S =

s(i−1)|| if b(i) = 1. Alice selects the left card and obtains

s(i−1) if a(i) = 1. This output is correct. Alice selects the

right card and obtains if a(i) = 0. This output is correct.

Bob sets S = ||s(i−1) if b(i) = 0. Alice selects the left

card and obtains if a(i) = 1. This output is correct. Alice

selects the right card and obtains s(i−1) if a(i) = 0. This

output is correct.

Next consider the case when i(> 1) is odd. Alice sets S =

s(i−1)|| if a(i) = 1. Bob selects the left card and obtains

s(i−1) if b(i) = 1. This output is correct. Bob selects the right

card and obtains if b(i) = 0. This output is correct.

Alice sets S = ||s(i−1) if a(i) = 0. Bob selects the left

card and obtains if b(i) = 1. This output is correct. Bob

selects the right card and obtains s(i−1) if b(i) = 0. This

output is correct.

At any instant of the protocol, at most three cards are used.

Thus, if there are many cards, at most three cards are used,

by a discussion similar to the previous protocol. If there are

very few number of cards and TTP hands cards to Alice and

Bob, the number of cards necessary for the execution is 4.

27

When i = 1, two s and one are necessary for Alice to

set x1x2. At the end of i = 1, two cards are unused. When

i > 1, Alice (or Bob) needs to have one and one to

set S. In the worst case, two unused cards at the end of i = 1

are two s, thus one new is necessary. This is the worst

case and four cards are necessary.

VII. CONCLUSION

This paper showed new card-based cryptographic protocols

for the millionaires’ problem with a small number of rounds.

The result shows the effectiveness of private input operations.

Very few works have been done for card-based protocols with

private input operations. Especially, no-open property seems

to be impossible without private input operations. We think

that no-open property is a very important property for card-

based cryptographic protocols. Obtaining no-open card-based

cryptographic protocols for the other fundamental problems is

an open problem.

REFERENCES

[1] A. C. Yao, “Protocols for secure computations,” in Proc. of 23rd
Symposium on Foundations of Computer Science (FOCS). IEEE, 1982,
pp. 160–164.

[2] I. Ioannidis and A. Grama, “An efficient protocol for yao’s millionaires’
problem,” in Proc. of the 36th Annual Hawaii International Conference
on System Sciences. IEEE, 2003, pp. 1–6.

[3] L. Shundong, W. Daoshun, D. Yiqi, and L. Ping, “Symmetric crypto-
graphic solution to yao’s millionairess’ problem and an evaluation of
secure multiparty computations,” Information Sciences, vol. 178, no. 1,
pp. 244–255, 2008.

[4] S.-D. Li, Y.-Q. Dai, and Q.-Y. You, “Efficient solution to yao’s million-
aires’ problem.” Dianzi Xuebao(Acta Electronica Sinica), vol. 33, no. 5,
pp. 769–773, 2005.

[5] H.-Y. Lin and W.-G. Tzeng, “An efficient solution to the millionaires’
problem based on homomorphic encryption,” in Proc. of International
Conference on Applied Cryptography and Network Security, LNCS Vol.
3531. Springer, 2005, pp. 456–466.

[6] D. Malkhi, N. Nisan, B. Pinkas, Y. Sella et al., “Fairplay-secure two-
party computation system.” in USENIX Security Symposium, vol. 4. San
Diego, CA, USA, 2004, p. 9.

[7] M. Jakobsson and A. Juels, “Mix and match: Secure function evaluation
via ciphertexts,” in Proc. of Asiacrypt 2000, LNCS Vol.1976. Springer,
2000, pp. 162–177.

[8] T. Mizuki, “Secure multi-party protocols using a deck of cards,” IEICE
Fundamental Review, pp. 179–187, 2016, (In Japanese).

[9] T. Mizuki and H. Shizuya, “Computational model of card-based cryp-
tographic protocols and its applications,” IEICE Transactions on Fun-
damentals of Electronics, Communications and Computer Sciences, vol.
100, no. 1, pp. 3–11, 2017.

[10] B. den Boer, “More efficient match-making and satisfiability the five
card trick,” in Proc. of EUROCRYPT ’89, LNCS Vol. 434, 1990, pp.
208–217.

[11] T. Mizuki, “Card-based protocols for securely computing the conjunction
of multiple variables,” Theoretical Computer Science, vol. 622, pp. 34–
44, 2016.

[12] D. Francis, S. R. Aljunid, T. Nishida, Y. Hayashi, T. Mizuki, and
H. Sone, “Necessary and sufficient numbers of cards for securely
computing two-bit output functions,” in Proc. of Second International
Conference on Cryptology and Malicious Security(Mycrypt 2016), LNCS
Vol. 10311, 2017, pp. 193–211.

[13] T. Mizuki and H. Sone, “Six-card secure and and four-card secure xor,”
in Proc. of 3rd International Workshop on Frontiers in Algorithms(FAW
2009), LNCS Vol. 5598, 2009, pp. 358–369.

[14] T. Mizuki, M. Kumamoto, and H. Sone, “The five-card trick can be done
with four cards,” Proc. of Asiacrypt 2012, LNCS Vol.7658, pp. 598–606,
2012.

[15] C. Crépeau and J. Kilian, “Discreet solitary games,” in Proc. of 13th
Crypto, LNCS Vol. 773, 1993, pp. 319–330.

[16] V. Niemi and A. Renvall, “Secure multiparty computations without
computers,” Theoretical Computer Science, vol. 191, no. 1, pp. 173–
183, 1998.

[17] A. Stiglic, “Computations with a deck of cards,” Theoretical Computer
Science, vol. 259, no. 1, pp. 671–678, 2001.

[18] A. Koch, S. Walzer, and K. Härtel, “Card-based cryptographic protocols
using a minimal number of cards,” in Proc. of Asiacrypt 2015, LNCS
Vol. 9452, 2015, pp. 783–807.

[19] A. Nishimura, T. Nishida, Y. Hayashi, T. Mizuki, and H. Sone, “Five-
card secure computations using unequal division shuffle,” in Proc.
of 4th International Conference on Theory and Practice of Natural
Computing(TNPC 2015), LNCS Vol. 9477, 2015, pp. 109–120.

[20] T. Nishida, Y. Hayashi, T. Mizuki, and H. Sone, “Card-based protocols
for any boolean function,” in Proc. of 15th International Conference on
Theory and Applications of Models of Computation(TAMC 2015), LNCS
Vol. 9076, 2015, pp. 110–121.

[21] A. Nishimura, T. Nishida, Y. Hayashi, T. Mizuki, and H. Sone, “Card-
based protocols using unequal division shuffles,” Soft Computing, pp.
1–11, 2017.

[22] J. Kastner, A. Koch, S. Walzer, D. Miyahara, Y. Hayashi, T. Mizuki,
and H. Sone, “The minimum number of cards in practical card-based
protocols,” in Proc. of 23rd International Conference on the Theory and
Applications of Cryptology and Information Security(ASIACRYPT2017),
Part III, LNCS Vol. 10626, 2017, pp. 126–155.

[23] T. Nishida, Y. Hayashi, T. Mizuki, and H. Sone, “Securely comput-
ing three-input functions with eight cards,” IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences,
vol. 98, no. 6, pp. 1145–1152, 2015.

[24] T. Nishida, T. Mizuki, and H. Sone, “Securely computing the three-
input majority function with eight cards,” in Proc. of 2nd International
Conference on Theory and Practice of Natural Computing(TPNC 2013),
LNCS Vol. 8273, 2013, pp. 193–204.

[25] T. Mizuki, I. K. Asiedu, and H. Sone, “Voting with a logarithmic number
of cards,” in Proc. of International Conference on Unconventional
Computing and Natural Computation (UCNC 2013), LNCS Vol. 7956,
2013, pp. 162–173.

[26] T. Nakai, S. Shirouchi, M. Iwamoto, and K. Ohta, “Four cards are
sufficient for a card-based three-input voting protocol utilizing private
permutations,” in Proc. of 10th International Conference on Information
Theoretic Security (ICITS 2017), LNCS Vol. 10681, 2017, pp. 153–165.

[27] T. Ibaraki and Y. Manabe, “A more efficient card-based protocol for
generating a random permutation without fixed points,” in Proc. of 3rd
International Conference on Mathematics and Computers in Sciences
and in Industry (MCSI 2016), 2016, pp. 252–257.

[28] R. Ishikawa, E. Chida, and T. Mizuki, “Efficient card-based protocols for
generating a hidden random permutation without fixed points,” in Proc.
of 14th International Conference on Unconventional Computation and
Natural Computation(UCNC 2015), LNCS Vol. 9252, 2015, pp. 215–
226.

[29] Y. Hashimoto, K. Shinagawa, K. Nuida, M. Inamura, and G. Hanaoka,
“Secure grouping protocol using a deck of cards,” in Proc. of 10th In-
ternational Conference on Information Theoretic Security(ICITS 2017),
LNCS Vol. 10681, 2017, pp. 135–152.

[30] T. Sasaki, T. Mizuki, and H. Sone, “Card-based zero-knowledge proof
for sudoku,” in LIPIcs-Leibniz International Proceedings in Informatics,
vol. 100. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[31] T. Nakai, Y. Tokushige, Y. Misawa, M. Iwamoto, and K. Ohta, “Efficient
card-based cryptographic protocols for millionaires’ problem utilizing
private permutations,” in Proc. of International Conference on Cryptol-
ogy and Network Security(CANS 2016), LNCS Vol. 10052, 2016, pp.
500–517.

[32] I. Ueda, A. Nishimura, Y. Hayashi, T. Mizuki, and H. Sone, “How
to implement a random bisection cut,” in Proc. of 5th International
Conference on Theory and Practice of Natural Computing (TPNC 2016),
LNCS Vol. 10071, 2016, pp. 58–69.

[33] K. Kurosawa and T. Shinozaki, “Compact card protocol,” in Proc.
of 2017 Symposium on Cryptography and Information Security(SCIS
2017), 2017, pp. 1A2–6, (In Japanese).

[34] S. Shirouchi, T. Nakai, M. Iwamoto, and K. Ohta, “Efficient card-based
cryptographic protocols for logic gates utilizing private permutations,”
in Proc. of 2017 Symposium on Cryptography and Information Secu-
rity(SCIS 2017), 2017, pp. 1A2–2, (In Japanese).

28

