
A Distributed Consistent Global Checkpoint Algorithm
with a Minimum Number of Checkpoints

Yoshifumi Manabe
NTT Basic Research Laboratories

3-1 Morinosato-Wakamiya, Atsugi-shi, Kanagawa 243-01 Japan
manabe@theory.brl.ntt.co.jp

Abstract

A distributed coordinated checkpointing algorithm is
shown. A consistent global checkpoint is a set of states
in which no message is recorded as received in one pro-
cess and as not yet sent in another process. This algorithm
obtains a consistent global checkpoint for any checkpoint
initiation by any process. Under Chandy and Lamport’s as-
sumption that one consistent global checkpoint is obtained
for a set of concurrent checkpoint initiations, the total num-
ber of checkpoints is minimized. This paper then modifies
the assumption in order to reduce the number of checkpoints
further.

1 Introduction

Distributed coordinated checkpointing obtains a set of
states as a consistent global checkpoint [7], in which no
message is recorded as received in one process and as not
yet sent in another process. It can be used for process
rollback1. When a process initiates checkpointing, addi-
tional checkpoints must be taken in other processes in or-
der to obtain a consistent global checkpoint that includes
the initiation. Since a checkpoint saves all the information
necessary for rollback in stable storage, the checkpointing
overhead is usually very large and the number of additional
checkpoints must be minimized. This paper discusses mini-
mizing the number of additional checkpoints by reusing the
checkpoints in a consistent global checkpoint for initiation
c as the checkpoints for another initiation c0 [5].

Chandy and Lamport’s distributed snapshot algorithm [1]
obtains one consistent global checkpoint for a set of con-
current checkpoint initiations. However, every non-initiator

1In order to roll back, the messages that have been sent but not received
must be restored. The message restoration method is similar to that in
[9] and the details are given in [5]. This paper thus discusses obtaining a
consistent global checkpoint.

process is forced to take a checkpoint. This paper shows two
distributed checkpointing algorithms. The first one takes the
minimum number of additional checkpoints under Chandy
and Lamport’s assumption that one consistent global check-
point is obtained for a set of concurrent initiations. Thus
among the extensions of the distributed snapshot algorithm,
this algorithm is the optimal one2. The second algorithm
in this paper modifies Chandy and Lamport’s assumption in
order to further reduce the number of additional checkpoints.

Prakash and Singhal [8] use a bit vector in order to sup-
press the taking of unnecessary checkpoints. However, the
number of additional checkpoints is not minimized. Al-
though this paper’s algorithm uses integer vectors, the num-
ber of additional checkpoints is minimized. The author [6]
has shown a distributed checkpoint algorithm which obtains
a first and last consistent global checkpoint. Independent
checkpointing algorithms, such as that in [9], do not ob-
tain consistent global checkpoints. They can be used only
for systems in which all non-deterministic events can be
recorded during execution and replayed during re-execution.
For systems in which records of non-deterministic events
can be very large or replaying non-deterministic events is
difficult, a consistent global checkpoint is necessary for roll-
back.

2 Consistent global checkpoint

The distributed system is modeled by a finite set of
processes fp1; p2; : : : ; png interconnected by point-to-point
channels. Channels are assumed to be error-free, non-FIFO,
and have infinite capacity. The communication is asyn-
chronous; that is, the delay experienced by a message is
unbounded but finite.

pi’s execution is a sequence of pi’s events which include
checkpoint initiations. Checkpoint initiations are done in-
dependently by each process. System execution E is the

2The same algorithm is shown in [3] independently. However, they do
not consider the following modification.

set of each process’s executions. pi’s execution with check-
pointing algorithm A is pi’s execution interleaved with the
additional checkpoints taken by A in pi. System execution
with A, E(A), is the set of each process’s execution with A.

The following assumptions are common for distributed
checkpointing algorithm A [8]. A has no prior knowledge
about execution E. All information for A is piggybacked
on program messages between processes. When pi receives
a message m, A can get the information piggybacked on
m and take an additional checkpoint before pi executes the
receive event.

The “happened before(!)” relation between the events
in E(A) is defined as follows [4].

Definition 1 e! e0 if and only if

(1) e and e0 are executed in the same process and e is not
executed after e0.

(2) e is the send event s(m) and e0 is the receive event
r(m) of the same message m.

(3) e! e00 and e00 ! e0 for event e00.

When e and e0 are executed in different processes
and e ! e0, there is a sequence of events
e; s(m1); r(m1); s(m2); : : : ; s(mk); r(mk); e

0 in which
e ! s(m1), r(mi) ! s(mi+1)(i = 1; : : : ; k � 1),
r(mk) ! e0, every pair of events is executed in the same
process, and every s(mi) is executed in a different process.
This sequence is called a causal sequence from e to e0. k is
the length of the sequence.
?i is an imaginary event which is pi’s initial state. For

any pi event ei, ?i ! ei holds. This paper considers ?i as
checkpoints in E.

For pi’s event ei in E(A), causal-past event on pj ,
cpeii (j), is defined as follows.

Definition 2 � cp
ei
i (i) = ei.

� cp
ei
i (j) is last event ej in pj that satisfies ej ! ei. If

there is no event ej satisfying ej ! ei, cp
ei
i (j) = ?j .

Intuitively, cpeii (j) is pj’s last event which is known to pi

at ei. In Fig. 1(c), cpc
1
1

1 (1) = c1
1, cpc

1
1

1 (2) = s(m1), and

cp
c

1
1

1 (3) = ?3.

Definition 3 A pair of checkpoints (c; c0) is consistent if and
only if c 6! c0 and c0 6! c.

Definition 4 A global checkpoint (c1; c2; : : : ; cn) is n-tuple
of checkpoints where ci is pi’s checkpoint. A global check-
point is consistent if and only if all distinct pairs of check-
points are consistent.

In Fig. 1(c), (c1
1; c

1
2; c

1
3) is consistent, but (c1

1; c
0
2; c

1
3) is not

consistent because c0
2 ! c1

1.
A consistent global checkpoint for pk’s checkpoint initi-

ation ck in E(A) is denoted as gc(ck; E(A)). pi’s check-
point in gc(ck; E(A)) is denoted as gc(ck; E(A); i). E(A)
is omitted if it is obvious.

Theorem 1 There is no algorithm that minimizes the total
number of additional checkpoints in any execution.

(Proof) Consider execution E in Fig. 1(a) and two algo-
rithms,A andA0. A takes an additional checkpoint c1

2 before
r(m2). A0 does not take the one. If execution E has no ini-
tiation other than c1

3, A is worse than A0 since gc(c1
3; E(A

0))
can be (c0

1; c
0
2; c

1
3) and c1

2 is unnecessary.
Next consider the execution E0 in Fig. 1(b) in which

another initiation, c1
1, exists. Since c0

2 ! c1
1, A0 must take

c10

2 before r(m3) for gc(c1
1; E

0(A0); 2). Since c1
3 ! c10

2 ,
p3 must take c2

3 before r(m4) for gc(c1
1; E

0(A0); 3). Thus,
gc(c1

1; E
0(A0)) = (c1

1; c
10

2 ; c
2
3) and the number of additional

checkpoints of E0(A0) is 2.
For this execution, gc(c1

3; E
0(A)) can be (c0

1; c
1
2; c

1
3) and

gc(c1
1; E

0(A)) can be (c1
1; c

1
2; c

1
3) as in Fig. 1(c) and the

number of additional checkpoints of E0(A) is 1. Thus A0 is
worse than A.

In Fig. 1(a), taking c1
2 just before r(m2) reduces the

number of additional checkpoints only if there is initiation
c1

1 which is unknown at r(m2). From the assumption, A
cannot predict the future execution of a process. Thus,
the following assumption is added, which means additional
checkpoints are taken for “known” initiations.

Assumption 1 Checkpointing algorithmA takes additional
checkpoint ci just before an event ei only if gc(c;E(A))
cannot be obtained without ci for initiation c satisfying c!
ei.

3 An algorithm to obtain consistent global
checkpoints

Chandy and Lamport’s distributed snapshot algorithm
obtains one consistent global checkpoint for a set of concur-
rent initiations. This rule can be formally written as Rule 1
when processes continue to initiate checkpoints. A global
checkpoint number (GCN) is assigned to each initiation.
One consistent global checkpoint is obtained for each GCN.

Each process pi has an integer vector gcni(j). gcni(j) =
y means that pi knows that pj knows the maximum GCN is
y. gcni(i) is the current GCN pi knows. GCN is assigned
using gcn as follows:

(Rule 1: GCN assignment rule for process pi)

(1) Initially, set gcni(j) := 0 for all j.

(2) When initiation ci occurs, increment gcni(i) and assign
the number as the GCN for ci.

(3) When pi sends a message m, gcni’s current value is
piggybacked on m.

(4) When pi receives a message m from pj , let the value
of gcnj on m be mgcn. Set
gcni(k) := max(gcni(k);mgcn(k)) for each k and
then set gcni(i) := max(gcni(i);mgcn(j)).

Note that maintaining an integer rather than a vector is suf-
ficient for GCN assignment. This vector is used to remove
old checkpoints.

Lemma 1 If initiations ci and cj have the same GCN, they
are consistent.

(Proof) Assume that ci ! cj and GCN y is assigned to ci.
Because of Rule 1, gcnj(j) � y before cj . Thus, y is not
assigned to cj .

The consistent global checkpoint for GCN y is de-
noted as CGC(y). pj’s element of CGC(y) is denoted
as CGC(y; j). Note that CGC(0) = (?1;?2; : : : ;?n).

In the rest of the paper, a sequence number is assigned for
(both initiation and additional) checkpoints in each process.
?i is pi’s 0-th checkpoint. Let cxkk be pk’s xk-th check-
point. It is sometimes denoted as xk in subscripts if it is not
ambiguous.

This algorithm uses the following variables. Variable
cki(j) = x(� 0) at pi if cxj ! ei is satisfied, where ei is
pi’s current event. cki(j) = �1 if ?j 6! ei. cki(i) is pi’s
newest checkpoint number.

Variable seei(j) = true if pi knows that there is a check-
point c satisfying cxj ! c, where cxj is pj’s newest (the
cki(j)-th) checkpoint. These variables are updated by a
method similar to gcn update. The details are shown in Fig.
3.

Variable sti(j) = true if pi sends a message to pj after
pi’s newest (the cki(i)-th) checkpoint. Variable cgci(y) has
the output of the algorithm. cgci(y) = xi if CGC(y; i) =
cxii .

Consider the case when pi receives a message m from pj
and gcni(k)(k 6= i) and seei(k) are updated by the values on
m. Let y0 = gcni(i) and y1 = mgcn(j). If y1 > y0, there
is a checkpoint cxyj satisfying CGC(y; j) = c

xy
j and cxyj !

r(m)(y0 < y � y1), since pj has decidedCGC(y; j). Since
any pi checkpoint after r(m) is not consistent with c

xy
j ,

CGC(y; i) must be before r(m). Thus, pi must do one of
the following: (1) take an additional checkpoint before r(m)
and set cgci(y) as the new checkpoint, or (2) set cgci(y) as
an old checkpoint. The CGC decision rule is as follows:

(Rule 2: CGC decision rule for pi)
Let y0 = gcni(i), y1 = mgcn(j) (y1 > y0), and xi =
cki(i) at the arrival of messagem from pj . Take a checkpoint

before r(m) and set cgci(y) := xi+1 for all y(y0 < y � y1)
if condition (2-1) or (2-2) is satisfied (Fig. 2).
(2-1) seei(i) = true.
(2-2) For some h, sti(h) = true and gcni(h) < y1.
Otherwise, set cgci(y) := xi for all y(y0 < y � y1).

The algorithm CGC based on Rules 1 and 2 is shown in
Fig. 3. The correctness is shown below.

Lemma 2 If a global checkpoint (c1; c2; : : : ; cn) is not con-
sistent, there is a pair (ci; cj) such that there is a causal
sequence from ci to cj whose length is 1.

(Proof) Assume that the pair with the shortest causal se-
quence is (ci; cj) and that the length is more than 1. Let m1

be the first message in the causal sequence and pk(6= pi; pj)
be the process that executes r(m1). If ck is before r(m1),
ck ! cj , and this contradicts the notion that (ci; cj) is the
pair with the shortest causal sequence. If ck is after r(m1),
ci ! ck, and this also contradicts the minimality of the
causal sequence.

Theorem 2 The global checkpoints obtained by algorithm
CGC are consistent.

(Proof) Assume that CGC(y) is not consistent. From
lemma 2, assume that CGC(y; i) ! CGC(y; k) and let
the message in the causal sequence be m.

Let eyh be the event when ph decides CGC(y; h). e
y

h

is an initiation or a receive event. If eyh is a receive event,
CGC(y; h) is before e

y

h. Otherwise, eyh = CGC(y; h).
Thus, CGC(y; h) is ph’s newest checkpoint at e

y

h and
CGC(y; h) ! e

y

h is satisfied. gcnh(h) < y is satisfied
before eyh and gcnh(h) � y is satisfied at eyh.

(Case 1: e
y

k ! e
y
i) Since CGC(y; i) is pi’s newest

checkpoint at eyi and CGC(y; i) ! CGC(y; k) ! e
y

k !
e
y
i , seei(i) = true at eyi . Thus, CGC(y; i) must be the

newly taken checkpoint just before e
y
i from Rule 2. This

contradicts the fact that there is an event s(m) between
CGC(y; i) and eyi .

(Case 2: e
y
i is before s(m)) Since gcni(i) � y at eyi ,

gcnk(k) � y must be satisfied at r(m). Thus, eyk must be
equal to or before r(m). This contradicts the notion that
CGC(y; k) is after r(m).

(Case 3: eyk 6! e
y
i and eyi is after s(m)) Since eyk 6! e

y
i ,

gcni(k) < y at eyi . Since there is event s(m) between
CGC(y; i) and e

y
i , eyi is a receive event from a process

pj . Let y1 = mgcn(j) at eyi . y1 � y is satisfied. Since
sti(k) = true and gcni(k) < y1 at eyi , CGC(y; i) must
be the newly taken checkpoint just before eyi from Rule 2.
This contradicts the notion that there is event s(m) between
CGC(y; i) and eyi .

Theorem 3 When additional checkpoint cxii is taken at ei
by Rule 2 under the GCN assignment rule Rule 1, there is
an execution in which a consistent global checkpoint for an

initiation c satisfying c ! ei cannot be obtained without
cxii .

(Note) In Rule 2, CGC(y; i) is set as the newest checkpoint
before r(m) for every y(y0 < y � y1) when no additional
checkpoint is taken. When an additional checkpoint is taken,
CGC(y; i) is set as the checkpoint for every y(y0 < y �
y1). In either case, a consistent global checkpoint might also
be obtained by settingCGC(y0; i) as a checkpoint before the
newest one for some y0(y0 < y0 � y1). This modification
of Rule 2 does not reduce the total number of checkpoints.
Since the following proof does not assume that CGC(y0; i)
is set as the newest checkpoint, the additional checkpoints
taken by Rule 2 are necessary no matter how CGC(y0; i) is
selected.

(Proof) Assume that r(m) in pi is an event when an
additional checkpoint is taken by Rule 2.

First consider the case when (2-1) is satisfied. Since
seei(i) = true, there is a checkpoint cxkk satisfying cxii !
cxkk and cxkk ! r(m). There is a consistent global check-
point CGC0 which includes cxkk . If no checkpoint is taken
at r(m), CGC0(i) must be equal to or before cxii . In either
case, CGC0 is not consistent since cxii ! c

xk
k .

Next consider the case when (2-1) is not satisfied but
(2-2) is satisfied. Note that gcni(k) � y1 for every k at
r(m). Let M be the first message sent to ph after cxii .
Let y2 = gcni(i) at s(M). Since s(M) is before r(m),
y2 � y0(< y1) is satisfied.

Let eh = cp
r(m)
i (h), that is, ph’s last event known to pi

at r(m). Let y3 = gcnh(h) at eh. Since gcnh(h) at eh
equals gcni(h) at r(m), y3 < y1 is satisfied.

If y2 < y0, there is a receive event r(m0) between s(M)
and r(m) such that gcni(i) = y0 after r(m0). Since pi
did not take a checkpoint at r(m0), gcni(h) = y0 must
be satisfied at r(m0). Thus, y0 � y3 holds. Therefore,
y0 � max(y2; y3) < y1 is satisfied in every case.

Now consider the following execution after eh. ph ex-
ecutes r(M) if r(M) is not before eh. ph then initiates
checkpoint cxh. Let the GCN for cxh be y4. Since gcnh(h)
just before cxh is max(y2; y3), y4 = max(y2; y3) + 1 � y1

is satisfied. If no checkpoint is taken at r(m), CGC(y4; i)
is equal to or before cxii and CGC(y4) is not consistent
because cxii ! cxh.

The information piggybacked on each message and kept
in each process (other than output) is O(n) integer.

Here, the rule for removing old checkpoints is shown.
The amount of stable storage usage becomes large if old
checkpoints are not removed. When pi has a failure, the
processes use the consistent global checkpoint that includes
pi’s newest checkpoint. Let y0 = minjgcni(j). pi knows
that no process uses CGC(y)(y < y0) for rollback, thus pi
can remove the checkpoints before cgci(y0).

4 Modification for inconsistent initiations

Rule 1 forces taking a different consistent global check-
point for two initiations c; c0 satisfying c ! c0. However,
there are cases when it is unnecessary to obtain a consistent
global checkpoint for c0. This section modifies Rule 1 to
suppress the need for taking additional checkpoints.

For a consistent global checkpoint CGC and a set
of pairs of a process number and checkpoint S =
f(i1; c

xi1
i1
); (i2; c

xi2
i2
); : : : ; (ik; c

xik
ik

)g, denote the global
checkpoint defined below as GC(CGC;S):

GC(CGC;S; i) =

�
cxii if (i; cxii) 2 S

CGC(i) if (i; �) 62 S

If GC(CGC;S) is consistent, the procedure for obtaining a
consistent global checkpoint that includes S can be stopped
halfway.

First, consider the case when jSj = 1. No new GCN is
assigned to initiation cxii if GC(CGC�; f(i; cxii)g) is con-
sistent, where CGC� is the consistent global checkpoint
which includes cxi�1

i . Rule 1 (2) is changed as follows.
Note that (1),(3), and (4) are unchanged.

(Rule 1’: modified GCN assignment rule for pi)

(2) When initiation cxii occurs, increment gcni(i) and as-
sign the number as the GCN for cxii if one of the fol-
lowing conditions is satisfied.

(1’-1) gcni(j) = gcni(i) for some j(6= i).

(1’-2) There is a process pj satisfying (a)-(d).

(a) pj takes a checkpoint cxjj satisfying c
xj
j 6! cxi�1

i and
then sends a message m to pi.

(b) pi executes r(m) between cxi�1
i and cxii .

(c) There is no message M such that M is sent from pj
after cxjj to a process other than pi and r(M)! cxii .

(d) At least one message m0 is sent from pi to process
pk(6= pj) after gcni(i) becomes the current value, if pj
sends message m0 to a process other than pi satisfying
c
xj
j ! s(m0)! cxii . If pj does not send such message
m0, there is no restriction on the receiver of m0.

Theorem 4 GC(CGC�; f(i; cxii)g) is consistent if CGC�

is consistent and the conditions in Rule 1’ are not satisfied
for cxii .

(Proof) Assume that CGC� is consistent and
GC(CGC�; f(i; cxii)g) is not consistent.

Let y = gcni(i) at cxi�1
i . CGC�(j) = CGC(y; j) for

all j(6= i). CGC(y; j) 6! cxi�1
i for all j(6= i), sinceCGC�

is consistent.

If cxii ! CGC(y; j)(j 6= i), cxi�1
i ! CGC(y; j) and

CGC� is not consistent. This case cannot occur. Thus,
CGC(y; j) ! cxii holds for some j(6= i). Let eyj be the
event when pj decides CGC(y; j). Without loss of general-
ity, assume that j satisfies eyh 6! e

y
j for anyh(6= j) satisfying

CGC(y; h)! cxii . If eyj satisfies eyj ! cxii , gcni(j) = y at
cxii and (1’-1) is satisfied.

Next consider the case e
y

j 6! cxii . Let a
longest causal sequence from CGC(y; j) to cxii be
CGC(y; j); s(m1); : : : ; r(ml); c

xi
i . If r(ml) is before

c
xi�1
i , CGC� is not consistent. Thus, r(ml) is after cxi�1

i .
Since eyj 6! c

xi
i , eyj is after s(m1). l = 1 is shown. As-

sume that l � 2. Let the process that executes r(m1) be
pk. If CGC(y; k) is after r(m1), CGC� is not consistent
because CGC(y; j) ! CGC(y; k). Thus, CGC(y; k) is
before r(m1) and CGC(y; k) ! c

xi
i . eyk 6! e

y

j is satisfied
from the definition of j. Since eyk 6! e

y
j , gcnj(k) < y at

e
y
j . Since stj(k) = true at eyj , CGC(y; j) cannot be an

old checkpoint before s(m1) from Rule 2. Therefore, l = 1
holds and CGC(y; j) satisfies (a) and (b) in (1’-2).

Assume that there is a message M sent to a process other
than pi after CGC(y; j) and r(M) ! cxii . Thus there is
a causal sequence CGC(y; j); s(M); r(M); : : : ; cxii whose
length is more than one. This contradicts the notion that the
maximum length of causal sequences from CGC(y; j) to
cxii is 1. Thus, such a message does not exist. Therefore,
(c) in (1’-2) is satisfied.

stj(i) = true at eyj . Thus, gcnj(i) � y must be satisfied
at eyj in order to select an old checkpoint as CGC(y; j) at
e
y
j . Therefore, eyi ! e

y
j must be satisfied. If cxii ! e

y
j ,

seej(j) = true at eyj and CGC(y; j) must be the newly
taken checkpoint just before eyj . This contradicts the notion
that there is an event s(m1) between CGC(y; j) and e

y
j .

Thus, cxii 6! e
y
j and pi must have sent a messagem0 between

e
y
i and cxii .

In addition, if stj(k) = true at cpxii (j) for some k(6= i),
gcnj(k) � y must also be satisfied at eyj . If (gcnj(k) < y

and gcnj(i) � y) or (gcnj(k) � y and gcnj(i) < y) at some
event ej , pj takes an additional checkpoint just before ej and
this contradicts the existence of s(m1) between CGC(y; j)
and e

y
j . If m0 is sent to pj and no other message is sent

from pi between e
y
i and cxii , one of the above conditions is

satisfied at r(m0) or just before r(m0) because gcni(k) < y

at s(m0). Thus, pi must have sent a message to a process
other than pj between eyi and cxii . Therefore (d) in (1’-2) is
satisfied.

Theorem 5 When cxii satisfies one of the conditions of Rule
1’, there is an execution in which GC(CGC�; f(i; cxii)g) is
not consistent.

(Proof) Let y = gcni(i) at cxi�1
i . First, consider the case

when (1’-1) is satisfied. In this case, CGC(y; j)! cxii and
GC(CGC�; f(i; cxii)g) is not consistent.

Next, consider the case when (1’-1) is not satisfied and
(1’-2) is satisfied. gcnh(h) < y is satisfied at cpxii (h) for
any h(6= i) because (1’-1) is not satisfied. Let the message
sent from pi to pk be m0. Note that r(m0) is after cpxii (k).
Otherwise, gcnk(k) = y at cpxii (k). Let the set of processes
to which pj sends a message after cxjj other than pi be
Pj = fpj1 ; pj2 ; : : : ; pjlg. For any message M sent from pj
to pjh after cxjj , r(M) is not before cpxii (jh). Otherwise,
r(M) ! cxii , and this contradicts (1’-2)(c). Consider the
following execution after cpxii . Assume that Pj 6= �. From
(d), pk 6= pj . Consider the case pk 62 Pj . When pk 2 Pj or
Pj = �, similar executions can be constructed. The details
are omitted here.

pk executes r(m0) and sends M0 to pj1 just after cpxii (k).
pjh(h = 1; : : : ; l � 1) executes r(Mh�1) and sends Mh

to pjh+1 just after cpxii (jh), that is, before receiving any
message from pj . pjl executes r(Ml�1) and sends Ml to pj
just after cpxii (jl). pj executes r(Ml). seej(j) = false is
satisfied at r(Ml). Assume that seej(j) = true. There is a
checkpoint c satisfying cxjj ! c and c! r(Ml). c must not

be in pi because there is no checkpoint between cxi�1
i and

cxii . If c is in ph(h 6= i), c must satisfy r(m0) ! c in order
to satisfy cxjj ! c. However, there is no such checkpoint in
this execution. Thus, seej(j) = false at r(Ml).

In addition, gcnj(h) = y for any process ph such that
stj(h) = true at r(Ml). Thus, pj sets cxjj asCGC(y; j) and
GC(CGC�; f(i; cxii)g) is not consistent since c

xj
j ! cxii .

Theorem 6 When additional checkpoint cxii is taken at ei
by Rule 2 under the GCN assignment rule Rule 1’, there is
an execution in which a consistent global checkpoint for an
initiation c satisfying c ! ei cannot be obtained without
cxii .

The proof is similar to the one for Theorem 3 and omitted
[5].

Lastly, the case jSj � 2 is discussed. Even if Rule 1’
cannot be applied and GCN y+1 is assigned to the initiations
in S, obtaining CGC(y+ 1) seems to be able to be stopped
halfway if GC(CGC(y);S) is consistent. Actually, this is
impossible and the reason is shown below.

It is obvious that jSj = n � 1 is the case of selecting a
checkpoint in CGC(y) for the last element of CGC(y+1),
and this case has been discussed in Rule 2. Thus assume
that 2 � jSj � n�2 and there are two processes, ph and pk,
satisfying (h; �); (k; �) 62 S. Consistent GC(CGC(y);S)
can be obtained if each element in GC(CGC(y);S) � S

can be selected as CGC(y + 1) by Rule 2. Thus, it is
assumed that at pk’s (ph’s) receive event r(mk) (r(mh)),
which informs GCN y + 1, Rule 2 forces pk (ph) to take an
additional checkpoint before the receive event and set it as
CGC(y+ 1; k) (CGC(y+ 1; h)). With these assumptions,
the following theorem holds.

Theorem 7 There is no algorithm in which ph or pk do not
take an additional checkpoint at r(mk) and r(mh) when
GC(CGC(y);S) is consistent.

(Sketch of the proof) It is necessary for ph and pk to have
common knowledge [2] thatGC(CGC(y);S) is consistent.
However, common knowledge cannot be attained when the
communication is asynchronous [2].

5 Conclusion

This paper showed a distributed algorithm which obtains
a consistent global checkpoint for any initiation. Among the
extensions of Chandy and Lamport’s algorithm, this algo-
rithm minimizes the number of additional checkpoint. One
open question is whether this algorithm is optimal without
Chandy and Lamport’s assumption.

Acknowledgments The author would like to thank Dr.
Hirofumi Katsuno of NTT for his encouragement and sug-
gestions.

References

[1] Chandy, K.M. and Lamport, L.: “Distributed Snapshots: De-
termining Global States of Distributed Systems,” ACM Trans.
on Computer Systems, Vol. 3, No. 1, pp. 63–75 (Feb. 1985).

[2] Halpern, J. Y. and Moses, Y.: “Knowledge and Common
Knowledge in a Distributed Environment,” Journal of the
ACM, Vol. 37, No. 3, pp. 549–587 (July 1990).

[3] Helary, J.-M., Mostefaoui, A., Raynal, M., and Netzer, R.H.B.:
“Preventing Useless Checkpoints in Distributed Computa-
tions,” Proc. of 16th Symposium on Reliable Distributed Sys-
tems (Oct. 1997).

[4] Lamport, L.: “Time, Clocks, and the Ordering of Events in a
Distributed System,” Communications of ACM, Vol. 21, No.
7, pp. 558–565 (July 1978).

[5] Manabe, Y.: “A Distributed Consistent Global Checkpoint Al-
gorithm with a Minimum Number of Checkpoints,” Technical
Report of IEICE, COMP97-6 (Apr. 1997).

[6] Manabe, Y.: “A Distributed First and Last Consistent Global
Checkpoint Algorithm,” Proc. of 12th Int. Conf. on Informa-
tion Networking (Jan. 1998).

[7] Netzer, R.H. and Xu, J.: “Necessary and Sufficient Conditions
for Consistent Global Snapshots,” IEEE Trans. on Parallel and
Distributed Systems, Vol. 6, No. 2, pp. 165–169 (Feb. 1995).

[8] Prakash, R. and Singhal, M.: “Low-Cost Checkpointing and
Failure Recovery in Mobile Computing Systems,” IEEE Trans.
on Parallel and Distributed Systems, Vol. 7, No. 10, pp. 1035–
1048 (Oct. 1996).

[9] Strom, R.E. and Yemini, S.: “Optimistic Recovery in Dis-
tributed Systems,” ACM Trans. on Computer Systems, Vol.3,
No.3, pp. 204–226 (Aug. 1985).

p
2

p
3

p
1

c0
2

c0
1

c0
3

c
3
1m

1
m

2

:initiation

p
2

p
3

c0
2

c0
1

c0
3

c
1
1

c
3
1m

1
m

2

m
3

m
4 3

2c

c
2
1’

p
1

p
2

p
3

c0
2

c0
1

c0
3

c
1
1

c
3
1m

1
m

2

m
3

m
4

c1
2

p
1

(a) Execution E. (b) E0(A0). (c) E0(A).

Figure 1. Minimizing additional checkpoints.

m

c
x i
i

p
k

p
i

c

r(m) m

c
x i
i

p
k

p
h

p
i

m’
CGC(y)

1

r(m)

Figure 2. Rule 2-1 and 2-2.

program CGC; /* program for pi. */
const n = :::; /* number of processes */
var gcn(n), ck(n), cgc(�): integer;
st(n), see(n): boolean;

procedure checkpoint begin
take a checkpoint;
ck(i) := ck(i) + 1;
for each k(6= i) do see(k) :=true;
see(i) :=false;
for each k do st(k) :=false;

end; /* end of subroutine */
/* main */
initialization begin

for each k do gcn(k) := 0;
for each k(6= i) do ck(k) := �1;
ck(i) := 0;
for each k do see(k) :=false;
for each k do st(k) :=false;

end; /* end of initialization */
when pi initiates a checkpoint begin

checkpoint;
gcn(i) := gcn(i) + 1;
cgc(gcn(i)) := ck(i);

end; /* end of checkpoint initiation */
when pi sends m to pj begin

send(m, gcn, ck, see) to pj ;
st(j) :=true;

end; /* end of message sending */
when pi receives (m, mgcn, mck, msee) from pj begin

for each k do
if ck(k) = mck(k) then see(k) := see(k) _msee(k)
else if ck(k) < mck(k) then see(k) := msee(k);

for each k do ck(k) := max(ck(k);mck(k));
for each k do gcn(k) := max(gcn(k);mgcn(k));
if gcn(i) < mgcn(j) then begin

if see(i) or (9h, st(h) and gcn(h) < mgcn(j))
then checkpoint;

for each y(gcn(i) < y � mgcn(j)) do cgc(y) := ck(i);
end;
gcn(i) := max(gcn(i);mgcn(j));
execute r(m);

end; /* end of message receiving */

Figure 3. Algorithm CGC.

