A Distributed Consistent Global Checkpoint Algorithm
with a Minimum Number of Checkpoints

Yoshifumi Manabe
NTT Basic Research Laboratories
3-1 Morinosato-Wakamiya, Atsugi-shi, Kanagawa 243-01 Japan
manabe@theory.brl.ntt.co.jp

Abstract

A distributed coordinated checkpointing algorithm is
shown. A consistent global checkpoint is a set of states
in which no message is recorded as received in one pro-
cess and as not yet sent in another process. This algorithm
obtains a consistent global checkpoint for any checkpoint
initiation by any process. Under Chandy and Lamport’sas-
sumption that one consistent global checkpoint is obtained
for a set of concurrent checkpoint initiations, the total num-
ber of checkpoints is minimized. This paper then modifies
theassumption in order to reduce the number of checkpoints
further.

1 Introduction

Distributed coordinated checkpointing obtains a set of
states as a consistent global checkpoint [7], in which no
message is recorded as received in one process and as not
yet sent in another process. It can be used for process
rollback®. When a process initiates checkpointing, addi-
tional checkpoints must be taken in other processes in or-
der to obtain a consistent global checkpoint that includes
the initiation. Since a checkpoint saves all the information
necessary for rollback in stable storage, the checkpointing
overhead is usually very large and the number of additional
checkpoints must be minimized. This paper discusses mini-
mizing the number of additional checkpoints by reusing the
checkpoints in a consistent global checkpoint for initiation
c as the checkpoints for another initiation ¢’ [5].

Chandy and Lamport’sdistributed snapshot algorithm [1]
obtains one consistent global checkpoint for a set of con-
current checkpoint initiations. However, every non-initiator

LIn order to roll back, the messages that have been sent but not received
must be restored. The message restoration method is similar to that in
[9] and the details are given in [5]. This paper thus discusses obtaining a
consistent global checkpoint.

processisforced to take acheckpoint. Thispaper showstwo
distributed checkpointing algorithms. Thefirst onetakesthe
minimum number of additional checkpoints under Chandy
and Lamport’s assumption that one consistent global check-
point is obtained for a set of concurrent initiations. Thus
among the extensions of the distributed snapshot algorithm,
this algorithm is the optimal one?. The second algorithm
in this paper modifies Chandy and Lamport’s assumption in
order to further reduce the number of additional checkpoints.

Prakash and Singhal [8] use a bit vector in order to sup-
press the taking of unnecessary checkpoints. However, the
number of additional checkpoints is not minimized. Al-
though this paper’s algorithm uses integer vectors, the num-
ber of additional checkpointsis minimized. The author [6]
has shown adistributed checkpoint algorithm which obtains
afirst and last consistent global checkpoint. Independent
checkpointing algorithms, such as that in [9], do not ob-
tain consistent global checkpoints. They can be used only
for systems in which all non-deterministic events can be
recorded during execution and replayed during re-execution.
For systems in which records of non-deterministic events
can be very large or replaying non-deterministic events is
difficult, aconsistent global checkpoint isnecessary for roll-
back.

2 Consistent global checkpoint

The distributed system is modeled by a finite set of
processes {p1, p2, . - . , P } iNterconnected by point-to-point
channels. Channels are assumed to be error-free, non-FIFO,
and have infinite capacity. The communication is asyn-
chronous; that is, the delay experienced by a message is
unbounded but finite.

p;’Sexecution is a sequence of p;'s eventswhich include
checkpoint initiations. Checkpoint initiations are done in-
dependently by each process. System execution E is the

2The same algorithm is shown in [3] independently. However, they do
not consider the following modification.

set of each process's executions. p;’s execution with check-
pointing algorithm A is p;’s execution interleaved with the
additional checkpointstaken by A in p;. System execution
with A, E(A), isthe set of each process’s execution with A.

The following assumptions are common for distributed
checkpointing algorithm A [8]. A has no prior knowledge
about execution E. All information for A is piggybacked
on program messages between processes. When p; receives
a message m, A can get the information piggybacked on
m and take an additional checkpoint before p; executes the
receive event.

The “happened before(—)” relation between the events
in E(A) isdefined asfollows [4].

Definition 1 e — ¢’ if and only if

(1) e and ¢’ are executed in the same process and e is not
executed after ¢'.

(2) e isthe send event s(m) and ¢’ is the receive event
r(m) of the same message m.

(3) e » e"ande” — € for evente”. []

When e and ¢ are executed in different processes
and e — ¢, there is a sequence of events
e,s(ma),r(m1), s(mz),...,s(mp),r(my),e’ in which
e — s(my), r(m;) — s(myy1)(i = 1,...k — 1),
r(myg) — €', every pair of events is executed in the same
process, and every s(m;) is executed in a different process.
This sequenceis caled a causal sequencefrometoe'. kis
the length of the sequence.

1; isan imaginary event which is p;’sinitia state. For
any p; evente;, L, — e; holds. This paper considers | ; as
checkpointsin E.

For p;'s event e; in E(A), causa-past event on p;,
cps'(7), isdefined asfollows.

Definition2 e cpii(i) =e;.
e cp;'(j) islast event e; in p; that satisfiese; — e;. If

thereisno event e; satisfyinge; — e;, epi'(5) = L;.

|

Intuitively, cp;’ (5) is p;'s last event which is known to p;
1 1
ae;. InFig. 1(c), epi*(1) = i, cp;*(2) = s(my), and
Cl
ep*(3) = Ls.

Definition 3 Apair of checkpoints(c, ¢') isconsistent if and
onlyifc A ¢ andc 4 c. |

Definition 4 Aglobal checkpaint (cs, ¢z, . . ., ¢,) iSn-tuple
of checkpoints where ¢; is p;'s checkpoint. A global check-
point is consistent if and only if all distinct pairs of check-
points are consistent. |

InFig. 1(c), (¢}, c3,c}) is consistent, but (cl, ¢3, ¢3) is not
consistent because ¢ — ci.

A consistent global checkpoint for p,’s checkpoint initi-
ation ¢, in E(A) is denoted as ge(cy, E(A)). pi’s check-
point in ge(cr, E(A)) isdenoted as gc(c, E(A),1). E(A)
isomitted if it is obvious.

Theorem 1 Thereis no algorithm that minimizes the total
number of additional checkpointsin any execution.]

(Proof) Consider execution E in Fig. 1(a) and two algo-
rithms, A and A’. A takesan additional checkpoint c3 before
r(my). A’ does not take the one. If execution E hasno ini-
tiation other than c3, A isworsethan A’ since ge(c3, E(A'))
can be (¢4, ¢3, ¢3) and ¢} is unnecessary.

Next consider the execution E’ in Fig. 1(b) in which
another initiation, c1, exists. Since ¢§ — ¢}, A’ must take
3 before r(ms) for ge(ch, E'(A'),2). Since ¢§ — ¢},
p3 must take c3 before r(my) for ge(ct, E'(A’),3). Thus,
ge(ch, E'(A7)) = (ct, ¢}, 3) and the number of additional
checkpointsof E'(A’) is2.

For this execution, ge(c3, E'(A)) can be (<2, ¢3, 1) and
ge(cl, E'(A)) can be (cl,c3,cd) asin Fig. 1(c) and the
number of additional checkpointsof E'(A)is1. Thus A’ is
worse than A. |

In Fig. 1(a), taking ¢} just before (my) reduces the
number of additional checkpoints only if there isinitiation
c} which is unknown at r(m,). From the assumption, A
cannot predict the future execution of a process. Thus,
the following assumption is added, which means additional
checkpoints are taken for “known” initiations.

Assumption 1 Checkpointing algorithm A takesadditional
checkpoint ¢; just before an event e; only if ge(c, E(A))
cannot be obtained without ¢; for initiation ¢ satisfying ¢ —
€;. |

3 An algorithm to obtain consistent global
checkpoints

Chandy and Lamport’s distributed snapshot algorithm
obtains one consistent global checkpoint for a set of concur-
rent initiations. This rule can be formally written as Rule 1
when processes continue to initiate checkpoints. A global
checkpoint number (GCN) is assigned to each initiation.
One consistent global checkpoint is obtained for each GCN.

Each process p; hasaninteger vector gen; (7). geni(3) =
y meansthat p;, knowsthat p; knows the maximum GCN is
y. gen; (i) isthe current GCN p; knows. GCN is assigned
using gcn asfollows:

(Rule 1: GCN assignment rule for process p;)

(1) Initially, set gen;(j) := Ofor dl 5.

(2) Wheninitiation ¢; occurs, increment gen,; () and assign
the number as the GCN for c;.

(3) When p; sends a message m, gcn;’s current value is
piggybacked on m.

(4) When p; receives a message m from p;, let the value
of gen; onm bemgen. Set
geni(k) = maz(gen;(k), mgen(k)) for each k& and
then set gen; (i) 1= max(gen; (), mgen(y)). [|

Note that maintaining an integer rather than a vector is suf-
ficient for GCN assignment. This vector is used to remove
old checkpoints.

Lemmal Ifinitiations c; and c¢; have the same GCN, they
are consistent. [|

(Proof) Assumethat ¢; — ¢; and GCN y is assigned to ;.
Because of Rule 1, gen;(j) > y before ¢;. Thus, y is not
assigned to c;. |

The consistent global checkpoint for GCN y is de-
noted as CGC(y). p;'s element of CGC(y) is denoted
asCGC(y,j). Notethat CGC(0) = (L1, Lo, ..., Ly).

Intherest of the paper, asequence number isassigned for
(bothinitiation and additional) checkpointsin each process.
L; is p;'s O-th checkpoint. Let c;* be p;’s z;-th check-
point. It is sometimes denoted as z, in subscriptsif it is not
ambiguous.

This agorithm uses the following variables. Variable
cki(3) = (> 0) at p; if ci — e; issdisfied, wheree; is
pz-’scurrent event. Ck'z(]) =—1if J_j 7L> €;. Cki(i) iSpZ‘,S
newest checkpoint number.

Varigble see;(j) = trueif p; knowsthat thereisacheck-
point ¢ satisfying ¢; — ¢, where cj is p;’s newest (the
ck;(7)-th) checkpoint. These variables are updated by a
method similar to gen update. The details are shownin Fig.
3.

Variable st;(j) = true if p; sends a message to p; after
p;'snewest (the ck; (7)-th) checkpoint. Variable cge;(y) has
the output of the algorithm. cge;(y) = z; if CGC(y,i) =
et

Consider the case when p; receivesamessage m from p;
andgen;(k)(k # 1) and see; (k) areupdated by thevalueson
m. Let yo = gen; (i) and yg = mgen(5). If y1 > yo, there
isacheckpoint ¢;” satisfying CGC(y,j) = ¢;” and¢;" —
r(m)(yo < y < y1), Sincep; hasdecided CGC(y, j). Since
any p; checkpoint after r(m) is not consistent with c‘]rn”,
CGC(y,1) must be before r(m). Thus, p; must do one of
thefollowing: (1) takean additional checkpoint beforer(m)
and set cgc; (y) asthe new checkpoint, or (2) set cge;i(y) as
an old checkpoint. The CGC decisionruleisasfollows:

(Rule2: CGC decisionrulefor p;)

Let yo = geni(i), y1 = mgen(j) (y1 > vo), and z; =
ck;(7) at thearrival of messagem fromp,. Tekeacheckpoint

beforer(m) andset cge;(y) 1= z;+1foral y(yo < y < y1)

if condition (2-1) or (2-2) is satisfied (Fig. 2).

(2-1) see;(i) = true.

(2-2) For some h, st;(h) = true and gen;(h) < y.

Otherwise, set cge;(y) := z; for al y(yo < vy < 11). |
The agorithm CGC based on Rules 1 and 2 is shown in

Fig. 3. The correctness is shown below.

Lemma2 Ifaglobal checkpoint (c1, ¢y, .. ., cy,) iSnot con-
sistent, there is a pair (c;, ¢;) such that there is a causal
sequence from¢; to ¢; whose length is 1. [|

(Proof) Assume that the pair with the shortest causal se-
quenceis (c;, c¢;) and that thelengthismorethan 1. Let m,
be thefirst message in the causal sequence and py (# pi, p;)
be the process that executes r(mq). If ¢, is before r(m;),
¢, — ¢;, and this contradicts the notion that (c;, ¢;) isthe
pair with the shortest causal sequence. If ¢ is after r(m;y),
¢; — ¢, and this also contradicts the minimality of the
causal sequence. []

Theorem 2 The global checkpoints obtained by algorithm
CGC are consistent. [|

(Proof) Assume that CGC(y) is not consistent. From
lemma 2, assume that CGC(y,i) — CGC(y, k) and let
the message in the causal sequence be m.

Let ¢} be the event when p, decides CGC(y,h). e}
isan initiation or areceive event. If e} is areceive event,
CGC(y,h) is before e]. Otherwise, €] = CGC(y, h).
Thus, CGC(y,h) is ps's newest checkpoint at e; and
CGC(y,h) — ej issdtisfied. genp(h) < y is satisfied
beforeej and geny, (h) > y issatisfied at e

(Case 1: e} — e!) Since CGC(y,1) is p;'s newest
checkpoint at e/ and CGC(y,i) —» CGC(y,k) — e} —
e, see;(1) = true a €. Thus, CGC(y,i) must be the
newly taken checkpoint just before e? from Rule 2. This
contradicts the fact that there is an event s(m) between
CGC(y,t)and €.

(Case 2: € is before s(m)) Since gen;(i) > y at ef,
geng (k) > y must be satisfied at 7(m). Thus, e} must be
equal to or before r(m). This contradicts the notion that
CGC(y, k) isdfter r(m).

(Case3: e} 4 e/ and e} isafter s(m)) Sincee; 4 e,
geni(k) < y at ef. Since there is event s(m) between
CGC(y,1) and €, e! is a receive event from a process
p;. Letys = mgen(j) ael. y1 > y issatisfied. Since
st;(k) = true and gen; (k) < yp a ef, CGC(y,7) must
be the newly taken checkpoint just before e from Rule 2.
This contradicts the notion that there is event s(m) between
CGC(y,t)and €. |

Theorem 3 When additional checkpoint ¢} is taken at e;
by Rule 2 under the GCN assignment rule Rule 1, there is
an execution in which a consistent global checkpoint for an

initiation ¢ satisfying ¢ — e; cannot be obtained without
el []

(Note) InRule2, CGC(y, 1) isset asthe newest checkpoint
before r(m) for every y(yo < y < y1) when no additional
checkpointistaken. Whenan additional checkpointistaken,
CGC(y,1) is set as the checkpoint for every y(yo < y <
y1). Ineither case, aconsistent global checkpoint might also
beobtained by setting CGC(y', i) asacheckpoint beforethe
newest one for some y'(yo < ¥’ < y1). This modification
of Rule 2 does not reduce the total number of checkpoints.
Since the following proof does not assume that CGC(y', 1)
is set as the newest checkpoint, the additional checkpoints
taken by Rule 2 are necessary no matter how CGC(y', 1) is
selected.

(Proof) Assume that r(m) in p; is an event when an
additional checkpoint istaken by Rule 2.

First consider the case when (2-1) is satisfied. Since
see;(i) = true, there is acheckpoint ¢, * satisfying ¢;’ —
ciF and ¢* — r(m). Thereis aconsistent global check-
point CGCp which includes ¢;*. If no checkpoint is taken
at r(m), CGCo(4) must be equal to or beforec]*. In either
case, CGCyisnot consistent since ¢;” — ¢ *.

Next consider the case when (2-1) is not satisfied but
(2-2) is satisfied. Note that gen; (k) < yi for every k at
r(m). Let M be the first message sent to p;, after c¢;*.
Let y» = gen;(i) a s(M). Since s(M) is before r(m),
Y2 < yo(< y1) is satisfied.

Letey = cpj(m)(h), that is, py,’s last event known to p;
a r(m). Letys = genp(h) @ e,. Since geny(h) @ ey,
equals gen;(h) at r(m), ys < y1 is satisfied.

If y» < yo, thereisareceive event r(m') between s(M)
and r(m) such that gen;(i) = yo after »(m'). Since p;
did not take a checkpoint a r(m'), gen;(h) = yo must
be satisfied at r(m'). Thus, yo < y3 holds. Therefore,
yo < max(yz2,y3) < y1 issatisfied in every case.

Now consider the following execution after e;. py ex-
ecutes r(M) if r(M) is not before e;,. p;, then initiates
checkpoint ¢f. Let the GCN for ¢ be ys. Since genp,(h)
just before ¢ ismaz(yz2,ys3), ya = maz(y2,y3) + 1 < 31
issatisfied. If no checkpoint istaken at r(m), CGC(y4,1)
is equal to or before ¢* and CGC(ya) is not consistent
becausec]’ — cf. []

The information piggybacked on each message and kept
in each process (other than output) is O(n) integer.

Here, the rule for removing old checkpoints is shown.
The amount of stable storage usage becomes large if old
checkpoints are not removed. When p; has a failure, the
processes use the consistent global checkpoint that includes
pi's newest checkpoint. Let yo = min,gcn;(j). p; knows
that no process uses CGC(y)(y < yo) for rollback, thus p;
can remove the checkpoints before cgc; (yo).

4 Modification for inconsistent initiations

Rule 1 forces taking a different consistent global check-
point for two initiations ¢, ¢’ satisfying ¢ — ¢’. However,
there are cases when it is unnecessary to obtain a consistent
global checkpoint for ¢’. This section modifies Rule 1 to
suppress the need for taking additional checkpoints.

For a consistent global checkpoint CGC and a set
of pairs of a process number and checkpoint S =
{(ix,c;*), (iz,¢;?), - .., (ik,c;*)}, denote the global
checkpoint defined below as GC(CGC; S):

e ol if (i,cj*) € S
GC(CGE;S,1) = { CGC(i) if(i,x) ¢S
If GC(CGC; S) isconsistent, the procedure for obtaining a
consistent global checkpoint that includes S can be stopped
halfway.

First, consider the case when | S| = 1. No new GCN is
assigned to initiation ¢}’ if GC(CGC*; {(i,c]*)}) is con-
sistent, where CGC* is the consistent global checkpoint
which includes cjv“*l. Rule 1 (2) is changed as follows.
Note that (1),(3), and (4) are unchanged.

(Rule 1': modified GCN assignment rule for p;)

(2) When initiation ¢;* occurs, increment gen; (i) and as-
sign the number as the GCN for ¢} if one of the fol-
lowing conditionsis satisfied.

(2-1) geni(j) = gena(i) for some j(# i).

(1'-2) Thereisaprocess p; satisfying (a)-(d).

(8 p; takes a checkpoint c;’ satisfying c;’ 4 cf'~* and
then sends a message m to p;.

(b) p; executesr(m) between ¢t and ¢,

(c) Thereisno message M such that M is sent from p;
after ¢’ to aprocess other than p; and (M) — ¢;".

(d) At least one message m’ is sent from p; to process
pr(# p;) after gen;(¢) becomesthe current value, if p;
sends message m to a process other than p; satisfying
c;’ — s(mg) — ¢;". If p; doesnot send such message
my, thereis no restriction on the receiver of m'. [|

Theorem 4 GC(CGC*;{(i,c")}) is consistent if CGC*
is consistent and the conditionsin Rule 1' are not satisfied
for ¢j*. |

(Proof) Assume that CGC* is consistent and
GC(CGC*;{(i,c;")}) isnot consistent.

Lety = gen,(i) a 1. CGC*(j) = CGC(y,j) for
al j(#i). CGC(y,j) A " *orall j(# i), since CGC*
is consistent.

If ¢ — CGC(y,§)(j # i), ' ~* — CGC(y,) and
CGC* is not consistent. This case cannot occur. Thus,
CGC(y,j) — c;* holds for some j(# i). Let e} be the
event when p; decidesCGC(y, 7). Without loss of general-
ity, assumethat j satisfiese;, /> e forany h(# j) satisfying
CGC(y,h) — i If e]y SatiSfieSeg -t geni(j) =yat
c;and (1'-1) is satisfied.

Next condder the case ef # ¢. Let a
longest causal sequence from CGC(y,j) to c¢* be
CGC(y,7),s(m1),...,r(my), ;. If r(m;) is before
¢~ CGC* isnot consistent. Thus, 7(m;) is after ¢ L.
Since e 4 ¢, ef isdter s(my). | = lisshown. As
sume that [> 2. Let the process that executes r(m;1) be
pr. If CGC(y, k) is after r(m,), CGC* is not consistent
because CGC(y,j) — CGC(y, k). Thus, CGC(y,k) is
before r(my) and CGC(y, k) — c;'. e} # e issatisfied
from the definition of j. Sincee; # e, genj(k) < y a
ei. Since stj(k) = true a ef, CGC(y,) cannot be an
old checkpoint before s(m4) from Rule 2. Therefore, | = 1
holdsand CGC(y, j) satisfies (8) and (b) in (1'-2).

Assumethat thereisamessage M sent to aprocess other
than p; after CGC(y,j) and (M) — ¢*. Thusthereis
acausal sequence CGC(y,j),s(M),r(M),...,c;" whose
length is more than one. This contradicts the notion that the
maximum length of causal sequences from CGC(y, j) to
¢;' is 1. Thus, such a message does not exist. Therefore,
(¢)in(1'-2) is satisfied.

stj(i) = true atej. Thus, gen;(i) > y must be satisfied
at e? in order to select an old checkpoint as CGC(y, j) at
e?. Therefore, e! — e? must be satisfied. If ¢]* — e?,
see;(j) = true a e? and CGC(y, j) must be the newly
taken checkpoint just before e?. This contradicts the notion
that there is an event s(m1) between CGC(y, j) and ej.
Thus, ¢;* # e and p; must havesent amessagem' between
e andc)’.

Inaddition, if st;(k) = true at cp}’(j) for some k(# i),
genj(k) > y must aso be satisfied at ef. If (gen;(k) <y
andgen;(i) > y)or(gen (k) > yandgen;(i) < y) atsome
evente;, p; takesan additional checkpoint just beforee; and
this contradicts the existence of s(my) between CGC(y, j)
and ej. If m' is sent to p; and no other message is sent
from p; between e} and c;*, one of the above conditionsis
satisfied at r(m”) or just before r(m’) because gen; (k) < y
a s(m'). Thus, p; must have sent a message to a process
other than p; between e? and ¢;*. Therefore (d) in (1'-2) is
satisfied. [|

Theorem 5 When ¢; satisfies one of the conditions of Rule
1’, thereisan execution inwhich GC(CGC*; {(i,c;*)}) is
not consistent. |

(Proof) Let y = gen,(i) at 7. First, consider the case
when (1'-1) is satisfied. Inthiscase, CGC(y, j) — <= and
GC(CGC*;{(i,¢]")}) isnot consistent.

Next, consider the case when (1’-1) is not satisfied and
(I'-2) is satisfied. geny(h) < y issatisfied at ¢p]* (k) for
any h(# i) because (1'-1) is not satisfied. Let the message
sent from p; to p, bem'. Notethat »(m') is after epl (k).
Otherwise, geny (k) = y at cp}’ (k). Letthe set of processes
to which p; sends a message after cj." other than p,; be
P; = {pj,,pj,,---,pj }- Forany message M sent from p;
to p;, after ¢;’, r(M) is not before cp;’ (j5). Otherwise,
r(M) — ¢;*, and this contradicts (1'-2)(c). Consider the
following execution after cpi*. Assumethat P; # ¢. From
(d), pi. # p;. Consider the case p, ¢ P;. When p,, € P; or
P; = ¢, similar executions can be constructed. The details
are omitted here.

pi. executesr(m’) and sends Mo to p;, just after cpi (k).
pj,(h = 1,...,1 — 1) executes r(M},_1) and sends M,
to pj,,, just after cp;”(jn), that is, before receiving any
message from p;. p;, executesr(M;_1) and sends M, to p;
just after cpii(j;). p; executesr(M;). see;(j) = falseis
setisfied at r(M;). Assumethat see;(j) = true. Thereisa
checkpoint ¢ satisfying c‘ff — cand ¢ — r(M;). ¢ must not
be in p; because there is no checkpoint between cf"_l and
et If cisinpp(h # 1), c must satisfy r(m') — ¢ in order
to satisfy ¢ — c. However, there is no such checkpoint in
this execution. Thus, see;(j) = false at r(M).

In addition, gen;(h) = y for any process p, such that
stj(h) = trueatr(M;). Thus, p, SetScjj asCGC(y,j)and
GC(CGC*;{(i,ci*)}) is not consistent since ¢;’ — ¢f*.

|

Theorem 6 When additional checkpoint ¢;* is taken at e;
by Rule 2 under the GCN assignment rule Rule 1', thereis
an execution in which a consistent global checkpoint for an
initiation ¢ satisfying ¢ — e; cannot be obtained without
ot [|

1

The proof is similar to the one for Theorem 3 and omitted
[5].

Lastly, the case |S| > 2 isdiscussed. Even if Rule 1’
cannot beappliedand GCN y+ 1isassigned totheinitiations
in S, obtaining CGC(y + 1) seemsto be able to be stopped
halfway if GC(CGC(y); S) is consistent. Actudly, thisis
impossible and the reason is shown below.

It is obviousthat |S| = n — 1 isthe case of selecting a
checkpointin CGC(y) for thelast element of CGC(y + 1),
and this case has been discussed in Rule 2. Thus assume
that 2 < |S| < n—2and therearetwo processes, pj, and py,
satisfying (h, %), (k,*) ¢ S. Consistent GC(CGC(y); S)
can be obtained if each element in GC(CGC(y);S) — S
can be selected as CGC(y + 1) by Rule 2. Thus, it is
assumed that at p;’s (p,’S) receive event r(my) (r(my)),
which informs GCN y + 1, Rule 2 forces py (py,) to take an
additional checkpoint before the receive event and set it as
CGC(y+1,k) (CGC(y+ 1, h)). With these assumptions,
the following theorem holds.

Theorem 7 Thereisno algorithmin which p,, or p;, do not
take an additional checkpoint at »(my) and r(m) when
GC(CGC(y); S) isconsistent. |

(Sketch of the proof) It is necessary for p;, and p;, to have
common knowledge[2] that GC(CGC(y); S) isconsistent.
However, common knowledge cannot be attained when the
communication is asynchronous [2]. |

5 Conclusion

This paper showed a distributed algorithm which obtains
aconsistent global checkpoint for any initiation. Among the
extensions of Chandy and Lamport’s algorithm, this algo-
rithm minimizes the number of additional checkpoint. One
open question is whether this algorithm is optimal without
Chandy and Lamport’s assumption.

Acknowledgments The author would like to thank Dr.
Hirofumi Katsuno of NTT for his encouragement and sug-
gestions.

References

[1] Chandy, K.M. and Lamport, L.: “Distributed Snapshots: De-
termining Global States of Distributed Systems,” ACM Trans.
on Computer Systems, Vol. 3, No. 1, pp. 63-75 (Feb. 1985).

[2] Halpern, J. Y. and Moses, Y.. “Knowledge and Common
Knowledge in a Distributed Environment,” Journal of the
ACM, Vol. 37, No. 3, pp. 549-587 (July 1990).

[3] Heary,J-M., Mostefaoui, A., Raynal, M., and Netzer, R.H.B.:
“Preventing Useless Checkpoints in Distributed Computa
tions,” Proc. of 16th Symposium on Reliable Distributed Sys-
tems (Oct. 1997).

[4] Lamport, L.: “Time, Clocks, and the Ordering of Eventsin a
Distributed System,” Communications of ACM, Vol. 21, No.
7, pp. 558-565 (July 1978).

[5] Manabe, Y.: “A Distributed Consistent Global Checkpoint Al-
gorithm with a Minimum Number of Checkpoints,” Technical
Report of IEICE, COMP97-6 (Apr. 1997).

[6] Manabe, Y.: “A Distributed First and Last Consistent Global
Checkpoint Algorithm,” Proc. of 12th Int. Conf. on Informa-
tion Networking (Jan. 1998).

[7] Netzer, R.H. and Xu, J.: “Necessary and Sufficient Conditions
for Consistent Global Snapshots,” |IEEE Trans. on Parallel and
Distributed Systems, Vol. 6, No. 2, pp. 165-169 (Feb. 1995).

[8] Prakash, R. and Singhal, M.: “Low-Cost Checkpointing and
FailureRecovery in Mobile Computing Systems,” |EEE Trans.
on Parallel and Distributed Systems, Vol. 7, No. 10, pp. 1035~
1048 (Oct. 1996).

[9] Strom, R.E. and Yemini, S.: “Optimistic Recovery in Dis-
tributed Systems,” ACM Trans. on Computer Systems, Vol.3,
No.3, pp. 204-226 (Aug. 1985).

© initiation

(a) Execution E. (b) E'(A"). (c) E'(A).

Figure 1. Minimizing additional checkpoints.

Figure 2. Rule 2-1 and 2-2.

program CGC; /* program for p;. */
const . = ..; /* number of processes */
var gen(n) ck(), cge(): integer;
st(Q see(n): boolean;
procedur e checkpoint begm
take a checkpoint;
ck(z) := ck(i) + 1,
for each k(+# 7) do see(k) :=true;
see(1) :=false;
for each k do st(k) :=false;
end; /* end of subroutine */
[* main*/
initialization begin
for each k£ do gen(k) := 0;
for each k(# :) dock(k) := —1;
ck(z) :=0;
for each k do see(k) :=false;
for each k do st(k) :=fase
end; /* end of initialization */
When ﬁ initiates a checkpoint begin

0int;
gcn g)_gcn)—|—1

&gcné 2 = ck(i
checkp0| nt initiation */
When p; sendsm to p; begin
send(m, gen, ck, see) to pj;
st(j) =true;
end; /* end of messagesendlng */
when p; receives (m, mgen, mck, msee) from p; begin
for each k do
if ck(k) = mck(k) then see(k) := see(k) V msee(k)
elseif ck(k) < mck(k) then see(k) := msee(k);
for each k do ck(k) := maz(ck(k), mck(k));
for each k do gen(k) := maz(gen(k), mgen(k));
if gen(7) < mgen(j) then begin
if see(z) or (3h, st(h) and gen(h) < mgen(y))
then checkpoint;
for each y(gen (i) < y < mgen(j)) docge(y) = ck(7);

ena;
gen(i) := max(gen(i), mgen(j));

executer(m);
end; /* end of message receiving */

Figure 3. Algorithm CGC.

