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Abstract 

A distributed coordinated checkpointing algorithm for 
distributed mobile systems is presented. A consistent global 
checkpoint is a set of states in which no message is recorded 
as received in one process and as not yet sent in another 
process. It is used for rollback when process failure oc- 
curs. A consistent global checkpoint must be obtained for 
any checkpoint initiation by any process. This paper shows 
a checkpoint algorithm in which the amount of information 
piggybacked on program messages does not depend on the 
number of mobile processes. The number of checkpoints 
is minimized under two assumptions: ( I )  one consistent 
global checkpoint is taken for concurrent checkpoint initi- 
ations and (2)  a checkpoint is initiated at each handoff by 
mobile processes. This algorithm is thus optimal among 
the generalizations of Chandy and Lamport’s distributed 
snapshot algorithm under the latter assumption. 

1. Introduction 

Recent wireless-LAN and personal-computer technology 
has made mobile computing realizable. This paper considers 
distributed mobile systems consisting of mobile hosts (MHs) 
and static hosts. Static hosts are connected by a wired LAN 
and their physical locations do not change. Some static 
hosts can be mobile support stations (MSSs). An MSS 
can communicate with MHs by a wireless medium. For 
simplicity of discussion, this paper assumes that every static 
host is an MSS. An MSS or an MH is called a process. 
When an MH moves, its MSS can change. This is called a 
handoff. 

Algorithms for distributed mobile systems must consider 
the following issues [2]. 

(M1) The capability of MHs is limited compared to static 
hosts. Thus, the amount of computation in MH must 
be minimized. 
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The bandwidth of a wireless LAN is lower than that of 
a wired LAN. Thus, the communication overhead of 
the wireless medium must be minimized. 

The number of MHs may not be known in advance and 
i t  may be larger than the number of static hosts. Thus, 
the overhead of computation and communication must 
not increase with the number of MHs. 

Handoffs occur during execution and the algorithm 
must be able to handle the effects of handoffs. 

Causal ordering protocols have been presented [2][9] as 
a basic protocols for distributed mobile systems. This pa- 
per presents a checkpointing protocol for distributed mobile 
systems. A consistent global checkpoint is a set of states 
in which no message is recorded as received in one pro- 
cess and as not yet sent in another process [8]. When there 
is process failure, execution can be continued from the set 
of rolled-back states if every process rolls back to each 
state in a consistent global checkpoint and the messages that 
have been sent and not received are restored. The message 
restoration methodis similar to Strom and Yemini’s [12] and 
the details are discussed in [71. This paper thus focuses on 
how to obtain a consistent global checkpoint. 

It is assumed that checkpointing might be initiated at any 
time in any process. When a process initiates checkpointing, 
it takes its checkpoint and notifies the other processes about 
the initiation. When each of the other processes receives this 
information, it might have to take its checkpoint in order to 
obtain a consistent global checkpoint which contains the 
initiation. Throughout this paper, the checkpoint taken by 
the initiator is called an initiation. The other checkpoints 
are called additional checkpoints. The number of additional 
checkpoints must be minimized to reduce the overhead of 
checkpointing. 

Many checkpointing algorithms for distributed systems 
have been reported. Chandy and Lamport’s distributed snap- 
shot algorithm [3] has been modified for distributed mobile 
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systems [ 111. Though the algorithm obtains one consis- 
tent global checkpoint for concurrent initiations, i t  deals 
with each non-consistent initiation independently. Thus, 
the number of additional checkpoints is not minimized. An 
index-based algorithm [ 11 does not minimize the number of 
additional checkpoints either. An algorithm that minimizes 
the number of additional checkpoints in distributed systems 
under Chandy and Lamport’s assumption that one consistent 
global checkpoint is obtained for concurrent initiations has 
been shown independently [4][6]. However, it uses an array 
of integers whose size is the number of processes. Thus, the 
size depends on the number of MHs and property (M3) is 
not satisfied. 

In this paper, the algorithm in [4][6] is modified for dis- 
tributed mobile systems without using large size variables 
with one additional assumption. The additional assumption 
is that an MH takes a checkpoint whenever a handoff oc- 
curs. This checkpoint is called a handoff checkpoint. This 
assumption is introduced in [I] since the possibility of fail- 
ure might be high at handoff compared to the time of normal 
operations. This paper assumes that a handoff checkpoint is 
an additional checkpoint. However, this paper’s algorithm 
can be easily modified for the case when a handoff check- 
point is an initiation; that is, when one consistent global 
checkpoint that includes each handoff checkpoint must be 
obtained. If every handoff checkpoint is an initiation, the 
algorithm minimizes the number of additional checkpoints. 
Thus, it is optimal among the generalizations of Chandy and 
Lamport’s distributed snapshot algorithm under the assump- 
tion that every handoff checkpoint is an initiation. 

2. Consistent global checkpoint 

A distributed mobile system is modeled by a finite set of 
mobile support stations S = { s , ,  s2 , .  . . , sn} and a set of 
mobile hosts H = {hi ,  hz, . . . , he}. An element in S U H  is 
callcd a process. The MSSs are interconnected by point-to- 
point static channels. Each MH is connected to at tnost one 
MSS at the same time. Let H, be the set of MHs currently 
connected to MSS s,. The channel between MH and MSS 
is a wireless channel (Fig. 1) .  Channels are assumed to be 
error-free and have infinite capacity. The communication is 
asynchronous; that is. the delay experienced by a message is 
unbounded but finite. Channels might not be FIFO (First-In, 
First-Out). 

Every communication between an MH and the other pro- 
cesses is done via the MSS to which i t  IS currently connected. 
For example, when h sends message m to process s(# s,) 
where s, is h’s current MSS. h sends a pair ( s ,  m) to s, and 
s, forwards it to s. In the rest of paper, the pair ( s ,  m) is 
considered as a message from s to s,. A similar assumption 
is given in receiving by an MH. 

A process p E S U H’s execution includes the following 

: mobile support station(MSS) 

0 : mobile host(MH) - 
: wired channel 
: wireless channel ............ 

Figure 1. Distributed mobile system. 

events called handoff events. 

1. 

2 .  

3. 

4. 

5. 

Connect: MH h executes connect in order to set up a 
wireless communication channel between MSS s,. 

Accept: MSS s, executes accept in response to 
connect’. h is added to H,. 

Disconnect: MH h executes disconnect in order to 
disconnect the channel between the current MSS s,. 

Remove: MSS s, executes remove in response to dis- 
connect. h is removed from H,. 

Handoff checkpoint: MH h takes a checkpoint between 
two events, disconnect to its old MSS and connect to 
new MSS. 

It is assumed that MH can send some information related 
to handoff to its MSS by connect. The MSS can receive 
i t  by accept. It is also assumed that MH can send some 
information related to handoff by disconnect and MSS can 
receive i t  by remove. Thus, a connect(dzscmnect) and 
accept (remove) event can be considered as a special kind 
of send and receive event. In the rest of the paper, s ( m )  
means send event, connect event. or disconnect event whose 
content is m. Similarly, r (m)  means receive event, accept 
event, or remove event. Since the channel may be non-FIFO, 
some messages between MH and its MSS might not have 
been received at disconnect and remme. These messages 
could be lost. This makes no problem in checkpointing, 
since ( 1 )  from MH to MSS, disconnect message can also 
piggyback information necessary for checkpointing, and (2) 
from MSS to MH, the lost messages make no need to take a 
checkpoint in MH. 

Checkpoint initiation events are executed independently 
by each process in S U H .  System execution E is the set of 

‘In [l 11, uccept occurs before connecr. This is a minor change since 
any conimunication between MH and MSS can be done after these two 
events anyway. 
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Figure 2. System execution. 

all processes’ executions. Checkpointing algorithm A takes 
additional checkpoints so that there is a consistent global 
checkpoint which includes each initiation. Process p’s ex- 
ecution with checkpointing algorithm -4 is p’s execution 
interleaved with the additional checkpoints takcn by A in p .  
System exccution with -4, E(.4). is the set of all processes’ 
exccutions with A. Since a handoff checkpoint is not an ini- 
tiation, there might be no consistent global checkpoint that 
includes a given handoff checkpoint. If such a consistent 
global checkpoint is needed, i t  is achieved by executing the 
procedure for initiations at the handoff checkpoint. 

In the rest of the paper, a sequence number is assigned to 
any (initiation and additional) checkpoint in a process. Let 
c; be p’s 2-th checkpoint. 

Fig. 2 shows an example of system execution. Initially, 
MH h is connected to s l .  h then sends disconnect s(.ml) 

and connect s ( m 3 )  to s7. c i  is a handoff checkpoint. 
The “happened before(+)” relation between the events 

in E(.4) is defined as follows [SI. 

Definition 1 e + e’ ifand only zf 

( I )  e and e‘ are executed in the same process and e is not 

( 2 )  e is the send event s ( m )  and e‘ is the receive event 

(3)  e 

executed afer e‘. 

r(m) of the same message m. 

e’’ and e’’ -+ e‘ for  event e”. 

Note again that s( m) can be connect or disconnect in (2). 
When e and e’ are executed in different processes and e --f 

e’. there is a sequence of eventse, s ( m l ) ,  r(ml),  s ( m 2 ) ,  . . . , 
s ( m k ) , r ( m k ) , e ’  in which e -+ s (ml ) ,  r (m,)  --f 

~ ( m , + ~ ) ( i  = l , . .  .,k - 1). r (mk)  + e’ and these pairs 

of events are executed in the same process. This sequence 
is called a causal sequence from e to e’. 

Two special events, I, and T,, are defined for process 
p. I, is an imaginary event which is p’s initial state. For 
any event e in p,  I, -+ e.  T, is p’s current event if p is 
not terminated. If p is terminated, T, is an imaginary event 
which is p’s terminal state. For any event e in p,  e -, T,. 
This paper considers I, and T, a$ checkpoints in E. 

Definition 2 A pair of checkpoints ( c ,  c’) is consistent ifand 
only ifc f ,  c’ and c’ f+ c 

A global checkpoint (cl, cl ,  . . . , C N )  is N-tuple of check- 
points which consists of one checkpoint in each process, 
where N is the number ofprocesses. A global checkpoint is 
consistent if and only if all distinct pairs of checkpoints are 
consistent. 

In Fig. 2, (ci,,  cAz, c i )  is consistent, but (CL,, c:~, ci)  is not 
consistent because CA, -+ c;,. 

A consistent global checkpoint for process p’s checkpoint 
initiation cp in E(-4) is denoted as gc(c,, E(A)). q’s check- 
point in gc(cP,E(-4)) is dcnotedas gc(%,E(A),y). E ( A )  
is omitted if it is obvious. 

Checkpointing algorithms use either special messages 
called markers [3] or are communication-induced algo- 
rithms [4][6][ 103, in which all information for checkpointing 
is piggybacked on massages in E. This paper discusses the 
latter type, since markers are not effective in non-FIFO chan- 
nels [6]. Note that checkpointing algorithms can piggyback 
information also on connect/disconnect messages and the 
information can be received by accept/remove events. 

3. The checkpointing algorithm 

If the algorithm in [4][6] is used for the distributed mo- 
bile system, the amount of information piggybacked on each 
message and maintained by each process is O( IS1 + IHI) 
integers. This size can be reduced by using the fact that MH 
sends every message via MSS. In the present algorithm, the 
amount of information piggybacked on each message be- 
tween MSSs is O( 15’1) integers and the one between MSS 
and MH is O(  1) integers. MH maintains O( 1) integers 
and MSS maintains O(lHaI . ISl) integers. Thus, the re- 
quirements for mobile systems, (MlL (M2). and (M3) are 
achieved for MH because MH maintains, sends, and receives 
O( 1) integers during execution. Because each MSS has a 
limited number of wireless channels, IH, I is limited for MSS 
sa and (M3) is achieved for MSS. 

The basic algorithm in [6] consists of two rules, (Rule 1) 
and (Rule 2) .  

(Rule 1) A global checkpoint number (GCN) is assigned 
to each initiation. The initiations with the same GCN are 
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concurrent. One consistent global checkpoint is obtained 
for each GCN. 

(Rule 2) An additional checkpoint is taken when a con- 
sistent global checkpoint might not be obtained for a GCN. 

(Rule 1) reduces the number of additional checkpoints 
compared to the case when a consistent global checkpoint 
is obtained for each initiation independently. The GCN 
assignment is exactly the same as Lamport's logical clock 
[5]. In Fig. 2, GCN 1 is assigned to C A , ,  CA,. and c i  and GCN 
2 is assigned to e:, and c : ~  when all of these checkpoints are 
initiations. 

One implementation of (Rule 1) for distributed mobile 
systems is as follows. MSS s, has an integer vector gcn,, 
whose size is ISI. s, also has an integer hgcn,(h) for each 
MH h E H,. gcn,( j )  and hgcn,(h) maintains knowledge 
about GCN in each process. gcn,( j )  = y means that s, 
knows that sI knows the maximum GCN is y. hgcn,( h )  = y 
means that s, knows that h knows the maximum GCN is 
y. gcnIz,(i) is the current GCN s, knows. MH h has an 
integer gcn, which is the current GCN h knows. In Fig. 
2, gcnz( 1) = 1, gcnz(2) = 2, and h g c n l ( h )  = 0 at c:, in 
process s2. gcn = 1 at c i  in process h. 

GCN is assigned using these variables as follows: 
(Rule 1 in MSS: GCN assignment rule for MSS s,) 

Initially, set gcn i ( j )  := 0 for all j and hgcni(h)  := 0 
for all h E Hi. 

When initiation cZi occurs, increment gcni( i )  and as- 
sign it  as the GCN for cZi. 

When si sends a message m to a MSS, the current value 
of gcn, is piggybacked on m. 

When si sends a message m to MH h E Hi, the current 
value of gcni(i)  is piggybacked on m. 

When si receives a message 'm from MSS s j ,  let the 
value of gcnj on m be mgcn. 
Set gcni(k)  := m a z ( g c n i ( k ) , m g c n ( k ) )  for each k 
and then set gcni( i )  := m a z ( g c n i ( i ) , m g c n ( j ) ) .  

When si receives a message m from MH h, let the 
value of gcn on m be mgcn. 
Set hgcni(h)  := maz(hgcn i (h ) ,mgcn)  and then set 
gcni (2)  : = maz( gcni ( z) , mgcn)  . 
When MH h is connected to si, si receives the value 
of gcnj at the last send event to h in h's previous 
MSS s j 2 .  Let the received value be hlgcn. Set 
gcni(k)  := maz(gcn i ( k ) ,h lgcn (k ) )  for each k and 
then set gcni( i )  := m a x ( g c n i ( i ) ,  hZgcn(j)) .  
Next let the value of hgcn on the request message be 
mgcn. Set hgcni(h)  := maz(gcn i (h ) ,mgcn)  and 
then set gcni( i )  := maz(gcn i ( i ) ,mgcn) .  

ZThe procedure for sending this information is shown later. 

(Rule 2- 1)  (Rule 2-2) 

Figure 3. Rules for taking an additional check- 
point. 

(8) When MH h is disconnected from s,, let the value of 
gcn on the request message be mgcn. 
Set hgcn,( h)  := mar( hgcn,( h) ,  mgcn)  and then set 
gcn,(i)  := max(gcn , ( i ) ,  mgcn).  

(Rule 1 in MH: GCN assignment rule for MH h)  

Initially, set gcn := 0. 

When initiation cz occurs, increment gcn and assign i t  
as the GCN for e;. 

When h sends a message or a connecUdisconnect re- 
quest message m to MSS, current value of gcn is pig- 
gybacked on m. 

When h receives a message m from MSS s I ,  let the 
value of gcn, ( j )  on m be mgcn. 
Set g c n  := max(gcn ,  7ngcn). 

(Rulc 2) in [6] is the rule for taking an additional check- 
point. It consists of two subniles. Consider thc case when 
process p receives information about a new GCN from an- 
other process at event r (m) .  (Note again that r(m) can 
be a receive/accept/remove event.) This is the case when 
qcn,(i) < mgcn( j ) (or  mhgcn)  is satisfied (before updat- 
ing gcn,( i ) )  in (5)(6)(7)(8) for MSS si and gcn < 'mgcn is 
satisfied in (4) for MH h. Let p's newest checkpoint at r ( m )  
be c;, p must take an additional checkpoint in the following 
two cases [6]. 

(Rule 2-1) There is a Checkpoint c (in a process other 
than p )  satisfying cg --+ c and c 4 r(m).  

(Rule 2-2) After c;, p sends a message to a process which 
does not know the new GCN (Fig. 3). 

The formal proof of the correctness of the niles is shown 
i n  [6]. Intuitively, the necessity of an additional checkpoint 
is as follows: since there is an initiation whose GCN is 
31 and co -+ , r (m) ,  any checkpoint C L  after r ( m )  satisfies 
C O  --+ cl and c I  cannot be selected as the checkpoint for the 
consistent global checkpoint whose GCN is y. Thus, if  p 
does not take an additional checkpoint before r(m),  p must 
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set c; or a checkpoint before c; as the checkpoint for GCN 
Y. 

For (Rule 2-l), there is an initiation c’ satisfying 
gc(c’,q) = c for some process q. If gc(c’,p) is c; or a 
checkpoint before c;, c; + c and gc(c’) is not consistent. 
Thus, an additional checkpoint is necessary. 

For (Rule 2-2), assume that p sends a message to q after 
e;. If q initiates checkpoints some time after the receive 
event, there might be an initiation c’ whose GCN is y. Thus, 
the global checkpoint for y is not consistent since c; + c’ if 
c; or a checkpoint before c; is selected. Thus, an additional 
checkpoint is necessary. 

First consider (Rule 2-1) in distributed mobile systems. 
There are four cases: (1) p is an MSS and c is in an MSS; 
(2)pis an MSS and c i s  in an MH; (3)pis an MH and cis in 
an MSS; and (4) p is an MSS and c is in an MH. Case (1) is 
identical to the one for the system without MHs in [6]. The 
outline of checking (Rule 2-1) is as follows. 

si’s variable ck i ( j )  has the number of checkpoints. 
c k i ( j )  = z(_> 0)  if -+ e is satisfied, where e is s i ’ s  
current event. c k i ( j )  = -1 if I,, f ,  e. cki(z) is si’s 
newest checkpoint number. In Fig. 2, ck2(1) = 1 and 
ckz(2) = 2 at c:, in process s2. 

Boolean variable see i ( j )  has information about the new 
checkpoint. see i ( j )  = true if si knows that there is a 
checkpoint c satisfying c ; ~  --t c, where czj is s j ’ s  newest 
(the cki(j)-th) checkpoint. If there is no such checkpoint 
c, seei(j) = fa l se .  In Fig. 2, seez(1) = true at cf, in 
process s2. 

If seei(i)  = t rue  at si’s event e ,  the following condi- 
tion is satisfied. For si’s newest checkpoint c z ,  there is a 
checkpoint c which satjsfies cs“; + c and c + e. Thus jn 
order to detect (Rule 2-1) between the MSSs, the following 
condition must be tested. 

(Condition 2-1-1:MSS) Take an additional checkpoint 
if see i ( i )  = true. 

The detail of the update rule of the variables are shown 
in the algorithm in Fig. 4. Its outline for ck is as follows: 
cki( i )  is incremented if a checkpoint is taken in si. When si 
sends a message m, the current value of cki is piggybacked 
on m. When si receives a message m from s j ,  let the value 
of ckj on m be mck.  Set ck i (k )  := m a z ( c k i ( k ) , m c k ( k ) )  
for each k .  

The outline of the update rule for see is as follows: When 
si takes acheckpoint, set see,(j) := true forallj(# i) and 
seei(z) := fa l se .  When si receives a message m from 
s j ,  let the value of seej and ckj piggybacked on m be 
msee and mck.  For each k ,  execute the following. If 
m c k ( k )  > ck i (k ) ,  s j  knows S k ’ s  newer checkpoint. Thus, 
seei(k) := msee(k )  is executed. If mck(k)  < ck i (k ) ,  si 
knows s k ’ s  newer checkpoint. Thus, see i (k )  is unchanged. 
If mck(k )  = cki(k),  both processes know the same check- 
point in sk. Thus, Set see i (k )  := seei(k) V msee(k) .  

Next let us discuss case (3)(4). 

Theorem 1 It is unnecessary for MH h to check whether 
(Rule 2-1) is satisfied for checkpoint c in processes other 
than its current MSS. 

(Proof) Suppose that (Rule 2-1) is satisfied for a check- 
point in other than its current MSS. There is a causal 
sequence CS = c z ,  s (mo),r(mo),  . . . ,c , .  . . , s(m),r(m),  
where c: is MH h’s current checkpoint at r(m).  If a 
handoff occurs between c; and r(m).  an additional check- 
point is taken between these events and c; is not h’s cur- 
rent checkpoint at r(m).  Thus, a handoff does not occur 
and r(mo) and s ( m )  are executed in the same MSS si. 
Since c is not in si, CS can be written as follows. C S  = 

e;, s(,mO),T(mo),s(ml),r(ml), . . . , e , .  . . ,s(m’),r(m’), 
s(m),  ~ ( m ) .  where s(ml)  and r(,m’) are si’s events. Sup- 
pose that thereis no si checkpoint between r(mo) andr(m’). 
Let si’s current checkpoint at r(m’) be czi. Since cyi is be- 
fore r (mo) ,  czi + c and c + r(m’)  and thus si satisfies the 
condition in (Rule 2-1). Therefore, si takes an additional 
checkpoint just before r(m’). This contradicts the fact that 
there is no checkpoint between r(m,o) and r(m’). Thus this 
case cannot occur. 

Now consider the case when there is a checkpoint CZ in si 
betweenr(,mo)andr(m‘). Sincec; + cs”,  and^:^ + r(m),  
the condition in (Rule 2-1) is satisfied for si’s current MSS 
Sa. I 

Thus MH h just needs to check the satisfaction of (Rule 
2-1) between current MSS. This is achieved as follows. 
When MH h is connected to MSS si, si maintains a variable 
hsee(h) .  hseei(h) = 3: if c i  + c is satisfied for MH h’s 
checkpoint c:, where c is si’s current checkpoint. When 
message m is sent from si to h, hsee is piggybacked on m. 
Let mhsee be the value of hseei( h )  piggybacked on m. MH 
h maintains variable Ckh which has h’s current chcckpoint 
number (‘just as cki(z) in MSS si). In Fig. 2, hsee2(h)  = 1 
at c f ,  in process s2. ckh = 2 at r ( m 4 )  in process h. 

Then theconditionsatisfying(Rule2-1)forMHis written 
as follows: 

(Condition 2-1-2:MH) Take an additional checkpoint if 
Ckh = mhsee. 

Lastly, consider case (2). This rule is similar to the one 
in (Condition 2- 1-2). 

Theorem 2 It is unnecessary for MSS si to check whether 
(Rule 2-1) is satisjed for checkpoint c other than handof 
checkpoints in M H  it does not support now. 

(Proof) Suppose that (Rule 2-1) is satisfied for a check- 
point c other than handoff checkpoints in MH h which 
si does not support now. There is a causal sequence 
cs = czi,s(mO),r(%). .-,s(mk),r(mk),c,s(mk+l), 
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r ( m k + l ) ,  . . . , s ( m ) ,  r (m) ,  where cZi is si’s current check- 
point at r (m) .  If the processes executing ~ ( m k )  and 
r(mk+l) are different, a handoff occurs in h between s ( m k )  

and ~ ( m k + ~ ) .  Thus, there is a causal sequence c Z ,  s (mo),  

s(m),r(m),  where cH is a handoff checkpoint. Hence, 
(Rule 2-1) is also satisfied for a handoff checkpoint. 

Now consider no handoff occurs between r ( m k )  and 
s ( m k + ~ ) .  Thus s ( m k )  and r(mk+l) are executed by the 
same process, h’s current MSS. Let s j  be the MSS. Suppose 
thatthere isnosj’scheckpointbetweens(mk) andr(mk+l). 
Let sj’s current checkpoint at ~ ( m k + ~ )  be cyJ. Since cyj 
is before s (mk) ,  c$j -+ c and c + ~ ( m k + ~ )  and thus s j  
satisfies the condition in (Rule 2-1). Therefore, s j  takes an 
additional checkpointjust before r ( m k + ~ ) .  This contradicts 
the fact that there is no checkpoint between s ( m k )  and 
r ( m k + ~ ) .  Thus this case cannot occur. 

Now consider the case when there is a checkpoint c:j 
in s j  between s (mk)  and r(mk+l). Since cz; --$ c:> and 
cy -+ r( m), the condition of (Rule 2- 1) is satisfied for MSS 
s j ’ s  checkpoint cy,. 

From Theorem 2, case (2) is divided into the following 
two subcases. (2-1) p is an MSS and c is a checkpoint in an 
MH p supports now; (2-2) p is an MSS and c is a handoff 
checkpoint in an MH. 

In order to detect case (2-1). the following variables are 
introduced. MH h maintains a variable seeh. seeh = z if 
c;, + c is satisfied for MSS si ’s checkpoint cZ .  where c is 
h’s current checkpoint. When message m is sent from h to 
si, see is piggybacked on m. Let msee be the value of seeh 
Piggybacked on m. In Fig. 2, seeh = - 1 at any event in h. 

(Condition 2-1-3:MSS) Take an additional checkpoint 
if c k z ( i )  = “see. 

Case (2-2) is when there is a handoff checkpoint c sat- 
isfying c;< + c and c + r ( m )  for MSS si .  (Note that si 
might not bc the station that supports h now or supported h 
before.) 

In order to obtain information about whether MSS 
s j ’ s  checkpoints satisfy c:J + c for a handoff chcck- 
point c, h’s current MSS si maintains variable hZcki(h,j). 
hZcki(h,j) = z if c k i ( j )  = z at s,’s last send event s ( m )  
to h. Thus si updates hZcbi (h ,  j )  at every send event to MH 
h. In Fig. 2, hlck2(h,  1) = I at s(m4) in s?. 

si also maintains variable hZgcni(h,j). hZgcni(h,j) = 
z if gcni( j )  = z at s i ’ s  last send event s ( m )  to h. In 
Fig. 2, hlgcn?(h, 1) = 1 and hZgcn?(h,2) = 2 at s(m4) in 
s2. When a handoff occurs, hZgcni(h,j) has each pro- 
cess’s knowledge of the GCN that was sent to MH h. 
Thus, c2J + c is satisfied for handoff checkpoint c if 
hZcki(h,j) = z. When MH h is connected to a new MSS 
sk, sk receives information of hZcki( h, j )  and hlgcni( h, j )  
from h’s previous MSS si. (Note that for an alternative 
implementation, MH h can carry these values and send to 

r(mo).  . . , S ( m k ) ,  d m k ) , C H ,  S(mkfl),~(mk+l), . . . , 

SJ 

the new MSS at the connection.) Sk updates seek( j )  and 
gcnk(j)  by using hZcbi(h,j) and hZgcni(h,j). because Sk 
might know new checkpoints by the connection. Executing 
this update only once for each handoff is sufficient. With 
this modification, checking (Condition 2- 1- 1) is sufficient 
for detecting (Rule 2-1) for handoff checkpoints. 

Next consider (Rule 2-2). 

Theorem 3 It is unnecessary for MH h to check whether 
(Rule 2-2) is satisfied. 

(Proof) Suppose that (Rule 2-2) is satisfied in MH h. Let 
c; be the current checkpoint at receive event r(m) and si be 
the current MSS. s ( m )  is executed in si. When (Rule 2-2) 
is satisfied at r(m),  h sends a message m’ to process q after 
current checkpoint c;. q must be si. Otherwise, a handoff 
occurs after s(m’) and a handoff checkpoint cH is taken after 
s(m’). Thus, h’s current checkpoint is cH (or a checkpoint 
after c H )  and ~ ( m ’ )  is not after h’s current checkpoint. 
Therefore, q is s i .  In order to satisfy the condition in (Rule 
2-2), si’s gcn at r (m)  must be less than the gcn received by 
r(m,). This cannot occur since m is sent by si. Therefore, 
the condition in (Rule 2-2) is not satisfied in h. 

On the other hand, (Rule 2-2) might be satisfied in MSS 

Thus, the procedure for checking (Rule 2-2) in MSS is 
similar to the one in [6] for systems without MHs. Its outline 
is as follows. 

MSS si maintains s t i ( j )  for each sj and hsti(h) for 
h E Hi. s t i ( j )  = true if si sends a message to MSS s j  
after .si’s current checkpoint. hsti(h) = true if si sends a 
message to MH h after si’s current checkpoint. In Fig. 2, 
st2(  1) = false  and hst?( h)  = true at s(m4) in s2. 

(Condition 2-2: MSS) Take an additional checkpoint 
if (1) there is a MSS Sk satisfying gcni(k) < mgcn and 
s t i ( k )  = true or (2)  there is a MH h satisfying gcni(h) < 
mgcn and hsti( h)  = true. 

The algorithm is shown in Fig. 4. Each MH maintains 
O( 1) integers. The result is obtained as cgcp(y) in process 
p. cgcp(y) = z means that c: is the checkpoint for GCN y. 

si for MH h. 

4. Modification of GCN assignment 

In [6], a modification of (Rule 1) is shown. It suppresses 
unnecessary assignments of new GCN to initiations, which 
is similar to the one in [ 11. The obvious case when new GCN 
is unnecessary is that a process initiates checkpoints several 
times without sending or receiving to the other processes. It 
is unnecessary to obtain different consistent global check- 
points to these initiations if a consistent global checkpoint 
is obtained for the first one. The cases when new GCN 
is unnecessary is shown in [6]. However, introducing this 
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modification to distributed mobile systems greatly compli- 
cates the algorithm. Thus, here a sufficient condition to 
suppress a$signing a new GCN to an initiation is shown. 

MH h maintains a variable sgcn, which is the maximum 
GCN the current MSS knows. 

(2) in (Rule 1 in MH) is changed as follows. 

(2) When initiation c; occurs, increment g m h  and assign 
it as the GCN for c; if sgcnh = gcnh or seeh # sckh 
is satisfied. 

Here, the correctness is briefly shown. Let y be the value of 
gcnh just before c;. Let us aysume that sgcnh # gcnh and 
seeh = sckh are satisfied. In this case, consider a global 
checkpoint {cgc,(y)lp E H U  S } .  If C g C h ( ? J )  is replaced by 
c;, the obtained global checkpoint is also consistent. The 
reason is as follows: Let si be h’s current MSS. cgc,s,(y) 
is not defined before c; since sgcnh # gcn.h(= y). Thus, 
c; -+ cgcs,(y) cannot occur because si selects a check- 
point before the receive event of the message of GCN y 
notification. 

Next suppose that cgc,si (y)  -+ c;. Let c = C Q C , ~  ( y). 
c ft e;-‘ because cgch(y) = c;S-’. Thus, seeh < schh 
must be satisfied just before c;,  because schh is the check- 
point number of c and c f. e;-‘. It contradicts that 
seeh = sckh. Therefore, the replaced global checkpoint 
is consistent. 

The nile for MSS is similar to the one for MH. MSS s, 
maintains s see i ( j ) .  s see i ( j )  = z if czj -+ c is  satisfied for 
MSS s j ’ s  checkpoint c:, , where c is si’s current checkpoint. 

(2) in (Rule 1 in MSS) is changed as follows. 

(2) When initiation C:, occurs, increment 

gcn and make i t  the GCN for if (a) gcni( i )  = 
gcn i ( j )  or s see ; ( j )  # c k , ( j )  is satisfied for some j 
or (b) ycni( i )  = hgcni( h)  or hseei( h) # hcki( h)  is 
satisfied for some h E Hi. 

The correctness proof is the same as in the case of MH. 

5. Concluding remarks 

This paper discussed a coordinated checkpointing algo- 
rithm for distributed mobile systems whose message over- 
head is independent of the number of mobile hosts. The 
number of checkpoints is minimized under two assump- 
tions. Open problems includes algorithms without handoff 
checkpoints. 
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program CGC-MSS; /* pro ram for MSS s,. */ 
const n = ...; /* number of h S S  */; 
var gcn(n), ck(n) ,  Ick(n): integer; 

see(n) ,  s t (n) :  boolean; 
H, : set of process; I* MHs connected to s,. *I 
hgcn h ) ,  hck(h) ,  hlck(h, n), hlgcn(h, n) ,  hsee(h) : integer; 
hst h!) : boolean; 
cgc[) :  integer/* output of the algorithm *I 

take a checkpoint; 
procedure checkpoint begin 
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ck( i )  := ck( i )  + 1; 
for each k(# i) do see(k) :=true; 
see(i) :=false; 
for each k do s t ( k )  :=false; 
for each h E Hi do hst(h)  :=false; 
for each h E Hi do hsee(h) := hck(h);  

end; I* end of procedure checkpoint */ 

procedure testcondition(ngcn) begin 
i f g c n ( i )  < ngcn then begin 

i f see( i )  or  
(3, s t ( k )  and gcn(k) < ngcn) or  
(3h E H ; ,  hst(h) and hgcn(h) < ngcn) 

then checkpoint; 
for each y(gcn(i) < y 5 n g c n )  do cgc(y) := ck( i ) ;  

end; 
gcn(2) := maz(gcn(i) ,  ngcn); 

end; /* end of procedure testcondition */ 

/* main */ 
initialization begin 

for each k(# i) do ck(k) := -1; 

for each k do lck(k) := - 1; 
for each k do gcn(k) := 0; 
for each k do see(k) :=false; 
for each k do s t ( k )  :=false; 
for each h E Hi do hgcn(h) := 0; 
for each h E Hi do hck(h) := -1; 
for each h E Hi do hsee(h) := -1; 
for each h E H; do hst(h)  :=false; 
for each h E H;  and k do hlck(h, k) := -1; 
for each h E Hi, and k do hlgcn(h, k) := - 1; 

c k ( i )  := 0; 

end; I* end of initialization */ 

when si initiates a checkpoint begin 
check oint; 
gcn(iP := g n ( i )  + 1 
y . c ( g c n p )  : = N i l ;  , , , 

en , I* en of checkpoint initiation */ 

when si sends m to MSS sJ begin 

end; /* end of message sending */ 

when si sends nz to MI-I h E Hi begin 
send(m, gcn(i), ck( i ) ,  hsee(h)) to h;  
hst(h)  :=true; 
for each k do hlck(h,  k) := ck(k); 
for each k do hlgcn(h, k) := gcn(k); 

send(m, gcn, ck, see) to sj; 
s t ( j )  :=true; 

end; /* end of message sending * I  

when si receives (nz, mgcn, nzck, msee) from MSS sj begin 

i f ck (k )  = mck(k )  then see(k) := see(k) V msee(k)  
else i f ck (k )  < m c k ( k )  then s e e ( k )  := nzsee(k); 

for each k do 

for each k do ck(k)  := maz(ck(k) ,  m c k ( k ) ) ;  
for each k do gcn(k) := maz(gcn(k),  mgcn(k));  
testcondition( mgcn(j )); 
execute r(m);  

end; /* end of receiving from MSS */ 

when si receives (m, mgcn, mck, msee) from MH h begin 
gcn(h) := maz(gcn(h),  mgcn(h));  
if?cn(i) < mgcn(h) then begin 

rfmsee = c k ( i )  or 
(3k, s t ( k )  and gcn(k) < mgcn(h))  or 
(3h’ E Hi ,  hst(h‘) and hgcn(h’) < mgcn(h’)) 

for each y ( g c n ( i )  < y 5 mgcn(h)) do cgc(y) := ck( i ) ;  
then checkpoint; 

q h )  := maz(hck(h) ,mck);  
gcn i) := maz(gcn(i) ,mgcn(h));  

execute ~ ( m ) ;  
end; /* end of receiving from MH * I  

when si receives (disconnect, m g n )  from MM h begin 
hgcn(h) := maz(hgcn(h) ,  mgcn); 
testcondition( hgcn( h ) )  ; 
Hi := Hi - { h } .  
H I k h )  := {hlckjh),  hl cn(h)} ;  /* Handoff information 

end; / end o removing dH *I 

when s; receives (connect, mgcn) from MH h begin 
H; := H;  U f h ) ;  
receive (hlckthj, h l g n ( h ) )  from h’s previous MSS; 
hsee(h) := - 1 ;  
hst(h)  :=false; 
for each k do 

for each k do ck(k)  := m a z ( c k ( k ) ,  hlck(h, k)); 
for each k do hlck(h,  k) := - 1; 
for each k do gcn(k) := maz(gcn(k),  hlgcn(h, k)); 
hgcn(h) := nz cn; 
testcondition (hgcn( h )  ; 

i f c k ( k )  5 hlck(h, k) then see(k) :=true; 

end; /* end of accepting *I 

program CGC-MH; I* program for MH h. *I  
var ck, gcn, sck , see : integer; 

cgc() : integer; I* output of the algorithm */ 

procedure mhcheckpoint begin 
take a checkpoint; 
ck := ck + 1; 
see := sck; 

end; /* end of subroutine * I  

/* main */ 
initialiiation begin 

ck := 0; 
gcn := 0; 
sck := -1; 
see := -1; 

end; I* end of initialization */ 

when h initiates a checkpoint begin 
mhcheckpoint; 
gC7L := gcn + 1 
cgc(gcn) := ck; 

end; I* end of checkpoint initiation *I  

when h sends nz to MSS sJ begin 

end; /* encfof message sending * I  

when h receives (m, mgcn, nzck, mhsee)  from MSS h, 
begin 

send(m, cn, ck, see) to s, ; 

if n h s e e  = ck then mhcheckpoint; 
for each y(gcn < y 5 mgcn) do cgc(y) := ck; 

g m  := maz(gcn,  mgcn);  
execute r(n-L); 

sck := nzaz(sck, m c k ) ;  

end; /* end of message receiving *I  

when h connects to MSS s, begin 
set current MSS be sJ ; 
send (connect, gcn) to s, ; 

end; /* end of connecting * I  

when h disconnects to MSS sJ begin 
set current MSS be null; 
send (disconnect, gcn) to s, ; 
mhcheckpoint; I* handoff checkpoint */ 
see := - 1 ;  
sck := -1; 

end; I* end of disconnecting */ 

Figure 4. Checkpointing Algorithm. 
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